
High-Dimensional Experimental Design and Kernel Bandits

Romain Camilleri 1 Julian Katz-Samuels 2 Kevin Jamieson 1

Abstract
In recent years methods from optimal linear ex-
perimental design have been leveraged to obtain
state of the art results for linear bandits. A design
returned from an objective such as G-optimal de-
sign is actually a probability distribution over a
pool of potential measurement vectors. Conse-
quently, one nuisance of the approach is the task
of converting this continuous probability distri-
bution into a discrete assignment of N measure-
ments. While sophisticated rounding techniques
have been proposed, in d dimensions they require
N to be at least d, d log(log(d)), or d2 based on
the sub-optimality of the solution. In this paper
we are interested in settings where N may be
much less than d, such as in experimental design
in an RKHS where d may be effectively infinite.
In this work, we propose a rounding procedure
that frees N of any dependence on the dimension
d, while achieving nearly the same performance
guarantees of existing rounding procedures. We
evaluate the procedure against a baseline that
projects the problem to a lower dimensional space
and performs rounding which requires N to just
be at least a notion of the effective dimension.
We also leverage our new approach in a new al-
gorithm for kernelized bandits to obtain state of
the art results for regret minimization and pure
exploration. An advantage of our approach over
existing UCB-like approaches is that our kernel
bandit algorithms are also robust to model mis-
specification.

1. Introduction
This work studies a non-parametric multi-armed bandit
game through the lens of experimental design. Fix a finite
set of measurements X ⊂ Rd and a function µ : X → R.
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We consider the following game between a learner and na-
ture: at each time t = 1 . . . T , the learner requests xt ∈ X
and nature immediately reveals

yt = µxt + ξt

where {ξt}Tt=1 is a sequence of independent, mean-zero
random variables with bounded variance. We are interested
in two objectives:

Regret minimization In this setting, we evaluate the per-
formance of an algorithm choosing actions {xt}Tt=1 by its
cumulative regret: RT = maxx∈X

∑T
t=1 (µx − µxt).

Pure exploration in the PAC setting For a tolerance ε ≥
0 and confidence level δ ∈ (0, 1), the aim of the learner
in pure exploration is to sequentially take samples until a
learner-defined stopping criterion is met, at which time the
learner outputs an arm x̂ ∈ X such that µx̂ ≥ maxx∈X µx−
ε with probability at least 1− δ.

To aid us in our objectives, we assume some structure on
the reward function µ.

Assumption 1. There exists a known feature map φ : Rd 7→
H that maps each x ∈ X to a (possibly infinite dimensional)
Hilbert spaceH, and moreover, there exists a θ∗ ∈ H and
h ≥ 0 such that maxx∈X |µx − 〈θ∗, φ(x)〉H| ≤ h.

Consequently, if h is not too big, the expected value of
each of the observations yt is nearly a linear function of its
associated features φ(xt). We say the model is misspecified
when h > 0, and otherwise the setting is well-specified and
reduces to the classical stochastic setting when h = 0.

Assumption 2. Rewards are bounded maxx∈X |µx| ≤ B.

Assumption 3. For every time t, the additive stochastic
noise ξt is independent, mean-zero with E[ξ2

t ] ≤ σ2.

While we assume the learner knows B and σ2, we assume
that the learner does not know the extent of the model mis-
specification h ≥ 0. Note that we do not assume ξt is
bounded, indeed, it can even be heavy tailed.

1.1. Elimination algorithms and experimental design

Whether the model is misspecified (h > 0) or not (h = 0),
a popular class of algorithms for both the objectives of
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regret minimization and pure exploration is known as elim-
ination algorithms. Elimination algorithms proceed in
stages, maintaining a set X̂ ⊂ X of candidates that may
achieve maxx∈X µx given all previous observations. At
the beginning of the stage ` ≥ 1 the algorithm decides
which measurements to take, nature reveals the observa-
tions, and the stage ends by constructing an estimate µ̂(·)

of µ(·) and removing all elements x ∈ X̂ from X̂ where
maxx′∈X̂ µ̂x′ − µ̂x > ε`. This process is repeated indefi-
nitely in the case of regret minimization, or until X̂ contains
a single element in the case of pure exploration. To be as
effective as possible at discarding as many candidates as
possible in the elimination stage (without discarding the best
arm), a natural strategy of selecting how many and which
measurements to take in the beginning of the round is to se-
lect x1, . . . , xn ∈ X to accurately estimate the differences
of the estimates

max
x,x′∈X̂

(µ̂x′ − µ̂x)− (µx′ − µx) ≤ ε`. (1)

If x∗ := arg maxx∈X µx and x∗ ∈ X̂ at the start of the
round, then we have that x∗ will not be eliminated at the
end since

max
x′∈X̂

µ̂x′ − µ̂x∗ ≤ max
x′∈X̂

µx′ − µx∗ + ε` ≤ ε`.

And moreover, it is straightforward to show that after the
discarding step of stage `, maxx∈X̂ µx∗ − µx ≤ 2ε`. To
guide our choice of x1, . . . , xn ∈ X to achieve (1), we
exploit the assumed (nearly) linear model of above.

1.2. Optimal experimental design and the problem of
rounding continuous designs

This section introduces the method of experimental design
with the goal of achieving (1) by taking as few total samples
as possible. Shortly, we will consider the case when h > 0
and φ is an arbitrary feature map. But for now, let us make
the simplifying assumption that h = 0, φ is the identity map
so that µx = 〈θ∗, x〉, and ξt ∼ N (0, σ2). Thus, if at time t
we select xt ∈ X ⊂ Rd we observe 〈θ∗, xt〉+ ξt. Suppose
we observed pairs {(xt, yt)}Tt=1 where each xt ∈ X was
chosen independently of any ys for s ≤ t. If we wished to
achieve (1) for X̂ ⊂ X with µx = 〈x, θ∗〉, perhaps the most
natural way forward would be to compute the least squares
estimator θ̂LS = arg minθ

∑T
t=1(yt − 〈xt, θ〉)2, and set

µ̂x = 〈θ̂LS , x〉. Then (1) is equivalent to maxv∈V〈θ̂LS −
θ∗, v〉 ≤ ε` with V = X̂ − X̂ . By a standard sub-Gaussian
tail-bound (Lattimore & Szepesvári, 2020), we have with
probability at least 1− δ that for all v ∈ V ⊂ Rd

|〈v,θ̂LS−θ∗〉|≤‖v‖(∑T
t=1xtx

>
t )−1

√
2σ2log(2|V|/δ), (2)

where we adopt the notation ‖z‖A =
√
z>Az for any

z ∈ Rd and symmetric semi-definite positive A. Note that

this error bound only depends on those xt measurements
that we choose before any responses yt are observed. This
allows us to plan, that is, choose the T measurement vectors
to minimize the RHS of (2). Unfortunately, this minimiza-
tion problem is known to be NP-hard (Pukelsheim, 2006;
Allen-Zhu et al., 2017). As a consequence, approximation
algorithms based on the relaxation

λ̄ = argminλ∈4X max
v∈V

v>
(∑

x∈X λxxx
>)−1

v (3)

have been proposed. These first solve for λ̄ and “round” this
to a discrete allocation of measurements.

Deterministic rounding Perhaps the simplest scheme is
to obtain a solution λ̄ of (3) and then sample x ∈ X ex-
actly dλ̄xT e times. In the worst case, this will result in
|support(λ̄)| additional measurements than the intended T .
Caratheodory’s theorem provides a polynomial-time algo-
rithm for constructing λ̃ ∈ 4X such that

∑
x∈X λ̃xxx

> =∑
x∈X λ̄xxx

> and |support(λ̃)| ≤ (d + 1)d/2. However,
more sophisticated rounding procedures exist. (Allen-Zhu
et al., 2017) inflates the RHS of (2) by a constant factor
while only requiring that T = Ω(d). When V = X , an-
other strategy is to solve the optimization problem (3) with
a Frank-Wolfe style algorithm that is terminated only after
O(d log log(d)) iterations so that the rounding according to
the naive ceiling operation only inflates T by the number of
iterations which is O(d log log(d)) (Todd, 2016).

Stochastic rounding Another basic rounding algorithm
simply samples x1, . . . , xT ∼ λ̄. Unfortunately, using the
least squares estimator θ̂LS , we may have that

∑T
t=1 xtx

>
t

deviates dramatically from T
∑
x∈X λ̄xxx

> for moderate
T , thus any guarantees require T to be poly(d) and more-
over, performance relies on the spectrum of

∑
x∈X λ̄xxx

>

(Rizk et al., 2020). As a consequence, (Tao et al., 2018)
proposed using the inverse propensity score (IPS) estima-
tor θ̂IPS := (

∑
x∈X λ̄xxx

>)−1( 1
T

∑T
t=1 xtyt). From (Tao

et al., 2018), with probability at least 1− δ we have for all
v ∈ V simultaneously

|〈v, θ̂IPS − θ∗〉| ≤

√
2σ2 ‖v‖2A(λ̄)−1 log(2|V|/δ)

T
(4)

+
log(2|V|/δ)(1 + maxx∈X |v>A(λ̄)−1x|)

T
.

where A(λ) :=
∑
x∈X λxxx

>. The second term of (4)
accounts for potentially rare but large deviations of size
maxx∈X |v>A(λ̄)−1x|. Sadly, this second term is cumber-
some in analyses since it can dominate the first term, and it
cannot be removed in the worst-case. A final class of algo-
rithms rely on proportional volume sampling, or sampling
from a determinantal point process (DPP), but are limited to
specific optimality criteria (Nikolov et al., 2019; Derezinski
et al., 2020).
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1.3. Main contributions

The main contributions of this paper include a novel scheme
for experimental design and its application to kernel bandits.

• We propose an estimator θ̂RIPS that overcomes many
of the shortcomings of the prior art reviewed in Sec-
tion 1.2 for h = 0 and φ ≡ identity. For any fixed
θ∗ ∈ Rd, V ⊂ Rd,X ⊂ Rd, λ ∈ 4X , and T ∈ N,
if T samples are drawn randomly according to λ to
construct θ̂RIPS , then with probability at least 1 − δ
we have for all v ∈ V

|〈v, θ̂RIPS − θ∗〉|

≤ ‖v‖(∑x∈X λxxx
>)−1

√
c(σ2 +B2) log(2|V|/δ)

T

for an absolute constant c. Note that our method puts
no restrictions on T but matches the ideal discrete
allocation of (2) up to a constant by realizing that

infλ∈4X maxv∈V ‖v‖(∑x∈X Tλxxx
>)−1

min{xt}Tt=1∈X maxv∈V ‖v‖(∑T
t=1 xtx

>
t )−1

≤ 1.

We also note that we only assume the stochastic noise
has bounded variance and do not rule out heavy-tailed
distributions. The estimator θ̂RIPS is a special case of
our more general estimator.

• We extend our estimator to the misspecified setting
where h ≥ 0 and to use feature maps φ : Rd → H for
an RKHS H. When H can represent a high or even
an infinite dimensional space, restrictions on T based
on the dimension start to become paramount. For any
fixed θ∗ ∈ H, V ⊂ H,X ⊂ Rd, λ ∈ 4X , T ∈ N, and
γ ≥ 0, if T samples are drawn randomly according to
λ to construct θ̂RIPS(γ), then with probability at least
1− δ we have for all v ∈ V

|〈v,θ̂RIPS(γ)− θ∗〉| ≤ ‖v‖(∑x∈X λxφ(x)φ(x)>+γI)−1

×
(√

γ‖θ∗‖2 + h+

√
c(σ2+B2)log(2|V|/δ)

T

)
.

Note that since H may be infinite-dimensional, the
estimator θ̂RIPS(γ) is constructed implicitly and is
implemented through kernel evaluations only.

• We empirically compare θ̂RIPS(γ) to the sampling and
estimator pairs of Section 1.2 and show that θ̂RIPS(γ)
is competitive on both finite dimensionalG-optimal de-
sign as well as its regularized RKHS variant sometimes
called Bayesian experimental design.

• We employ θ̂RIPS(γ) in a novel elimination style al-
gorithm for kernel bandits. Our regret bounds match

state of the art results in the well-specified setting, and
are the first linear bounds that we are aware of for the
misspecified setting. In addition, we state an instance-
dependent pure-exploration result for identifying an
ε-good arm with probability at least 1−δ that compares
favorably to known lower bounds. One advantage of
our algorithm over prior kernel bandits and Bayesian
Optimization algorithms (Srinivas et al., 2009; Valko
et al., 2013; Frazier, 2018) is that our approach natu-
rally allows for taking batches of pulls per round.

2. Robust Inverse Propensity Score (RIPS)
estimator

In this section we introduce the θ̂RIPS estimator. In finite
dimensions, our estimator first constructs θ̂IPS but then to
avoid the large deviations term of (4) applies robust mean
estimation on each 〈v, θ∗〉 to obtain a θ̂RIPS which is consis-
tent with all of these estimates. When we move to an RKHS
setting, we add regularization to avoid vacuous bounds and
account for the introduced bias. The bias of misspecification
is handled similarly. We begin with robust mean estimation.

Definition 1. Let X1, . . . , Xn be i.i.d. random variables
with mean x̄ and variance ν2. Let δ ∈ (0, 1). We say
that µ̂(X1, . . . , Xn) is a δ-robust estimator if there exist
universal constants c1, c0 > 0 such that if n ≥ c1 log(1/δ),
then with probability at least 1− δ

|µ̂({Xt}nt=1)− x̄| ≤ c0

√
ν2 log(1/δ)

n
.

Examples of δ-robust estimators include the median-of-
means estimator and Catoni’s estimator (Lugosi & Mendel-
son, 2019). This work employs the use of the Catoni estima-

tor which satisfies |µ̂({Xt}nt=1)− x̄| ≤
√

2ν2 log(1/δ)
n−2 log(1/δ) for

n > 2 log(1/δ) which leads to an optimal leading constant
as n → ∞. We will use a separate robust mean estimate
for each v ∈ V . In particular, to estimate 〈v, θ∗〉 we use
µ̂({v>A(γ)(λ)−1φ(xt)yt}Tt=1) where

A(γ)(λ) :=
∑
x∈X

λxφ(x)φ(x)> + γI. (5)

Our RIPS procedure for experimental design in an RKHS is
presented in Figure 1. It has the following guarantee.

Theorem 1. Fix any finite setsX ⊂ Rd and V ⊂ H, feature
map φ : Rd → H, number of samples τ and regularization
γ > 0. If the RIPS procedure of Figure 1 is run with δ

|V| -
robust mean estimator µ̂(·) and if τ ≥ c1 log(|V|/δ) then
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Algorithm 1 RIPS for Experimental Designs in an RKHS
Input: Finite sets X ⊂ Rd and V ⊂ H, feature map
φ : Rd → H, number of samples τ , regularization γ > 0,
robust mean estimator µ̂ : R∗ → R

λ∗ := arg min
λ∈4X

max
v∈V
‖v‖(∑x λxφ(x)φ(x)>+γI)

−1 (6)

Randomly draw x̃1, . . . , x̃τ from X according to λ∗

Set W (v) = µ̂({v>A(γ)(λ∗)−1φ(x̃t)ỹt}τt=1)

Set θ̂ := arg min
θ

max
v∈V

|〈θ, v〉 −W (v)|
‖v‖(∑x∈X λ

∗
xφ(x)φ(x)>+γI)−1

Return: {W (v)}v∈V , θ̂

Figure 1. In this work, we assume each element in V is a lin-
ear combination of φ ◦ X which makes all quantities well-
defined and can be computed using kernel evaluations k(x, x′) :=
〈φ(x), φ(x′)〉H. Moreover, Equation 6 is convex with gradients
that can be computed using kernel evaluations (See Section 2.3).

with probability at least 1− δ, we have

max
v∈V

|W (v) − 〈θ∗, v〉|
‖v‖(∑x∈X λxφ(x)φ(x)>+γI)−1

≤ √γ‖θ∗‖2 + h+ c0

√
(B2+σ2)

τ log(2|V|/δ),

Moreover, W (v) = µ̂({v>A(γ)(λ)−1φ(xt)yt}τt=1) can be
replaced by 〈θ̂, v〉 by multiplying the RHS by a factor of 2.

Proof sketch. Due to the regularization and potential mis-
specification if h > 0, each v>A(γ)(λ)−1φ(xt)yt is
biased. Thus, we apply the guarantee of W (v) =
µ̂({v>A(γ)(λ)−1φ(xt)yt}τt=1) to the expectation of its ar-
guments. The triangle inequality followed by repeated ap-
plications of Cauchy-Schwartz yields

|W (v) − 〈v, θ∗〉| ≤|W (v) − E[v>A(γ)(λ)−1φ(x1)y1]|
+ |E[v>A(γ)(λ)−1φ(x1)y1]− 〈v, θ∗〉|

≤c0

√
ν2 log(1/δ)

τ
+
√
γ‖θ∗‖2 + h

where we obtain an upper bound on the variance ν2 by

Var(v>A(γ)(λ)−1φ(x1)y1)≤E[(v>A(γ)(λ)−1φ(x1)y1)2]

= E
[(
v>A(γ)(λ)−1φ(x1)

)2

µ2
x1

]
+E

[(
v>A(γ)(λ)−1φ(x1)

)2

ξ2
1

]
≤(B2+σ2)‖v‖2A(γ)(λ)−1 .

2.1. Practical implementation of the algorithms

The construction of θ̂ in the algorithms may–at first glance–
look confusing in the infinite dimensional case. In actual-
ity, the equivalent dual representation θ̂ =

∑|X |
i=1 αiφ(xi)

would be used. That is, the potentially infinite dimensional
object θ̂ is represented by a finite dimensional weight vector
α ∈ R|X |. With that, the optimizations in the algorithms
(e.g., to compute the RIPS estimator) are over the dual vector
α ∈ R|X |, and inner products 〈θ̂, v〉 =

∑|X |
i=1 αi〈φ(xi), v〉

are computed using the kernel matrix of X since in all in-
stances of v used in the algorithms, v is a linear combination
of {φ(x)}x∈X .

2.2. Comparison to IPS estimator

Note the difference between the bound of RIPS in Theorem 1
with the bound of the IPS estimator stated in equation (4).
Consider the setting of equation (4). Ignoring log factors
and constants, the confidence bound of the IPS estimator

essentially scales as

√
σ2‖v‖2

A(λ̄)−1

T + maxx∈X |v>A(λ̄)−1x|
T ,

while the confidence bound of RIPS essentially scales

as

√
σ2‖v‖2

A(λ̄)−1

T . It can be shown that in the instance
in the experiment corresponding to figure 4, the term

maxx∈X |v>A(λ̄)−1x|
T ≈ d

T while

√
σ2‖v‖2

A(λ̄)−1

T ≈
√
d√
T

.
Thus, the first term dominates by a polynomial factor in
the dimension until T ≥ d, and the experiment shows that
indeed the IPS estimator has larger deviations than RIPS, as
suggested by the above upper bounds.

2.3. Experimental Design optimization in an RKHS

We now discuss how to actually compute an allocation in
a potentially infinite dimensional RKHSH. The following
lemma will be helpful and is proved in the appendix.

Lemma 1. If Aλ=
∑
x∈X λxφ(x)φ(x)> then for a, b ∈ H

a>(Aλ+γI)−1b=
1

γ
a>b− 1

γ
kλ(a)>(Kλ+γI|X |)

−1kλ(b)

with kλ(·) ∈ R|X | so that for any c ∈ H, [kλ(c)]i =√
λiφ(xi)

>c, and Kλ ∈ R|X |×|X| so that

[Kλ]i,j =
√
λi
√
λjφ(xj)

>φ(xj) =:
√
λi
√
λjk(xi, yi).

For x ∈ X , [kλ(x)]i =
√
λiφ(xi)

>φ(x) =
√
λik(xi, x).

If we call f(λ) the argument of Equation 6 in Figure 1, and
v̄∈arg maxv∈V v

> (∑
x∈X λxφ(x)φ(x)> + γI

)−1
v then

the computation of the gradient of λ 7→ f(λ) equals

[∇λf(λ)]i = −
(
v̄>(

∑
x∈X

λxφ(x)φ(x)> + γI)−1φ(xi)
)2
.
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Importantly, in this work V will always be a linear combina-
tion of {φ(x)}x∈X (e.g. V = X −X ), thus the last quantity
can be computed only using kernel evaluations thanks to
Lemma 1. We use first order optimization methods to mini-
mize λ 7→ f(λ) since it is convex.

2.4. Project-Then-Round (PTR) for RKHS designs

To the best of our knowledge, the RIPS procedure of Fig-
ure 1 is novel and should be benchmarked. To design a
baseline, we take inspiration from previous works on ex-
perimental design in an RKHS. For instance, (Alaoui &
Mahoney, 2015) employ a sampling distribution related to
statistical leverage scores to construct a sketch of the ker-
nel matrix using a Nystrom approximation. The objective
in that problem is closest to V -optimal design which aims
to minimize the sum-squared error

∑
x∈X E[〈x, θ̂ − θ∗〉2]

(note, our work is concerned with G-optimal-like objectives,
or worst-case error over X ). The Nystrom approximation to
the kernel matrix effectively projects the problem to a low
dimensional sub-space where finite-dimensional rounding
techniques like those reviewed in Section 1.2 can be applied.
(Bach, 2015) also relies on a sampling distribution to ap-
proximate integrals using kernels with an objective similar
to V optimal.

We describe in Algorithm 2.4 the baseline procedure we call
Project-Then-Round (PTR), that employs the finite round-
ing technique of (Allen-Zhu et al., 2017) described in Sec-
tion 1.2. This procedure enjoys the following guarantees.

Theorem 2. Consider the procedure of Algorithm 2.4. If
the number of measurements τ satisfies τ = Ω(d̃(γ, λ)),
then

max
v∈V
‖v‖2

(
∑τ
i=1 φ(x̃i)φ(x̃i)>+τγI)

−1

≤ max(2, 1 + ε) max
v∈V
‖v‖2

(
∑
x∈X τλxφ(x)φ(x)>+τγI)

−1 .

where d̃(γ, λ) is defined in the algorithm.

We refer the reader to the appendix for the proof of Theo-
rem 2. This procedure performs rounding in a finite dimen-
sional subspace which is a projection of the initial feature
space of potentially infinite dimension. With Theorem 2 one
can obtain a guarantee similar to that of Theorem 1 up to a
constant whenever τ = Ω(d̃(λ, γ)). Though this effective
dimension is rarely the dominating factor in analyses, it is
cumbersome to keep around and bound.

2.5. Empirical evaluation of allocation methods

We briefly describe illustrative experiments (see the supple-
mentary material for more details).

G-optimal design experiment: We generate x1, . . . , xn
by sampling x̃i ∼ N(0,Σ) with Σi,i = 1 if i ≤ d − 10,

Σi,i = .1 if i > d − 10 and all other entries of Σ set to
0. Then, we set xi = x̃i

‖x̃i‖ . We use θ∗ = 1√
d
1. We set

d = 50 and n = d(d+1)
2 . We use mirror descent to solve

the G-optimal design problem. We compare RIPS with
IPS, Caratheodory’s algorithm with the ceiling rounding
technique (LS Cara), the rounding technique in (Allen-Zhu
et al., 2017) (LS Regsel), and the random sampling approach
taken in (Rizk et al., 2020) (LS Sampling). Figure 2 depicts
the results, and shows that RIPS performs comparably to
these other approaches. It also illustrates the shortcomings
of the Caratheodory rounding algorithm, which does not
return an estimate for T ≤ 1275, while the other algorithms
have already learned nontrivial estimates of θ∗ for much
smaller values of T .

G-optimal design in an RKHS: We let X =
{0, ( 1

m )2, . . . , (m−1
m )2, 1} with m = 500 and use the RBF

kernel K(x, x′) = exp(−‖x−x
′‖2

2ϕ2 ) with bandwidth param-
eter ϕ = 0.025. Due to this being an infinite dimensional
kernel, the ambient dimension for m points is equal to m.
We focus on the regime T < m where standard rounding
schemes do not apply and compare PTR with regularization
γ, θ̂RIPS(γ), and θ̂IPS(γ) := A(γ)(λ)−1( 1

T

∑T
t=1 xtyt)

where we set γ = 0.005. Figure 3 depicts the results,
showing that PTR(γ) does slightly better than IPS(γ) and
RIPS(γ), and that all three algorithms have learned non-
trivial estimates of θ∗ using hundreds of samples fewer than
standard rounding algorithms require to even output an esti-
mate.

RIPS vs. IPS: While IPS has similar performance to RIPS
in the two previous experiments, RIPS performs dramati-
cally better in some settings. Let m ∈ N and d = m2 +m.
Inspired by combinatorial bandits, we consider a setting
where the measurement vectors X = {e1, . . . , ed} consist
of the standard basis vectors, θ∗ = −1, and the performance
metric for an estimator θ̂ is E supi∈[m2] |v>i (θ̂− θ∗)| where
vi =

∑m
j=1 ej + ei+m. We compare the performance of

IPS against RIPS for m ∈ {12, 14, 16} and estimate the
expected maximum deviation at T = 4m. Figure 4 shows
that asm grows, the performance of IPS degrades relative to
RIPS, reflecting that IPS has large deviations in comparison
to our proposed estimator RIPS.

3. Algorithms for Kernelized Bandits
We now leverage our proposed RIPS estimator of Algo-
rithm 1 for the kernel bandits problem in an elimination
style algorithm as introduced in Section 1.1. In this section
we provide different algorithms to solve the regret minimiza-
tion and pure exploration problems. This section illustrates
the benefits of using our RIPS estimator. In particular, the
estimator enables us to design a regret minimization algo-
rithm that trivially supports batching while enjoying state of
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Figure 2. G-Optimal Design Experiment Figure 3. Kernel Experiment Figure 4. RIPS vs IPS Experiment

Algorithm 2 PTR for Experimental Designs in an RKHS
Input: Finite sets X ⊂ Rd and V ⊂ H, feature map
φ : Rd → H, regularization γ > 0
Fix any λ ∈ 4X .
Compute [K]i,j = k(xi, xj) = 〈φ(xi), φ(xj)〉H the ker-
nel matrix of the set of points X = {x1, . . . , xn}.
Consider a decomposition K = Φ̂Φ̂> with Φ̂ ∈ Rn×n
such that the rows of Φ̂ called φ̂(xi) ∈ Rn are used to
compute Â(λ) =

∑n
i=1 λiφ̂(xi)φ̂(xi)

>.
Diagonalize Â(λ) as Â(λ) = V DV > with D diagonal
matrix with coefficients (d1 ≥ d2 ≥ . . . ≥ dn).
Define the effective dimension as

d̃(λ, γ) = max{i ∈ [n] : di ≥ γ}.

Choose k = d̃(γ, λ) ∈ [n] and denote Vk as the top k
eigenvectors of Â(λ).
Compute the projections V >k φ̂(x1), . . . , V >k φ̂(xn) ∈ Rk
Use the rounding procedure of (Allen-Zhu et al., 2017)
to obtain the desired sparse allocation {x̃i}τi=1.
Return: {x̃i}τi=1

the art performance in the well-specified setting. In addition,
this same algorithm is robust to model misspecification, suf-
fering only linear regret with respect to that approximation
error without any prior knowledge on this error (guarantees
that, to the best of our knowledge, our novel). Last but not
least, applying our RIPS estimator to pure exploration tasks
leads to the first best arm identification provably robust to
misspecification.

3.1. RIPS for Regret minimization

As introduced in Section 1, our objective is to develop an
algorithm that minimizes regret under the general stochastic
and misspecified setting (Assumptions 1-3). Specifically,
when pulling arm x ∈ X at time t we observe a random
variable µx + ξt where ξt is independent, mean-zero noise
with variance σ2. We assume there exists a θ∗ ∈ H and

known feature map φ : X → H such that maxx∈X |µx −
〈θ∗, φ(x)〉| ≤ h where h ≥ 0 is unknown to the learner.
That is, µx is well-approximated by the linear function
〈θ∗, φ(x)〉 but may deviate from it by an amount h ≥ 0.
Because of model misspecification in the case when h > 0,
we should not hope to obtain sub-linear regret if we seek
a regret bound that grows only logarithmically in |X | and
polynomial in d.

Algorithm 3 is a phased elimination strategy where at each
round a (regularized) G-optimal design is performed to min-
imize the variances of the estimates of all the arms and then
arms are discarded if their sub-optimality gap is deemed
too large (under the assumed linear model). Due to model
misspecification, we should only expect this approach to
work until hitting a kind of noise floor defined by the level
of misspecification h, as suggested from the guarantee from
Theorem 1. The algorithm is a combination of our RIPS
estimator for the RKHS setting and the robust algorithm of
(Lattimore et al., 2020).
Theorem 3. With probability at least 1 − δ, the regret of
Algorithm 3 satisfies

T∑
t=1

µx − µxt . c1 log(|X |/δ) +
√

max
V⊂X

f(V, γ)× (7)

×
(
T (h+

√
γ‖θ∗‖)+

√
c20(σ2+B2)T log(|X | log(T )/δ)

)
where f(V, γ) = inf

λ∈4V
sup
y∈V
‖φ(y)‖2(∑x∈X λxxx

>+γI)−1 .

Choosing γ = 1/T , δ = 1/T yields an expected regret of

E
[ T∑
t=1

µx∗−µxt
]
≤c′
√

max
V⊂X

f(V, 1
T )
(
hT+

√
log(|X |T )T

)
where c′ = O(

√
‖θ∗‖2 + σ2 +B2). Note that the hT term

due to model misspecification is comparable to the one in
(Lattimore et al., 2020). Prior works such as (Srinivas et al.,
2009; Valko et al., 2013) have demonstrated expected regret
bounds in the well-specified (h = 0) setting that scale like√
γTT log(|X |) where

γT := max
λ∈4X

log det(TA(0)(λ) + γ). (8)
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Algorithm 3 RIPS for Regret Minimization
Input: Finite sets X ⊂ Rd (|X | = n), feature map
φ, confidence level δ ∈ (0, 1), regularization γ, sub-
Gaussian parameter σ, bound on maximum reward B.
Set X1 ← X , `← 1
while |X`| > 1 do

Let λ` ∈ 4X be a minimizer of f(λ;X`, γ) where

f(V, γ) = inf
λ∈4V

f(λ;V, γ)

= inf
λ∈4V

max
y∈V
‖φ(y)‖2(∑y∈V λyφ(y)φ(y)>+γI)−1

Set ε` ← 2−`, q(1)
` ← c1 log(|X |/δ)

Set q(2)
` ← c20(B2 + σ2)ε−2

` f(X`, γ) log(4`2|X |/δ)
Set τ` ←

⌈
max

{
q

(1)
` , q

(2)
`

}⌉
Use Algorithm 1 with sets X`, V` = φ ◦ X`, sampling
τ` measurements x1, . . . , xτ` to get {W (v)}v∈V` .

Set θ̂` := arg min
θ

max
v∈V`

|〈θ, v〉 −W (v)|
‖v‖(∑x∈X λ`,xφ(x)φ(x)>+γI)−1

Update active set:

X`+1 =
{
x ∈ X`, max

x′∈X`
〈φ(x′)− φ(x), θ̂`〉 < 4ε`

}
`← `+ 1

end while
Play unique element of X` indefinitely.

where A(0)(λ) is defined as in (5). The following lemma
shows that our own regret bound is never worse than these
results.
Lemma 2. Let γT be defined as in (8). Then

max
V⊂X

f(V, γT )=max
V⊂X

inf
λ∈4V

sup
y∈V
‖φ(y)‖2A(γ/T )(λ)−1≤

3

2
γT .

The quantity f(X , γ) can also be bounded by a more inter-
pretable form:
Lemma 3. Iff(X , γ)= inf

λ∈4X
max
y∈X
‖φ(y)‖2(A(λ)+γI)−1 then

f(X , γ) ≤ Trace
(
A(λ∗D)(A(λ∗D) + γI)−1

)
= Trace

(
Kλ∗D

(Kλ∗D
+ γI)−1

)
where λ∗D ∈ arg maxλ∈4X log det

(
A(γ)(λ)

)
.

Notably, the RHS of Lemma 3 is the notion of effective di-
mension that appears in (Alaoui & Mahoney, 2015; Derezin-
ski et al., 2020).

3.2. RIPS for Pure Exploration

We consider a slight generalization of the pure exploration
setting introduced in Section 1. Fix finite sets X ⊂ Rd and

Algorithm 4 RIPS for Pure Exploration
Input: Finite sets X ⊂ Rd, Z ⊂ Rd, feature map φ, con-
fidence level δ ∈ (0, 1), regularization γ, sub-Gaussian
parameter σ, bound on maximum reward B, bound on
the misspecification noise h.
Let Z1 ← Z, `← 1
while |Z`| > 1 do

Let λ` ∈ 4X be a minimizer of f(λ;Z`; γ) where

f(V; γ) = inf
λ∈4X

f(λ;V; γ)

= inf
λ∈4X

max
v,v′∈V

‖φ(v)−φ(v′)‖2(∑x∈Xλxφ(x)φ(x)>+γI)−1

Set ε` ← 2−`, q(1)
` ← c1 log(|Z|/δ)

Set q(2)
` ← c20ε

−2
` f(Z`; γ)(B2 + σ2) log(2`2|Z|2/δ)

Set τ` ←
⌈
max

{
q

(1)
` , q

(2)
`

}⌉
Use Algorithm 1 with setsX , V` = φ◦Z`−φ◦Z`, sam-
pling τ` measurements x1, . . . , xτ` to get {W (v)}v∈V` .

Set θ̂` :=arg min
θ

max
v∈V`

|〈θ, v〉 −W (v)|
‖v‖(∑x∈Xλ`,xφ(x)φ(x)>+γI)−1

Z`+1 =
{
z ∈ Z` : max

z′∈Z`
〈φ(z′)−φ(z), θ̂`〉≤2ε`

}
`← `+ 1

end while
Output: Z`

Z ⊂ Rd. We may have X = Z but there are interesting
cases in which X 6= Z including combinatorial bandits
and recommendation tasks (Fiez et al., 2019). We say a
z ∈ Z is ε-good if µz ≥ maxz′∈Z µz′ − ε. In the pure
exploration game, for ε > 0 and δ ∈ (0, 1) the player seeks
to identify an ε-good arm by taking as few measurements
in X as possible. Just as in regret minimization games, we
assume that when the player at time t plays xt ∈ X she
observes yt = µxt + ξt where ξt is independent mean-zero
noise with variance σ2. Finally, we assume the existence of
a θ∗ ∈ H such that

max

{
max
z∈Z
|µz − 〈θ∗, φ(z)〉|,max

x∈X
|µx − 〈θ∗, φ(x)〉|

}
≤ h

for some h ≥ 0 that is unknown to the player.

Consider the elimination style algorithm of Algorithm 4.
The algorithm is a combination of our RIPS procedure and
the algorithm of (Fiez et al., 2019). While the algorithm
is inspired by (Fiez et al., 2019), their analysis only holds
in the well-specified setting (h = 0), hence a new proof
technique was necessary to achieve the following result for
general h ≥ 0.
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Theorem 4. With z∗ ∈ arg max
z∈Z
〈z, θ∗〉, fix any ε ≥ ε̄ where

ε̄ = 8 min{ε ≥ 0 : 4(
√
γ‖θ∗‖2 + h)(2 +

√
g(ε)) ≤ ε},

g(ε)= inf
λ∈4X

sup
z∈Z:〈θ∗,φ(z∗)−φ(z)〉≤ε

‖φ(z∗)− φ(z)‖2A(γ)(λ)−1

Then with probability at least 1− δ, once the algorithm has
taken at least τ samples where τ = Õ(c1 log(|Z|/δ) +
log(ε−1)c20(B2 + σ2) log(|Z|/δ)ρ∗(γ, ε)) we have that
µẑ ≥ maxz′∈Z −ε where ẑ is any arm in the set Z` un-
der consideration after τ pulls and

ρ∗(γ, ε)= inf
λ∈∆X

sup
z∈Z

‖φ(z∗)−φ(z)‖2
A(γ)(λ)−1

max{ε2, 〈θ∗, φ(z∗)−φ(z)〉2)}
. (9)

Note that if X = Z we have

g(ε)= inf
λ∈4X

sup
z∈X :〈θ∗,φ(z∗)−φ(z)〉≤ε

‖φ(z∗)− φ(z)‖2A(γ)(λ)−1

≤ 4 inf
λ∈4X

sup
x∈X
‖φ(x)‖2A(γ)(λ)−1

≤ 4Trace((A(λ∗D) + γI)−1A(λ∗D))

where the last line follows from Lemma 3. This means ε̄, the
limit on how well one can estimate the maximizing arm, sat-
isfies ε̄ . (γ‖θ∗‖+ h)Trace((A(λ∗D) + γI)−1A(λ∗D))1/2.
Thus, if we seek an ε-good arm, we should choose γ to make
this right hand side less than ε. Note that γ = 0 and h = 0
implies ε̄ = 0. If φ ≡ identity so thatH = Rd, h = 0, and
γ = 0 then the sample complexity of Theorem 4 is known
to be optimal up to log factors to identify the very best arm
(assuming it is unique) relative to any δ-correct algorithm
over θ∗ ∈ Rd (Soare et al., 2014; Fiez et al., 2019).

3.3. Comparing to the alternative baseline procedure

In Section 2.4 we proposed a natural alternative to our
RIPS procedure for experimental design in an RKHS.
This PTR baseline leveraged the fact that the added reg-
ularization γ > 0 effectively made many directions ir-
relevant. Thus, it projected the problem to a low di-
mensional subspace where it could apply any of the
standard rounding techniques for finite dimensions de-
scribed in Section 1.2. The dimension of this subspace,
denoted d̃, scales like the number of eigenvalues of∑
x∈X λ

∗
xφ(x)φ(x)> that are greater than γ where λ∗ ∈

arg minλ∈4X maxv∈V ‖v‖2(∑x∈X λxφ(x)φ(x)>+γI)
−1 . Any

standard rounding algorithm would then require the num-
ber of samples taken from the design to be at least d̃.
Relative to our results, this inflates our regret bound and
sample complexity by an additive factor of d̃ scaled by
some problem-dependent log factors. Algebra shows that
d̃ ≤ 2Trace((A(λ∗D) + γI)−1A(λ∗D)). Though for regret
this is a lower order term, for pure-exploration with X 6= Z ,

this term may potentially dominate the sample complex-
ity because it does not capture the interplay between the
geometry of X and Z . Fortunately, our RIPS procedure
demonstrates it is unnecessary and avoids it.

4. Related work
There exist excellent surveys of experimental design from
both a statistical and computational perspective (Pukelsheim,
2006; Atkinson et al., 2007; Todd, 2016). Our work is par-
ticularly interested in the task of converting a continuous
design into a discrete allocation of T measurements. We
reviewed a number of works in Section 1.2 for completing
this task in finite dimensions. To move to an RKHS set-
ting we considered a regularized design objective which
is also known as Bayesian experimental design (Chaloner
& Verdinelli, 1995; Allen-Zhu et al., 2017; Derezinski
et al., 2020). While most Bayesian experimental design
works assume a low-dimensional ambient space and use
simple rounding, one exception is the work of (Alaoui
& Mahoney, 2015) that performs experimental design in
an RKHS for a different design objective, which inspired
our project-then-round procedure described of Section 2.4.
And very recently, (Derezinski et al., 2020) proposed a
method of sampling from a determinantal point process
(DPP) and showed that they can approximate many continu-
ous experimental design objectives up to a constant factor
if T & deff := Trace((A(λ∗D) + γI)−1A(λ∗D)) with λ∗D
defined in Lemma 3. However, according to Table 1 of
(Derezinski et al., 2020) the method may not apply to G-
optimal-like objectives1, which is the primary objective of
our work. To our knowledge, our proposed RIPS method
is novel in that its performance is directly comparable to
the continuous design without requiring a minimum number
of measurements with some dependence on the (effective)
dimension. However, our method does require the number
of measurements to exceed log(|V|). While we leveraged
experimental design techniques for kernel bandits, many
prior works were able to obtain regret bounds and pure-
exploration results using other methods.

Kernel bandits In the well-specified setting (h = 0) (Srini-
vas et al., 2009) propose a UCB style algorithm (Auer et al.,
2002) for the RKHS setting. Independently, (Grünewälder
et al., 2010) developed similar methods for minimizing sim-
ple regret. (Srinivas et al., 2009) established a regret bound
of
√
T (‖θ∗‖

√
γT + γT ) where γT is defined in (8). (Valko

et al., 2013) proposed another UCB variant to obtain a re-
gret bound that scales just as ‖θ∗‖

√
pTT where pT is an

algorithm-dependent constant that can be upper bounded by
γT , thus improving (Srinivas et al., 2009). We recall that
our own regret bound of Theorem 3 scales no worse than

1Our Theorem 2 with the fact d̃ ≤ 2deff suggests k only needs
to be at least d̃ for G-like objectives, which adds to their table.
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‖θ∗‖
√
γTT using Lemma 2, thus matching state of the art.

(Chowdhury & Gopalan, 2017) offer improvements in regret
over GP-UCB when the action space is infinite. We also
note that our algorithm naturally allows batch querying, a
property that UCB-like algorithms achieve only through in-
elegant means (Desautels et al., 2012; Wu & Frazier, 2018).

Misspecified models Our approach to misspecified mod-
els draws inspiration from (Lattimore et al., 2020) which
addresses linear bandits in finite dimensions. Their regret
bound scales quadratically in the ambient dimension due to
rounding effects. Our RIPS procedure extends this work to
an RKHS. The misspecified model setting is related to the
corrupted setting where an adversary can choose to corrupt
the observed reward by ct in each round t. Any algorithms
for this adversarial setting can also be used to solve kernel-
ized multi-armed bandit in the misspecified setting with total
amount of corruption equal to at mostCT =

∑T
t=1 ct = hT .

Using this reduction, the regret bound for the corrupted
setting of (Bogunovic et al., 2020) scales like CT

√
γTT .

Unfortunately, if we take CT = hT this bound is vacuous.
Whether robust algorithms like (Gupta et al., 2019) can be
extended to our kernel bandit setting is an open question.
Concurrently, (Lee et al., 2021) independently proposed a
very similar estimator and algorithm for the related task of
solving adversarial bandits.

Constrained linear bandits If we assumed that ‖θ∗‖2 ≤ R
for some explicit, knownR > 0 then this setting is known as
constrained linear bandits, tackled in (Degenne et al., 2020)
for the pure-exploration and (Tirinzoni et al., 2020) for the
regret setting, respectively. There, a lower bound on the sam-
ple complexity of identifying the best arm can be computed.
The lower bound is infλ∈∆X supx′ 6=x∗ infγ≥0G

−1(λ, x, γ)
where

G(λ, x, γ) =
max{(x′− x∗)>(A(λ) + γI)−1A(λ)θ∗, 0}2

2‖x′ − x∗‖2(A(λ)+γI)−1

+
γ

2

(
‖θ∗‖2(A(λ)+γI)−1A(λ) −R

2
)
,

which is close to our upper bound ρ∗ from equation 9. See
Corollary 1 for the proof of this lower bound.
(Degenne et al., 2020) propose an algorithm with an asymp-
totic upper bound in the sense that as δ → 0, the dominant
term matches the lower bound. However, while (Degenne
et al., 2020) and (Tirinzoni et al., 2020) are tight asymptoti-
cally, they suffer from large sub-optimal dependencies on
problem-specific parameters.

5. Conclusion
In this paper, we have brought to the non-parametric learn-
ing setting an estimator that relies on continuous designs
while enjoying state of the art - theoretical and experimental
- guarantees for both the well-specified and the misspecified

settings. We leveraged this estimator in a novel elimination
style algorithm for kernel bandits. For the most part we
have ignored computation. However, the computational cost
of the RIPS estimator scales linearly in |V|. An interesting
avenue of research is designing an estimator that leverages
multi-dimensional robust mean estimation that has the same
properties as RIPS but has no dependence on |V|. Such
an estimator would be of considerable interest in problems
such as combinatorial bandits where |V| is potentially ex-
ponential in the dimension (e.g., see (Katz-Samuels et al.,
2020; Wagenmaker et al., 2021)).

Acknowledgments
The work of RC and KJ is supported in part by grants NSF
RI 1907907 and NSF CCF 2007036.



High-Dimensional Experimental Design and Kernel Bandits

References
Alaoui, A. E. and Mahoney, M. W. Fast randomized kernel

methods with statistical guarantees, 2015.

Allen-Zhu, Z., Li, Y., Singh, A., and Wang, Y. Near-optimal
design of experiments via regret minimization. In Inter-
national Conference on Machine Learning, pp. 126–135.
PMLR, 2017.

Atkinson, A., Donev, A., and Tobias, R. Optimum experi-
mental designs, with SAS, volume 34. Oxford University
Press, 2007.

Auer, P., Cesa-Bianchi, N., and Fischer, P. Finite-time analy-
sis of the multiarmed bandit problem. Machine Learning,
47:235–256, 05 2002. doi: 10.1023/A:1013689704352.

Bach, F. On the equivalence between kernel quadrature
rules and random feature expansions, 2015.

Bogunovic, I., Krause, A., and Scarlett, J. Corruption-
tolerant gaussian process bandit optimization, 2020.

Chaloner, K. and Verdinelli, I. Bayesian experimental de-
sign: A review. Statistical Science, pp. 273–304, 1995.

Chowdhury, S. R. and Gopalan, A. On kernelized multi-
armed bandits, 2017.

Degenne, R., Ménard, P., Shang, X., and Valko, M. Gamifi-
cation of pure exploration for linear bandits. In Interna-
tional Conference on Machine Learning, pp. 2432–2442.
PMLR, 2020.

Derezinski, M., Liang, F., and Mahoney, M. Bayesian ex-
perimental design using regularized determinantal point
processes. In International Conference on Artificial Intel-
ligence and Statistics, pp. 3197–3207. PMLR, 2020.

Desautels, T., Krause, A., and Burdick, J. Parallelizing
exploration-exploitation tradeoffs with gaussian process
bandit optimization, 2012.

Fiez, T., Jain, L., Jamieson, K., and Ratliff, L. Sequen-
tial experimental design for transductive linear bandits.
NeurIPS, 2019.

Frazier, P. I. A tutorial on bayesian optimization. arXiv
preprint arXiv:1807.02811, 2018.
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