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Abstract

In this paper, we consider algorithm-independent
lower bounds for the problem of black-box
optimization of functions having a bounded
norm is some Reproducing Kernel Hilbert Space
(RKHS), which can be viewed as a non-Bayesian
Gaussian process bandit problem. In the stan-
dard noisy setting, we provide a novel proof
technique for deriving lower bounds on the re-
gret, with benefits including simplicity, versatil-
ity, and an improved dependence on the error
probability. In a robust setting in which every
sampled point may be perturbed by a suitably-
constrained adversary, we provide a novel lower
bound for deterministic strategies, demonstrat-
ing an inevitable joint dependence of the cumu-
lative regret on the corruption level and the time
horizon, in contrast with existing lower bounds
that only characterize the individual dependen-
cies. Furthermore, in a distinct robust setting in
which the final point is perturbed by an adver-
sary, we strengthen an existing lower bound that
only holds for target success probabilities very
close to one, by allowing for arbitrary success
probabilities above 2

3 .

1. Introduction
The use of Gaussian process (GP) methods for black-box
function optimization has seen significant advances in re-
cent years, with applications including hyperparameter tun-
ing, robotics, molecular design, and many more. On the
theoretical side, a variety of algorithms have been devel-
oped with provable regret bounds (Srinivas et al., 2010;
Bull, 2011; Contal et al., 2013; Wang et al., 2016; Bo-
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gunovic et al., 2016; Wang & Jegelka, 2017; Janz et al.,
2020), and algorithm-independent lower bounds have been
given in several settings of interest (Bull, 2011; Scarlett
et al., 2017; Scarlett, 2018; Chowdhury & Gopalan, 2019;
Wang et al., 2020).

These theoretical works can be broadly categorized into
one of two types: In the Bayesian setting, one adopts a
Gaussian process prior according to some kernel function,
whereas in the non-Bayesian setting, the function is as-
sumed to lie in some Reproducing Kernel Hilbert Space
(RKHS) and be upper bounded in terms of the correspond-
ing RKHS norm.

In this paper, we focus on the non-Bayesian setting, and
seek to broaden the existing understanding of algorithm-
independent lower bounds on the regret, which have re-
ceived significantly less attention than upper bounds. Our
main contributions are briefly summarized as follows:

• In the standard noisy GP optimization setting, we
provide an alternative proof strategy for the existing
lower bounds of (Scarlett et al., 2017), which we be-
lieve to be of significant importance in itself due to
the lack of techniques in the literature. We addition-
ally show that our approach strengthens the depen-
dence on the error probability, and give scenarios in
which our approach is simpler and/or more versatile.

• We provide a novel lower bound for a robust setting in
which the sampled points are adversarially corrupted
(Bogunovic et al., 2020). Our bound demonstrates
that the cumulative regret of any deterministic algo-
rithm must incur a certain joint dependence on the
corruption level and time horizon, strengthening re-
sults from (Bogunovic et al., 2020) stating that certain
separate dependencies are unavoidable.

• We provide an improvement on an existing lower
bound for a distinct robust setting (Bogunovic et al.,
2018a), in which the final point returned is perturbed
by an adversary. While the lower bound of (Bo-
gunovic et al., 2018a) shows that a certain number
of samples is needed to attain a certain level of regret
with probability very close to one, we show that the
same number of samples (up to constant factors) is
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required just to succeed with probability at least 2
3 .

The relevant existing results are highlighted throughout the
paper, with further details in Appendix A.

2. Problem Setup
The three problem settings considered throughout the pa-
per are formally described as follows. We additionally in-
formally summarize the existing lower bounds in each of
these settings, with formal statements given in Appendix A
along with existing upper bounds. The existing and new
bounds are summarized in Table 1 below.

2.1. Standard Setting

Let f be a function on the compact domain D = [0, 1]d;
by simple re-scaling, the results that we state readily ex-
tend to other rectangular domains. The smoothness of f
is modeled by assuming that ‖f‖k ≤ B, where ‖ · ‖k
is the RKHS norm associated with some kernel function
k(x,x′) (Rasmussen, 2006). The set of all functions satis-
fying ‖f‖k ≤ B is denoted by Fk(B), and x∗ denotes an
arbitrary maximizer of f .

At each round indexed by t, the algorithm selects some
xt ∈ D, and observes a noisy sample yt = f(xt) + zt.
Here the noise term is distributed asN(0, σ2), with σ2 > 0
and independence between times.

We measure the performance using the following two
widespread notions of regret:

• Simple regret: After T rounds, an additional point
x(T ) is returned, and the simple regret is given by
r(x(T )) = f(x∗)− f(x(T )).

• Cumulative regret: After T rounds, the cumula-
tive regret incurred is RT =

∑T
t=1 rt, where rt =

f(x∗)− f(xt).

As with the previous work on noisy lower bounds (Scarlett
et al., 2017), we focus on the squared exponential (SE) and
Matérn kernels, defined as follows with length-scale l > 0
and smoothness ν > 0 (Rasmussen, 2006):

kSE(x,x′) = exp

(
−
r2
x,x′

2l2

)
(1)

kMatérn(x,x′) =
21−ν

Γ(ν)

(√
2ν rx,x′

l

)ν
Jν

(√
2ν rx,x′

l

)
,

(2)

where rx,x′ = ‖x − x′‖, and Jν denotes the modified
Bessel function.

Existing lower bounds. The results of (Scarlett et al.,
2017) are informally summarized as follows:

• Attaining (average or constant-probability) simple re-

gret ε requires the time horizon to satisfy T =

Ω
(

1
ε2

(
log 1

ε

)d/2)
for the SE kernel, and T =

Ω
((

1
ε

)2+d/ν)
for the Matérn kernel.

• The (average or constant-probability) cumulative
regret is lower bounded according to RT =
Ω
(√

T (log T )d/2
)

for the SE kernel, and RT =

Ω
(
T

ν+d
2ν+d

)
for the Matérn kernel.

The SE kernel bounds have near-matching upper bounds
(Srinivas et al., 2010), and while standard results yield
wider gaps for the Matérn kernel, these have been tight-
ened in recent works; see Appendix A for details.

In Sections 4.2–4.5, we will present novel analysis tech-
niques that can both simplify the proofs and strengthen the
dependence on the error probability compared to the lower
bounds in (Scarlett et al., 2017).3

2.2. Robust Setting – Corrupted Samples

In the robust setting studied in (Bogunovic et al., 2020),
the optimization goal is similar, but each sampled point is
further subject to adversarial noise; for t = 1, . . . , T :

• Based on the previous samples {(xi, ỹi)}t−1
i=1 , the

player selects a distribution Φt(·) over D.

• Given knowledge of the true function f , the previous
samples {(xi, yi)}t−1

i=1 , and the player’s distribution
Φt(·), an adversary selects a function ct(·) : D →
[−B0, B0], where B0 > 0 is constant.

• The player draws xt ∈ D from the distribution Φt,
and observes the corrupted sample

ỹt = yt + ct(xt), (3)

where yt is the noisy non-corrupted observation yt =
f(xt) + zt as in Section 2.1.

Note that in the special case that Φt(·) is deterministic, the
adversary knowing Φt also implies knowledge of xt.

For this problem to be meaningful, the adversary must be
constrained. Following (Bogunovic et al., 2020), we as-
sume the following constraint for some corruption level C:

T∑
t=1

max
x∈D
|ct(x)| ≤ C. (4)

When C = 0, we reduce to the setup of Section 2.1.

While both the simple regret and cumulative regret could
be considered here, we focus entirely on the latter, as it has
been the focus of the related existing works (Bogunovic

3We are not aware of any way to adapt the analysis of (Scarlett
et al., 2017) to obtain a high-probability lower bound that grows
unbounded as the target error probability approaches zero.
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SE kernel
Upper Bound Existing Lower Bound Our Lower Bound

Standard
Cumulative Regret1,2 O∗

(√
T (log T )2d log 1

δ

)
Ω
(√

T (log T )d/2
)

Ω∗
(√

T (log T )d/2 log 1
δ

)
Corrupted Samples

Cumul. Regret, δ = Θ(1) O∗
(
R

std

T +C
√
T (log T )d

)
Ω
(
Rstd
T + C

)
Ω
(
Rstd
T + C(log T )d/2

)
Corrupted Final Point
Time to ε-optimality2 O∗

(
1
ε2

(
log 1

ε

)2d
log 1

δ

) Ω
(

1
ε2

(
log 1

ε

) d
2

)
(only for δ ≤ O(ξd))

Ω
(

1
ε2

(
log 1

ε

) d
2 log 1

δ

)
Matérn-ν kernel

Upper Bound Existing Lower Bound Our Lower Bound
Standard

Cumulative Regret1 O∗
(
T

ν+d
2ν+d

√
log 1

δ

)
Ω
(
T

ν+d
2ν+d

)
Ω
(
T

ν+d
2ν+d

(
log 1

δ

) ν
2ν+d

)
Corrupted Samples

Cumul. Regret, δ = Θ(1) O∗
(
R

std

T + CT
ν+d
2ν+d

)
Ω
(
Rstd
T + C

)
Ω
(
Rstd
T + C

ν
d+ν T

d
d+ν

)
Corrupted Final Point

Time to ε-optimality
O∗
((

1
ε

) 2(2ν+d)
2ν−d +

( log 1
δ

ε2

)1+ d
2ν

)
(only for d < 2ν)

Ω
(

1
ε2

(
1
ε

)d/ν)
(only for δ ≤ O(ξd))

Ω
(

1
ε2

(
1
ε

)d/ν
log 1

δ

)
Table 1. Summary of new and existing regret bounds. T denotes the time horizon, d denotes the dimension, ξ denotes the corruption
radius, and δ denotes the allowed error probability. In the middle row, R

std
T and Rstd

T denote upper and lower bounds on the standard
cumulative regret. The existing upper and lower bounds are from (Srinivas et al., 2010; Chowdhury & Gopalan, 2017; Scarlett et al.,
2017; Bogunovic et al., 2018a; 2020), with the partial exception of the Matérn kernel upper bounds, which are detailed at the end of
Appendix A.4. The notation O∗(·) and Ω∗(·) hides dimension-independent log T factors, as well as log log 1

δ
factors.

et al., 2020; 2021; Lykouris et al., 2018; Gupta et al., 2019;
Li et al., 2019). See also (Bogunovic et al., 2020, App. C)
for discussion on the use of simple regret in this setting.

Existing lower bound. The only lower bound stated in
(Bogunovic et al., 2020) states that RT = Ω(C) for any
algorithm, whereas the upper bound therein essentially
amounts to multiplying (rather than adding) the uncor-
rupted regret bound by C. Thus, significant gaps remain
in terms of the joint dependence on C and T , which our
lower bound in Section 4.6 will partially address.

2.3. Robust Setting – Corrupted Final Point

Here we detail a different robust setting, previously con-
sidered in (Bogunovic et al., 2018a), in which the samples
themselves are only subject to random (non-adversarial)
noise, but the final point returned may be adversarially per-
turbed. For a real-valued function dist(x,x′) and constant
ξ, we define the set-valued function

∆ξ(x) =
{
x′ − x : x′ ∈ D and dist(x,x′) ≤ ξ

}
(5)

representing the set of perturbations of x such that the
newly obtained point x′ is within a “distance” ξ of x.

We seek to attain a function value as high as possible fol-

1Analogous results are also given for the standard simple re-
gret (time to ε-optimality).

2Here we have presented simplified and slightly loosened
forms; the refined variants are stated at the end of Appendix A.4.

lowing the worst-case perturbation within ∆ξ(·); in partic-
ular, the global robust optimizer is given by

x∗ξ ∈ arg max
x∈D

min
δ∈∆ξ(x)

f(x + δ). (6)

Then, if the algorithm returns x(T ), the performance is
measured by the ξ-regret:

rξ(x) = min
δ∈∆ξ(x∗ξ)

f(x∗ξ + δ)− min
δ∈∆ξ(x)

f(x + δ). (7)

We focus our attention on the primary case of interest in
which dist(x,x′) = ‖x − x′‖2, meaning that achieving
low ξ-regret amounts to favoring broad peaks instead of
narrow ones, particularly for higher ξ.

While robust cumulative regret notions are possible
(Kirschner et al., 2020), we focus on the (simple) ξ-regret,
as it was the focus of (Bogunovic et al., 2018a) and exten-
sive related works (Sessa et al., 2020; Nguyen et al., 2020;
Bertsimas et al., 2010).

Existing lower bound. A lower bound is proved in (Bo-
gunovic et al., 2018a) for the case of constant ξ > 0, with
the same scaling as the standard setting. However, (Bo-
gunovic et al., 2018a) only proves this hardness result for
succeeding with probability very close to one; our lower
bound in Section A.3 overcomes this limitation.
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3. Main Results
In this section, we formally state the new lower bounds that
are summarized in Table 1.

3.1. Standard Setting

Our first contribution is to provide a new approach to estab-
lishing lower bounds in the standard setting (Section 2.1),
with several advantages compared to (Scarlett et al., 2017)
discussed in Section 4.4.

In the standard multi-armed bandit problem with a fi-
nite number of independent arms, (Kaufmann et al., 2016,
Lemma 1) gives a versatile tool for deriving regret bounds
based on the data processing inequality for KL divergence
(e.g., see (Polyanskiy & Wu, 2014, Sec. 6.2)). The idea
is that if two bandit instances must produce different out-
comes (e.g., a different final point x(T ) must be returned)
in order to succeed, but their sample distributions are close
in KL divergence, then the time horizon must be large.

While (Kaufmann et al., 2016, Lemma 1) is only stated for
a finite number of arms, the proof technique therein read-
ily yields the variant in Lemma 1 below for a continuous
input space, with the KL divergence quantities defined by
maximizing within each of a finite number of regions par-
titioning the space. See also (Aziz et al., 2018) for an ex-
tension of (Kaufmann et al., 2016, Lemma 1) to a different
infinite-arm problem.

In the following, we let Pf [·] denote probabilities (with re-
spect to the random noise) when the underlying function
is f , and we let Pf (y|x) be the conditional distribution
N(f(x), σ2) according to the Gaussian noise model.
Lemma 1. (Relating Two Instances – Adapted from (Kauf-
mann et al., 2016, Lemma 1)) Fix f, f ′ ∈ Fk(B), let
{Rj}Mj=1 be a partition of the input space into M disjoint
regions, and let A be any event depending on the history
up to some almost-surely finite stopping time τ .3 Then, for
δ ∈

(
0, 1

3

)
, if Pf [A] ≥ 1− δ and Pf ′ [A] ≤ δ, we have

M∑
j=1

Ef [Nj(τ)]Dj
f,f ′ ≥ log

1

2.4δ
, (8)

where Nj(τ) is the number of selected points in the j-th
region up to time τ , and

Dj
f,f ′ = max

x∈Rj
D
(
Pf (·|x) ‖Pf ′(·|x)

)
(9)

is the maximum KL divergence between samples (i.e., noisy
function values) from f and f ′ in the j-th region.

3Following (Kaufmann et al., 2016), we state this result for
general algorithms that are allowed to choose when to stop. Our
focus in this paper is on the fixed-length setting in which the time
horizon is pre-specified, and this setting is recovered by simply
setting τ = T deterministically.

In Section 4, we will use Lemma 1 to prove the following
lower bounds on the simple regret and cumulative regret,
which are similar to those of (Scarlett et al., 2017) but en-
joy an improved log 1

δ dependence on the target error prob-
ability δ. Despite this improvement, we highlight that the
key contribution in this part of the paper is the novel lower
bounding techniques for GP bandits via Lemma 1, rather
than the results themselves. See Section 4.4 for a compari-
son to the approach of (Scarlett et al., 2017).

Theorem 1. (Simple Regret Lower Bound – Standard Set-
ting) Fix δ ∈

(
0, 1

3

)
, ε ∈

(
0, 1

2

)
, B > 0, and T ∈ Z. Sup-

pose there exists an algorithm that, for any f ∈ Fk(B),
achieves average simple regret r(x(T )) ≤ ε with probabil-
ity at least 1 − δ. Then, if ε

B is sufficiently small, we have
the following:

1. For k = kSE, it is necessary that

T = Ω

(
σ2

ε2

(
log

B

ε

)d/2
log

1

δ

)
. (10)

2. For k = kMatérn, it is necessary that

T = Ω

(
σ2

ε2

(B
ε

)d/ν
log

1

δ

)
. (11)

Here, the implied constants may depend on (d, l, ν).

Theorem 2. (Cumulative Regret Lower Bound – Standard
Setting) Given T ∈ Z, δ ∈

(
0, 1

3

)
, and B > 0, for any

algorithm, we must have the following:

1. For k = kSE, there exists f ∈ Fk(B) such that the
following holds with probability at least δ:4

RT = Ω

(√
Tσ2

(
log

B2T

σ2 log 1
δ

)d/2
log

1

δ

)
(12)

provided that5 σ2 log 1
δ

B2 = O(T ) with a sufficiently
small implied constant.

2. For k = kMatérn, there exists f ∈ Fk(B) such that the
following holds with probability at least δ:

RT = Ω

(
B

d
2ν+dT

ν+d
2ν+d

(
σ2 log

1

δ

) ν
2ν+d

)
(13)

provided that σ2 log 1
δ

B2 = O
(
T

1
2+d/ν

)
with a suffi-

ciently small implied constant.

4This “failure” event occurring with probability δ implies that
the algorithm is unable to attain a (1−δ)-probability of “success”.

5As discussed in (Scarlett et al., 2017), scaling assumptions
of this kind are very mild, and are needed to avoid the right-hand
side of (12) contradicting a trivial O(BT ) upper bound.
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Here, the implied constants may depend on (d, l, ν).

In Section 4.5, we show that for the Matérn kernel, the anal-
ysis can be simplified even further by using a function class
proposed in (Bull, 2011) (which studied the noiseless set-
ting) with bounded support.

3.2. Robust Setting – Corrupted Samples

In the general setup studied in (Bogunovic et al., 2020)
and presented in Section 2.2, the player may randomize the
choice of action, and the adversary can know the distribu-
tion but not the specific action. However, if the player’s
actions are deterministic (given the history), then knowing
the distribution is equivalent to knowing the specific ac-
tion. In this section, we provide a lower bound for such
scenarios. While a lower bound that only holds for deter-
ministic algorithms may seem limited, it is worth noting
that the smallest regret upper bound in (Bogunovic et al.,
2020) (see Theorem 9 in Appendix A) is established using
such an algorithm. More generally, it is important to know
to what extent randomization is needed for robustness, so
bounds for both deterministic and randomized algorithms
are of significant interest.

Theorem 3. (Lower Bound – Corrupted Samples) In the
setting of corrupted samples with a corruption level sat-
isfying Θ(1) ≤ C ≤ T 1−Ω(1), even in the noiseless set-
ting (σ2 = 0), any deterministic algorithm (including those
having knowledge of C) yields the following with probabil-
ity one for some f ∈ Fk(B):

• Under the SE kernel, RT = Ω
(
C(log T )d/2

)
;

• Under the Matérn-ν kernel, RT = Ω
(
C

ν
d+ν T

d
d+ν
)
.

We provide a proof outline in Section 4.6, and the full de-
tails in Appendix B. We note that the assumption Θ(1) ≤
C ≤ T 1−Ω(1) primarily rules out the case C = Θ(T )
in which the adversary can corrupt every point by a con-
stant amount. This assumption also ensures that the bound
RT = Ω

(
C

ν
d+ν T

d
d+ν
)

is stronger than the bound RT =
Ω(C) from (Bogunovic et al., 2020). Note also that any
lower bound for the standard setting applies here, since the
adversary can choose not to corrupt.

Theorem 3 addresses a question posed in (Bogunovic et al.,
2020) on the joint dependence of the cumulative regret on
C and T . The upper bounds established therein (one of
which we replicate in Theorem 9 in Appendix A) are of the
form O(CR(0)), where R(0) is a standard (non-corrupted)
regret bound, whereas analogous results from the multi-
armed bandit literature (Gupta et al., 2019) suggest that
Õ(R(0) + C) may be possible, where the Õ(·) notation
hides dimension-independent logarithmic factors.

Theorem 3 shows that, at least for deterministic algorithms,

such a level of improvement is impossible in the RKHS
setting. On the other hand, further gaps remain between
the lower bounds in Theorem 3 and the O(CR(0)) upper
bounds of (Bogunovic et al., 2020) (e.g., for the SE kernel,
the latter introduces an Õ(C

√
T (log T )2d) term, whereas

Theorem 3 gives an Ω
(
C(log T )d/2

)
lower bound). Recent

results for the linear bandit setting (Bogunovic et al., 2021)
suggest that the looseness here may be in the upper bound;
this is left for future work.

3.3. Robust Setting – Corrupted Final Point

Here we provide improved variant of the lower bound in
(Bogunovic et al., 2018a) (replicated in Theorem 12 in Ap-
pendix A) for the adversarially robust setting with a cor-
rupted final point, described in Section 2.3.

Theorem 4. (Improved Lower Bound – Corrupted Final
Point) Fix ξ ∈

(
0, 1

2

)
, ε ∈

(
0, 1

2

)
, B > 0, and T ∈ Z, and

set dist(x,x′) = ‖x − x′‖2. Suppose that there exists an
algorithm that, for any f ∈ Fk(B), reports x(T ) achieving
ξ-regret rξ(x(T )) ≤ ε with probability at least 1− δ. Then,
provided that ε

B is sufficiently small, we have the following:

1. For k = kSE, it is necessary that T =

Ω
(
σ2

ε2

(
log B

ε

)d/2
log 1

δ

)
.

2. For k = kMatérn, it is necessary that T =

Ω
(
σ2

ε2

(
B
ε

)d/ν
log 1

δ

)
.

Here, the implied constants may depend on (ξ, d, l, ν).

Compared to the existing lower bound in (Bogunovic et al.,
2018a) (Theorem 12 in Appendix A), we have removed the
restrictive requirement that δ is sufficiently small (see Ap-
pendix A.3 for further discussion), giving the same scaling
laws even when the algorithm is only required to succeed
with a small probability such as 0.01 (i.e, δ = 0.99). In
addition, for small δ, we attain a log 1

δ factor improvement
similar to Theorem 1.

4. Mathematical Analysis and Proofs
4.1. Preliminaries

In this section, we introduce some preliminary auxiliary re-
sults from (Scarlett et al., 2017) that will be used through-
out our analysis. While we utilize the function class and
auxiliary results from this existing work, we apply them in
a significantly different manner in order to broaden the lim-
ited techniques known for GP bandit lower bounds, and to
reap the advantages outlined above and in Section 4.4.

We proceed as follows (Scarlett et al., 2017):

• We lower bound the worst-case regret within Fk(B)
by the regret averaged over a finite collection
{f1, . . . , fM} ⊂ Fk(B) of size M .
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0
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f1 f2 f3 f4 f5

w

Figure 1. Illustration of functions f1, . . . , f5 such that any given
point is ε-optimal for at most one function.

• Except where stated otherwise, we choose each
fm(x) to be a shifted version of a common function
g(x) on Rd. Specifically, each fm(x) is obtained by
shifting g(x) by a different amount, and then crop-
ping to D = [0, 1]d. For our purposes, we require
g(x) to satisfy the following properties:

1. The RKHS norm in Rd satisfies ‖g‖k ≤ B;
2. We have (i) g(x) ∈ [−2ε, 2ε] with maximum

value g(0) = 2ε, and (ii) there is a “width” w
such that g(x) < ε for all ‖x‖∞ ≥ w

2 ;
3. There are absolute constants h0 > 0 and ζ > 0

such that g(x) = 2ε
h0
h
(
xζ
w

)
for some function

h(z) that decays faster than any finite power of
‖z‖−1

2 as ‖z‖2 →∞.

Letting g(x) be such a function, we construct the M
functions by shifting g(x) so that each fm(x) is cen-
tered on a unique point in a uniform grid, with points
separated byw in each dimension. SinceD = [0, 1]d,
one can construct

M =
⌊( 1

w

)d⌋
(14)

such functions; we will always consider w � 1, so
that the case M = 0 is avoided. See Figure 1 for an
illustration of the function class.

• It is shown in (Scarlett et al., 2017) that the above
properties can be achieved with

M =

⌊(√
log B(2πl2)d/4h(0)

2ε

ζπl

)d⌋
(15)

in the case of the SE kernel, and with

M =
⌊(Bc3

ε

)d/ν⌋
(16)

in the case of the Matérn kernel, where c3 :=
(

1
ζ

)ν ·( c
−1/2
2

2(8π2)(ν+d/2)/2

)
, and where c2 > 0 is an absolute

constant. Note that these values of M amount to

choosing w in (14), and we will always consider ε
B

to be sufficiently small, thus ensuring that M � 1
and w � 1 as stated above.

In addition, we introduce the following notation:

• The probability density function of the output se-
quence y = (y1, . . . , yT ) when f = fm is denoted by
Pm(y) (and implicitly depends on the arbitrary un-
derlying bandit algorithm). We also define f0(x) = 0
to be the zero function, and define P0(y) analogously
for the case that the optimization algorithm is run on
f0. Expectations and probabilities (with respect to
the noisy observations) are similarly written as Em,
Pm, E0, and P0 when the underlying function is fm
or f0. On the other hand, in the absence of a sub-
script, E and P are taken with respect to the noisy
observations and the random function f drawn uni-
formly from {f1, . . . , fM}. In addition, Pf and Ef
will sometimes be used for generic f .

• Let {Rm}Mm=1 be a partition of the domain into M
regions according to the above-mentioned uniform
grid, with fm taking its minimum value of −2ε in the
center of Rm. Moreover, let jt be the index at time t
such that xt falls intoRjt ; this can be thought of as a
quantization of xt.

• Define the maximum absolute function value within
a given regionRj as

vjm := max
x∈Rj

|fm(x)|, (17)

and the maximum KL divergence to P0 withinRj as

Dj
m := max

x∈Rj
D(P0(·|x)‖Pm(·|x)), (18)

where Pm(y|x) is the distribution of an observation
y for a given selected point x under the function fm,
and similarly for P0(y|x).

• Let Nj ∈ {0, . . . , T} be a random variable represent-
ing the number of points from Rj that are selected
throughout the T rounds.

Finally, the following auxiliary lemmas will be useful.

Lemma 2. (Scarlett et al., 2017, Eq. (36)) For P1 and P2

being Gaussian with means (µ1, µ2) and a common vari-
ance σ2, we have D(P1‖P2) = (µ1−µ2)2

2σ2 .

Lemma 3. (Scarlett et al., 2017, Lemma 7) The functions
{fm} corresponding to (15)–(16) are such that the quan-
tities vjm in (17) satisfy (i)

∑M
j=1 v

j
m = O(ε) for all m;

(ii)
∑M
m=1 v

j
m = O(ε) for all j; and (iii)

∑M
m=1(vjm)2 =

O(ε2) for all j.
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4.2. Standard Setting – Simple Regret

For fixed ε > 0, we consider the function class
{f1, . . . , fM} described in Section 4.1, with B replaced by
B
3 . This change should be understood as applying to all
previous equations and auxiliary results that we use, e.g.,
replacing B by B

3 in (16), but this only affects constant
factors, which we do not attempt to optimize anyway. Be-
fore continuing, we recall the important property that any
x ∈ [0, 1]d can be ε-optimal for at most one function.

For fixed m and m′, we will apply Lemma 1 with f(x) =
fm(x) and f ′(x) = fm(x) + 2fm′(x). Intuitively, this
choice is made so that f and f ′ have different maximizers,
but remain near-identical except in a small region around
the peak of f ′. It will be useful to characterize the quantity
Dj
f,f ′ in (9); by Lemma 2,

Dj
f,f ′ = max

x∈Rj

|2fm′(x)|2
2σ2

=
2(vjm′)

2

σ2
, (19)

using the definition of vjm in (17).

In the following, let A be the event that the returned point
x(T ) lies in the region Rm (defined just above (17)). Sup-
pose that an algorithm attains simple regret at most ε for
both f and f ′ (note that ‖f ′‖k ≤ B by the triangle in-
equality and maxj ‖fj‖k ≤ B

3 ), each with probability at
least 1 − δ. We claim that this implies Pf [A] ≥ 1 − δ and
Pf ′ [A] ≤ δ. Indeed, by construction in Section 4.1, only
points in Rm can be ε-optimal under f = fm, and only
points in Rm′ can be ε-optimal under f ′ = fm + 2fm′ .
Hence, Lemma 1 and (19) give

2

σ2

M∑
j=1

Em[Nj ] · (vjm′)2 ≥ log
1

2.4δ
, (20)

and summing over all m′ 6= m gives

2

σ2

∑
m′ 6=m

M∑
j=1

Em[Nj ] · (vjm′)2 ≥ (M − 1) log
1

2.4δ
. (21)

Swapping the summations, using Lemma 3 to up-
per bound

∑
m′ 6=m(vjm′)

2 ≤ O(ε2), and applying∑M
j=1 Em[Nj(τ)] = T , we obtain

2c0ε
2T

σ2
≥ (M − 1) log

1

2.4δ
(22)

for some constant c0, or equivalently,

T ≥ (M − 1)σ2

2c0ε2
log

1

2.4δ
. (23)

Theorem 1 now follows using (15) (with B
3 in place of B)

for the SE kernel, or (16) for the Matérn-ν kernel.

Remark 1. The preceding analysis can easily be adapted
to show that when T is allowed to have variable length (i.e.,
the algorithm is allowed to choose when to stop), E[T ] is
lower bounded by the right-hand side of (23). See (Gabil-
lon et al., 2012) for a discussion on analogous variations in
the context of multi-armed bandits.

4.3. Standard Setting – Cumulative Regret

We fix some ε > 0 to be specified later, consider the func-
tion class {f1, . . . , fM} from Section 4.1, and show that it
is not possible to attain RT ≤ Tε

2 with probability at least
1− δ for all functions with ‖f‖k ≤ B.

Assuming by contradiction that the preceding goal is possi-
ble, this class of functions includes the choices of f and f ′

at the start of Section 4.2. However, if we letA be the event
that at least T2 of the sampled points lie in Rm, it follows
that Pf [A] ≥ 1 − δ and Pf ′ [A] ≤ δ, since (i) each sample
outside Rm incurs regret at least ε under f ; and (ii) each
sample withinRm incurs regret at least ε under f ′.

Hence, despite being derived with a different choice of A,
(20) still holds in this case, and (23) follows. This was de-
rived under the assumption that RT ≤ Tε

2 with probability
at least 1 − δ for all functions with ‖f‖k ≤ B; the contra-
positive statement is that when

T <
(M − 1)σ2

2c0ε2
log

1

2.4δ
, (24)

it must be the case that some function yieldsRT > Tε
2 with

probability at least δ.

The remainder of the proof of Theorem 2 follows that of
(Scarlett et al., 2017, Sec. 5.3), but with σ2 log 1

δ in place
of σ2, and the final regret expressions adjusted accordingly
(e.g., compare Theorem 2 with Theorem 8 in Appendix A).
Due to this similarity, we only outline the details:

(i) Consider (24) nearly holding with equality (e.g., T =
Mσ2

4c0ε2
log 1

2.4δ suffices).

(ii) SubstituteM from (15) or (16) (with B
3 in place ofB)

into this choice from T , and solve to get an asymp-
totic expression for ε in terms of T .

(iii) Substitute this expression for ε into RT > Tε
2 to ob-

tain the final regret bound.

See also Appendix B for similar steps given in more detail,
albeit in the robust setting.

4.4. Comparison of Proof Techniques

The above analysis borrows ingredients from (Scarlett
et al., 2017) and establishes similar final results; the key
difference is in the use of Lemma 1 in place of an additive
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change-of-measure result (see Lemma 8 in Appendix D).
We highlight the following advantages of our approach:

• While both approaches can be used to lower bound
the average or constant-probability regret,6 the above
analysis gives the more precise log 1

δ dependence
when the algorithm is required to succeed with prob-
ability at least 1− δ.

• As highlighted in Remark 1, the above simple re-
gret analysis extends immediately to provide a lower
bound on E[T ] in the varying-T setting, whereas at-
taining this via the approach of (Scarlett et al., 2017)
appears to be less straightforward.

• Although we do not explore it in this paper, we ex-
pect our approach to be more amenable to deriving
instance-dependent regret bounds, rather than worst-
case regret bounds over the function class. The
idea, as in the multi-armed bandit setting (Kaufmann
et al., 2016), is that if we can “perturb” one func-
tion/instance to another so that the set of near-optimal
points changes significantly, we can use Lemma 1 to
infer bounds on the required number of time steps in
the original instance.

• As evidence of the versatility of our approach, we will
use it in Section 4.7 to derive an improved result over
that of (Bogunovic et al., 2018a) in the robust setting
with a corrupted final point.

4.5. Simplified Analysis – Matérn Kernel

In the function class from (Scarlett et al., 2017) used above,
each function is a bump function (with bounded support) in
the frequency domain, meaning that it is non-zero almost
everywhere in the spatial domain. In contrast, the earlier
work of Bull (Bull, 2011) for the noiseless setting directly
adopts a bump function in the spatial domain, permitting a
simple analysis for the Matérn kernel.

It was noted in (Scarlett et al., 2017) that such a choice is
infeasible for the SE kernel, since its RKHS norm is infi-
nite. Nevertheless, in this section, we show that the (spa-
tial) bump function is indeed much simpler to work with
under the Matérn kernel, not only in the noiseless setting
of (Bull, 2011), but also in the presence of noise.

The following result is stated in (Bull, 2011, Sec. A.2), and
follows using Lemma 5 therein.

Lemma 4. (Bounded-Support Function Construction
(Bull, 2011)) Let h(x) = exp

( −1
1−‖x‖2

)
1{‖x‖2 < 1}

be the d-dimensional bump function, and define g(x) =
2ε
h(0)h

(
x
w

)
for some w > 0 and ε > 0. Then, g satisfies the

following properties:

6Under the new proof given here, this is achieved by setting
δ = 1

2
, or any other fixed constant in (0, 1).

• g(x) = 0 for all x outside the `2-ball of radius w
centered at the origin;

• g(x) ∈ [0, 2ε] for all x, and g(0) = 2ε.

• ‖g‖k ≤ c1
2ε
h(0)

(
1
w

)ν‖h‖k when k is the Matérn-ν
kernel on Rd, where c1 is constant. In particular, we
have ‖g‖k ≤ B when w =

( 2εc1‖h‖k
h(0)B

)1/ν
.

This function can be used to simplify both the original anal-
ysis in (Scarlett et al., 2017), and the alternative proof in
Sections 4.2–4.3. We focus on the latter, and on the simple
regret; the cumulative regret can be handled similarly.

We consider functions {f1, . . . , fM} constructed similarly
to Section 4.1, but with each fm being a shifted and scaled
version of g(x) in Lemma 4, using the choice of w in the
third statement of the lemma. By the first part of the lemma,
the functions have disjoint support as long as their center
points are separated by at leastw. We also use B

3 in place of
B in the same way as Section 4.2. By forming a regularly
spaced grid in each dimension, it follows that we can form

M =
⌊ 1

w

⌋d
=
⌊ h(0)B

6εc1‖h‖k

⌋d/ν
(25)

such functions.7 Observe that this matches the O
((
B
ε

)d/ν)
scaling in (16).

We clearly still have the property that any point x is ε-
optimal for at most one function. The additional useful
property here is that any point x yields any non-zero value
for at most one function. Letting {Rj}Mj=1 be the partition
of the domain induced by the above-mentioned grid (so that
each fm’s support is a subset of Rm), we notice that (20)
still holds (with the choice of function in the definition of
vjm′ suitably modified), but now simplifies to

Em[Nm′(τ)] · (vm′m′ )2 ≥ σ2

2
log

1

2.4δ
, (26)

since there is no difference between f(x) = fm(x) and
f ′(x) = fm(x) + 2fm′(x) outside regionRm′ .
Since the maximum function value is 2ε, we have (vm

′

m′ )
2 ≤

4ε2, and substituting into (26) and summing over m′ 6= m

gives T ≥ σ2(M−1)
8ε2 log 1

2.4δ . This matches (23) up to mod-
ified constant factors, but is proved via a simpler analysis.

4.6. Robust Setting – Corrupted Samples

The high-level ideas behind proving Theorem 3 are out-
lined as follows, with the details in Appendix B:

7We can seemingly fit significantly more points using a sphere
packing argument (e.g., (Duchi, Sec. 13.2.3)), but this would only
increase M by a constant factor depending on d, and we do not
attempt to optimize constants in this paper.
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• We consider an adversary that pushes all function val-
ues down to zero until its budget is exhausted.

• The function class chosen is similar to that in Figure
1, and we observe that (i) the adversary does not uti-
lize much of its budget unless the sampled point is
near the function’s peak, and (ii) as long as the ad-
versary is still active, the regret incurred at each time
instant is typically O(ε) (since the algorithm has only
observed y1 = . . . = yt = 0, and thus has not learned
where the peak is).

• We choose ε in a manner such that the adversary is
still active at time T for at least half of the func-
tions in the class, yielding RT = Ω(Tε). With M
functions in the class, we show that occurs when
Tε = Θ(CM).

• Combining Tε = Θ(CM) with the choices of M in
(15) and (16) yields the desired result.

4.7. Robust Setting – Corrupted Final Point

To prove Theorem 4, we introduce a new function class
that overcomes the limitation of that of (Bogunovic et al.,
2018a) (illustrated in Figure 3 in Appendix A) in only han-
dling success probabilities very close to one. Here we only
present an idealized version of the function class that can-
not be used directly due to yielding infinite RKHS norm.
In Appendix C, we provide the proof details and the pre-
cise function class used. The idealized function class is
depicted in Figure 2 for both d = 1 and d = 2.

We consider a class of functions of size M + 1, denoted
by {f0, f1, . . . , fM}. For every function in the class, most
points are within distance ξ of a point with value −2ε.
However, there is a narrow region (depicted in plain color
in Figure 2) where this may not be the case. The functions
f1, . . . , fM are distinguished only by the existence of one
additional narrow spike going down to −4ε in this region
(see the 1D case in Figure 2), whereas for the function f0,
the spike is absent. For instance, in the 1D case, if the nar-
row spike has width w′, then the number of functions is
M + 1 = ξ

w′ + 1.

With this class of functions, we have the following crucial
observations on when the algorithm returns a point with ξ-
stable regret at most ε:

• Under f0, the returned point x(T ) must lie within the
plain region of diameter ξ;

• Under any of f1, . . . , fM , the returned point x(T )

must lie outside that plain region;

• The only way to distinguish between f0 and a given
fi is to sample within the associated narrow spike in
which the function value is −4ε.

x
0 1

x1

x2

�2✏

3⇠

0

⇠

3⇠

1

1

⇠

�4✏

Figure 2. Idealized version of the function class under corrupted
final points, in 1D (left) and 2D (right). The shaded regions have
value −2ε; the checkered regions have value 0 but their points
can be perturbed into the shaded region; and the plain regions
have value 0 and cannot be. If another spike is present, as per the
dashed curve in the 1D case, then this creates a region (covering
the entire plain region) that can be perturbed down to −4ε.

Due to the N(0, σ2) noise, this roughly amounts to need-
ing to take Ω

(
σ2

ε2

)
samples within the narrow spike, and

since there are M possible spike locations, this means that
Ω
(
Mσ2

ε2

)
samples are needed. We therefore have a similar

lower bound to (23), and a similar regret bound to the stan-
dard setting follows (with modified constants additionally
depending on ξ).

5. Conclusion
We have provided novel techniques and results for
algorithm-independent lower bounds in non-Bayesian GP
bandit optimization. In the standard setting, we have pro-
vided a new proof technique whose benefits include sim-
plicity, versatility, and improved dependence on the error
probability.

In the robust setting with corrupted samples, we have pro-
vided the first lower bound characterizing joint dependence
on the corruption level and time horizon. In the robust set-
ting with a corrupted final point, we have overcome a lim-
itation of the existing lower bound, demonstrating the im-
possibility of attaining any non-trivial constant error prob-
ability rather than only values close to one.

An immediate direction for future work is to further close
the gaps in the upper and lower bounds, particularly in the
robust setting with corrupted samples.
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