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Abstract 
Hamiltonian Monte Carlo (HMC) is one of the 
most successful sampling methods in machine 
learning. However, its performance is signif-
cantly affected by the choice of hyperparameter 
values. Existing approaches for optimizing the 
HMC hyperparameters either optimize a proxy 
for mixing speed or consider the HMC chain as 
an implicit variational distribution and optimize 
a tractable lower bound that can be very loose 
in practice. Instead, we propose to optimize an 
objective that quantifes directly the speed of con-
vergence to the target distribution. Our objective 
can be easily optimized using stochastic gradient 
descent. We evaluate our proposed method and 
compare to baselines on a variety of problems 
including sampling from synthetic 2D distribu-
tions, reconstructing sparse signals, learning deep 
latent variable models and sampling molecular 
confgurations from the Boltzmann distribution 
of a 22 atom molecule. We fnd that our method 
is competitive with or improves upon alternative 
baselines in all these experiments. 

1. Introduction 
Hamiltonian Monte Carlo (HMC) is a very popular Markov 
Chain Monte Carlo (MCMC) method for generating approx-
imate samples from complex probability distributions. It 
fnds wide use in machine learning (Neal, 2011) and across 
the broader statistical community (Carpenter et al., 2017). 
Unfortunately, HMC’s performance depends heavily on the 
choice of hyperparameters such as the proposal step size. 
A step size that is too large can lead to unstable dynamics, 
while a step size that is too small may result in random walk 
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behaviour and highly correlated samples. Furthermore, the 
step sizes may need to be tuned on a dimension by dimen-
sion basis depending on the scale and shape of the target 
distribution (Neal, 2011). 

Traditionally, samples are produced by running a single 
HMC chain for a long time compensating for imperfect hy-
perparameter choices through ergodicity. However, it is be-
comingly increasingly attractive to run many short MCMC 
chains in parallel to make better use of parallel compute 
hardware (Hoffman & Ma, 2020). In this case, it is even 
more important to choose good hyperparameters that en-
courage fast mixing. This approach also offers the novel 
opportunity to choose different hyperparameter values for 
each step in the chain, providing more tuning fexibility. 

Fully exploiting this opportunity in practice is a challenge. 
MCMC hyperparameters are commonly tuned according 
to the average acceptance probability but it is unclear how 
this can scale up to tuning every hyperparameter individ-
ually. Looking to backpropagation’s success in training 
neural networks, a gradient based method would seem most 
appropriate. Unfortunately, there is no universal tractable 
metric to quantify the performance of HMC that we can 
optimize for. We must therefore make a choice about which 
approximate metric is best suited for this application. 

One approach is to use a proxy for the mixing speed of the 
chain. Levy et al. (2018) make use of a variation of the ex-
pected squared jumped distance (Pasarica & Gelman, 2010) 
to encourage proposals to make large moves in space. Alter-
natively, one can draw upon ideas from Variational Inference 
(VI) (Jordan et al., 1999), which matches an approximate 
distribution q to the target distribution p by maximizing 
the Evidence Lower Bound or ELBO. This is equivalent to 
minimizing the KL-divergence between q and p. 

Salimans et al. (2015); Wolf et al. (2016) use VI to obtain a 
training objective in which q is the joint distribution of all 
HMC samples along the chain. For tractability, they intro-
duce an auxiliary inference distribution approximating the 
reverse dynamics of the chain. The looseness of their ELBO 
then depends on the KL-divergence between the auxiliary 
inference distribution and the true reverse dynamics. As 
the chain length increases so does the dimensionality of 
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these distributions, resulting in a looser and looser bound. tegrator, with leapfrog (Hairer et al., 2003) being a popular 
This is problematic as, for longer chains, the optimized hy- choice. L leapfrog updates are taken to propose a new state, 
perparameters are encouraged to ft the imperfect auxiliary with the update equations at step k being 
distribution as opposed to the target. In practice, Salimans 
et al. avoid this problem by only considering very short 1 

� ◦ rxk log p ∗ (xk) ,νk+ 1 
2 
= νk + 

2HMC chains, which limits the fexibility of their method. 

1We overcome these issues by considering the marginal dis-
tribution of the fnal state in the chain as our variational 

xk+1 = xk + νk+ 1 
2 
◦ � ◦ , 

m 
1q. In this case, the ELBO can be broken down into the 

sum of the tractable expectation with respect to q of the 
∗ (xk+1) ,log p� ◦ rxk+1

νk+1 = νk+ 1 
2 
+ 

2 
log target density (up to a normalization constant) and the 
intractable entropy of q. During optimization, the entropy 
term prevents a fully fexible q from collapsing to a point 
mass maximizing the log target density. However, a HMC 
chain, by construction, cannot collapse to such a point mass. 
We argue that optimization can still be successful whilst 
ignoring the entropy term, provided the initial distribution 
of the chain is broad enough. In practice, we achieve this by 
infating the initial proposal distribution by a scaling that is 
independently tuned by minimizing a discrepancy measure 
between p and q (Gong et al., 2021). 

We empirically compare our method with alternative base-
lines on a wide range of tasks. We frst consider sampling 
from a collection of 2D toy distributions. We then focus on 
more challenging approximate inference problems: recon-
structing sparse signals, training deep latent variable models 
on MNIST and FashionMNIST and fnally, sampling molec-
ular confgurations from the Boltzmann distribution of the 
22 atom molecule Alanine Dipeptide. Our results show 
that our method is competitive with or can improve upon 
alternative tuning methods for HMC on all these problems. 

2. Background 
2.1. Hamiltonian Monte Carlo 

HMC (Neal, 1993) aims to draw samples from an n-
1dimensional target distribution p(x) = p ∗(x) where Z isZ 

the (usually unknown) normalization constant. It introduces 
an auxiliary variable ν ∈ Rn , referred to as the momen-� � 
tum, which is distributed according to N ν; 0, diag(m) , 
with the resulting method sampling on the extended space 
(x, ν). HMC progresses by frst sampling an initial state 
from some initial distribution and then iteratively proposing 
new states and accepting/rejecting them according to an 
acceptance probability. To propose a new state, frst, a new � � 
value for the momentum is drawn from N ν; 0, diag(m) , 
then, we simulate Hamiltonian Dynamics with Hamiltonian, 
H(x, ν) = −log p ∗(x) + 1 νT diag(m)−1ν arriving at new 2 
state (x0, ν0). This new state is accepted with probability � � 
min 1, exp(−H(x0, ν0) + H(x, ν)) . Otherwise we reject 
the proposed state and remain at the starting state. The 
Hamiltonian Dynamics are simulated using a numerical in-

1 1where 1 = ( , . . . , ) and ◦ denotes element wise m m1 mn 

multiplication. The step size, �, and the mass, m, are hy-
perparameters that need to be tuned for each problem the 
method is applied to. We note that in the usual defnition of 
HMC, a single scalar valued � is used. Our use of a vector � 
implies a different step size in each dimension which, with 
proper tuning, can improve performance by accounting for 
different scales across dimensions. The use of � does mean 
the procedure can no longer be interpreted as simulating 
Hamiltonian Dynamics, however, it can still be used as a 
valid HMC proposal (Neal, 2011). Further, � and m both 
correspond to an element-wise rescaling of x and so tuning 
both does not increase the expressivity of the method. How-
ever, we found empirically this overparameterization aided 
optimization. We do not consider the problem of choosing 
L in this work. 

2.2. Variational Inference 

VI approximates the target p(x) with a tractable distribution 
qφ(x) parameterized by φ. The value of φ is chosen as to 
minimise the Kullback-Leibler divergence with the target,� � 
DKL qφ(x)||p(x) . As, typically, we know p(x) only up to 
a normalization constant, we can equivalently choose φ by 
maximising the tractable ELBO: 

� � � � 
log Z − DKL qφ(x)||p(x) = Eqφ(x) log p ∗ (x) − log qφ(x) . 

3. Expected Log-Target Maximization 
VI tunes the parameters of an approximate distribution to 
make it closer to the target. We build on this to obtain a 
tractable objective for HMC hyperparameter optimization. 
In the parallel HMC setting, we run multiple parallel HMC 
chains and take the fnal sample in each chain. Viewing 
this from the VI perspective, these fnal samples would 
be independent samples from an implicit variational dis-
tribution. If each chain starts at a sample from an initial 
distribution q(0)(x) and then runs T accept/reject cycles, 
we can denote the resulting implicit distribution as q(T )

(x),φ 
where φ now represents the step-by-step hyperparameters 
φ = {�(1:T ), m(1:T )}. Ideally, φ would be chosen as to 
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Figure 1. (Upper) Expected log target as a function of step t in 
the HMC chain for initial distribution 1, N (0, 0.25), and initial 
distribution 2, N (0, 4), before and after training. The ‘true’ value, � � 
Ep log p(x) is also plotted. (Lower) The target pdf along with 
the two initial distributions. 

maximise the ELBO: � � 
φ ∗ = argmax E log p ∗ (x) − log q(T )

(x)(T )
q (x) φ 
φφ h i� � (T )

= argmax E 
q
(T )

(x) 
log p ∗ (x) + H q (x) .φ 

φφ 

Whilst the frst term in this expression can be estimated� � 
directly via Monte Carlo, the entropy term, H q

(T )
(x) ,φ 

is intractable. To get around this, we should consider the 
purpose of the two terms during optimization. Maximizing 
the frst term encourages q(T )

(x) to produce samples that φ 
are in the high probability regions of the target, i.e., ensuring 
that q(T )

(x) is high where log p ∗(x) is high. The entropy φ 
term acts as a regularizer preventing q(T )

(x) from simply φ 
collapsing to a point mass at the mode of p(x). The key 
observation of our method is that HMC already fulflls this 
regularization role because the implicit distribution it defnes 
is not fully fexible. If q(T )

(x) were to collapse to a pointφ 
mass, this would require the hyperparameters to be such 
that the HMC scheme always guides the chain state to the 
same point in space, irrespective of what initial position is 

(0)(x).sampled from q This is unreasonable for practical 
problems. Therefore, we propose optimizing φ simply by 

maximizing the expected log target density under the fnal 
state of the chain: � � 

φ ∗ = argmax E 
q
(T )

(x) 
log p ∗ (x) . (1) 

φφ 

Although HMC does have a regularization effect, remov-
ing the entropy term does have some implications that we 
must consider. Namely, if the initial distribution, q(0)(x), is 
concentrated in a very high probability region of the target, 
p(x), then optimizing the objective in (1) will not encourage 
HMC to explore the full target. Conversely, it would encour-
age the chains to remain in this region of high probability, 
close to their initial sampling point, which is undesirable 
behaviour. The key to avoiding this problem is to choose an 
initial distribution that has a suffciently wide coverage of 
the target. We discuss methods for doing this in Section 3.3. 

3.1. Demonstration on a Toy Problem 

We now demonstrate the ideas of the previous section on a 
very simple toy problem. Here the target is a 1-dimensional 
normal distribution N (0, 1) which we attempt to sample 
from using a 10 step HMC chain with each step consisting 
of 5 leapfrog updates. We initialize the chain either with 
a narrow initial distribution N (0, 0.25) or a wide initial 
distribution N (0, 4), as shown in the bottom plot in Figure 1. 
We keep m constant for all steps but train one step size �t for 
each HMC step. The top of Figure 1 plots the progression of � � 
E log p(x) during sampling for these two cases, before (t)
qφ 

and after hyperparameter training. Before training, when� � 
using the narrow initial distribution, E log p(x) initially(t)

qφ 

starts above the true value but converges from above as 
the marginal HMC distribution, q(t) , spreads to cover theφ 
target. However, after training according to (1), all the step 
sizes have become very small causing the HMC chains to 
remain at their initial sampled positions which is obviously 
detrimental for convergence. To avoid this, we can use a 
wide initial distribution. The top plot in Figure 1 shows that, 
in this case, tuning hyperparameters according to (1) greatly 
speeds up convergence. 

3.2. Estimating the Gradients 

We solve (1) using stochastic gradient descent (SGD), with 
gradients computed using a Monte Carlo approximation and 
the reparameterization trick (Rezende et al., 2014; Kingma 
& Welling, 2014). Here, we are forced to make another 
approximation since the discontinuous accept/reject step in-
troduces a non-differentiability in the Monte Carlo estimate 
of the objective. We can either ignore this and use biased 
gradients or remove the accept/reject step altogether as other 
works have suggested (Salimans et al., 2015; Caterini et al., 
2018). We opt for the former since we wish to work with 
HMC in its original form with the accept/reject step. 
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Our empirical results confrm that we are able to success-
fully optimize the hyperparameters whilst using biased gra-
dients. The intuition behind this is that the bias originates 
from the effect of the hyperparameters on the acceptance 
probability through the leapfrog discretization error. In prac-
tice, this discretization error and its gradient with respect to 
the hyperparameters is small due to the leapfrog integrator 
having second order accuracy (Leimkuhler & Reich, 2004). 
This results in a small overall bias. More concrete arguments 
justifying this can be found in the supplement. Finally, to im-
prove computational effciency, we avoid the calculation of 
second-order gradients by stopping backpropagation of the 
gradient through xk in rxk log p ∗(xk) during the leapfrog 
updates. We fnd this has little impact on convergence and 
can lead to 5× speedups in execution time. 

3.3. Tuning the Initial Distribution 
(0)(x)For our method to be useful, the initial distribution q 

must provide a suffcient coverage of p(x). However, a 
q(0)(x) that is overly spread out is undesirable because the 
burn-in time is then unnecessarily long. We describe below a 
method for choosing q(0)(x) that aims to achieve an optimal 
trade-off between these two requirements. 

The main idea is to use a variational approximation to the 
target as the initial distribution, as done by Hoffman (2017). 
This should be a distribution that can be easily sampled from 
and easily tuned to ft the target, e.g. a Gaussian or a normal-
izing fow (Tabak & Vanden-Eijnden, 2010; Rezende & Mo-
hamed, 2015). Rather than use the standard ELBO for tun-
ing q(0)(x), we use α-divergence minimization (Hernández-
Lobato et al., 2016). The α value dictates the mass covering 
behaviour of the resulting approximation, with α = 0 corre-� � 
sponding to the standard mode seeking DKL q

(0)(x)||p(x) 
minimization and α = 1 corresponding to the mass cover-� � 
ing DKL p(x)||q(0)(x) minimization. We compare both α 
values in our experiments. The α-divergence is very useful 
in this context as it can provide a mass covering approxima-
tion without the use of samples from the target. However, if 
samples from p(x) are available, then q(0)(x) can alterna-
tively be tuned on those samples via maximum likelihood 
(ML), which is also mass-covering. 

The previous approaches will produce a q(0)(x) that fts the 
target, but do not guarantee that it will be broad enough. To 
address this, we allow our method to automatically adjust 
the width of the initial distribution as necessary to keep 
q
(T )

(x) as closely matched to p(x) as possible. This isφ 
achieved by applying a scalar scale factor s centered around 
the mean µ of q(0)(x) to each sample xi from this distribu-
tion, i.e. x̂i = s(xi − µ) + µ. We tune s by minimizing the 
Sliced Kernelized Stein Discrepancy (Gong et al., 2021) or 

SKSD1 between the fnal state distribution q(T )
(x) and p(x)φ 

The SKSD requires only samples from q(T ) and gradients of φ 
the target, rxlog p ∗(x). This objective encourages suitable 
values of s because if s is too small then the tuning of φ 
by solving (1) (which occurs jointly with the tuning of s) 
will result in a degenerate q(T )

(x) far from the target. The φ 
SKSD measures this discrepancy and provides a learning 
signal for increasing s. Conversely, if s is too large then 
q
(T )

(x) will also be far from the target since the HMC chain φ 
will not be able to compensate for the poor initialization. 
The SKSD will then favor to decrease s. Finally, as in 
the leapfrog updates, we stop the gradient computations 
through x in rx log p ∗(x) when evaluating SKSD to avoid 
the calculation of second-order gradients. 

Given that the SKSD is a tractable objective that measures 
the discrepancy between q(T )

(x) and p(x), it is theoretically φ 
feasible to use the SKSD to optimize φ too. However, we 
found that the SKSD does not scale well when optimizing 
many parameters, which is why (1) is used instead. Note, 
however, that the SKSD works very well in practice when 
we only tune the single scalar parameter s. 

We have empirically evaluated the method described in this 
section on a variety of applications and have found that it 
gives consistently good results. 

3.4. Final optimization procedure 

Algorithm 1 summarizes our optimization strategy, where 
Adam update(η, rηL, i) returns the new value for η given 
by the i-th iteration of the Adam optimizer using gra-

(0)dient rηL, Dα(q (x) || p(x)) is an estimate of theψi−1 

α-divergence whose gradient is computed using doubly 
reparameterized gradient estimators (Tucker et al., 2019), 
SKSD(x1:

(T
N 
) 
, score(x)) estimates the sliced kernelized Stein 

(0)0 discrepancy and HMCφi−1 (xn , score(x)) runs an HMC 
(0)0 chain with initial state xn , target score function score(x) 

and hyperparameters φi−1. Details on the computation 
(0) (T )of Dα(q (x) || p(x)), i) and SKSD(x1:N , score(x)) areψi−1 

given in the Supplementary Material. 

4. Experiments 
Different experiments are performed to confrm that we can 
discover good hyperparameter settings by using the previ-
ously described method. We provide code for reproducing 
all our experiments on github 2. 

1We use the metric called maxSKSD in Gong et al. (2021) 
2https://github.com/VincentStimper/ 

hmc-hyperparameter-tuning 

https://github.com/VincentStimper/hmc-hyperparameter-tuning
https://github.com/VincentStimper/hmc-hyperparameter-tuning
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Gaussian Laplace Dual Moon Mixture Wave 1 Wave 2 

maxELT α = 0 0.0677 0.0005 0.2370 0.0004 0.0525 0.0462 
maxELT α = 1 0.0009 0.0004 0.8637 0.0010 0.0158 0.0801 
maxELT α = 0 SKSD 0.0008 0.0016 0.1684 0.0004 0.0020 0.0217 
maxELT α = 1 SKSD 0.0009 0.0014 0.2528 0.0004 0.0019 0.0317 

Hoffman (2017) 0.0364 0.0005 1.1553 0.0846 0.9447 0.0465 
Ruiz & Titsias (2019) 0.0003 0.0003 1.6290 0.0003 0.0024 0.2375 
NUTS 0.0044 0.0016 0.2326 0.0023 0.0260 0.0965 

Figure 2. Histograms of 2D targets gener- Table 1. KSD between the HMC samples and the target distribution for the baselines and the 
ated by rejection sampling. 4 variations of our method on each of the synthetic target distributions (equations are given in 

the Supplementary Material). 

Algorithm 1 Optimization Procedure 
Input: Initial ψ0, φ0 and s0, number of iterations I1 and I2 

and number of samples N 
Defne score(x) = stop gradient(rxlog p ∗ (x)) 
# Train initial distribution 
for i = 1 to I1 do 
ψi ← Adam update(ψi−1, rψi−1 Dα(qψ 

(0) 

i−1 
(x) || p(x)), i) 

end for 
µ ← mean of qψ 

(0) 

i−1 
(x) 

# Train HMC hyperparameters 
for i = 1, to I2 do 

for n = 1, to N do # This loop is vectorized in practice 
(0) (0)Draw xn ∼ qψ (x) 

(0)0 (0)
xn ← si−1(xn − µ) + µ # Rescale samples 
(T ) (0)0 
xn ← HMCφi−1 (xn , score(x)) 

end for 
1 PN ∗ (T )

φi ← Adam update(φi−1, rφi−1 N n=1 log p (xn ), i) 

si ← Adam update(si−1, rsi−1 SKSD(x1:
(T
N 
) 
, score(x)), i) 

end for 
Return ψI1 , φI2 , sI2 

4.1. 2D distributions 

We frst focus on drawing approximate samples from a range 
of synthetic 2D target densities (Figure 2). We use 30-
step HMC chains and a factorized Gaussian q(0)(x) that 
is trained by minimizing the α-divergence. We optimize 
step sizes and masses using (1), a procedure we refer to as 
‘maxELT’ for maximizing the expected log target. Addi-
tionally, as an ablation study, we consider different initial 
distribution training strategies: α = 0 or 1 and whether or 
not to tune the scaling s by minimizing the SKSD (s = 1 
when not tuned). To quantify convergence to the target, we 
used the Kernelized Stein Discrepancy (KSD) (Liu et al., 
2016; Chwialkowski et al., 2016) between the generated 
samples and the targets. 

We include three baselines for reference. The frst one is 
taken from Hoffman (2017) and initializes the HMC chains 
with an α = 0 trained Gaussian distribution and tunes step 
sizes according to a minimum acceptance probability heuris-

10−4 10−3 10−2 10−1 100 101

Initialization stepsize

10−2

10−1

100

KS
D HMC before training

HMC after training
Initial Distribution

Figure 3. KSD versus step size used as initialization point for opti-
mization. Wave 1 is the target distribution. 

tic. The second baseline is the method from Ruiz & Titsias 
(2019) which initializes chains with a variational distribu-
tion, trained using a novel divergence metric. The HMC 
parameters are not tuned however. The fnal baseline is the 
popular No-U-Turn Sampler (Hoffman & Gelman, 2014). 
Full details regarding the baselines are given in the Supple-
mentary Material. 

Results are shown in Table 1. Our method with automatic s 
scaling using the SKSD performs consistently well across 
distributions. For some simple targets, e.g. Gaussian and 
Laplace, it performs slightly worse than Ruiz & Titsias 
(2019), however, this method breaks down on the more com-
plex targets, Dual Moon and Wave 2 whereas ours remains 
consistent. Furthermore, we ft the targets better when we 
tune s by minimizing the SKSD than when we do not. For 
some distributions, tuning s effectively helps prevent mode 
seeking behaviour. We confrm this quantitatively in the 
Supplementary Material by comparing expected log target 
values. We fnd that narrow initial distributions (α = 0) of-
ten lead to excessively high log target values, but the tuning 
of s can prevent this pathology. 

We also investigate the method’s robustness to the initial-
ization point. Figure 3 plots the KSD between the HMC 
samples and the target distribution (Wave 1) before and after 
training the hyperparameters for a large range of initializa-
tion step sizes. We fnd our method is largely invariant to 
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the initialization point provided it is not excessively large, 
in which case every step in the chain is rejected and there is 
no gradient signal for learning. However, we do no worse 
than the initial distribution as each sample remains at its 
initial sampling point. 

4.2. Sparse Signal Recovery 

We now consider higher dimensional target distributions. 
Specifcally, posterior distributions in Bayesian compressed 
sensing (Donoho, 2006; Ji et al., 2008). The aim is to 
recover the sparse signal w ∈ Rd from measurements y ∈ 
Rn where n < d. The observation model is y = Xw + 
e where e ∈ Rn , e ∼ N (0, σ0

2I), is additive Gaussian 
noise and X ∈ Rn×d is a measurement matrix obtained by 
sampling its entries from a standard Gaussian distribution 
and then normalizing the rows to have unit Euclidean norm. 
We place a sparsity enforcing horseshoe prior on w and 
consider the posterior for w given y, X and σ0

2 . When 
n << d this posterior is multi-modal representing multiple 
potential explanations for the available observations. In 
these experiments we fx n = 6 and d = 64. 

We draw posterior samples using a 20 step HMC chain with 
5 leapfrog iterations per step, initialized with a factorized 
Gaussian distribution that is trained with α = 1. We do not 
use α = 0 here since this method performs signifcantly 
worse in this problem due to its mode seeking tendency 
(Hernández-Lobato et al., 2015). We evaluate the quality 
of our samples by calculating their log marginal likelihood 
on test data generated using the same sparse signal as in 
the training set. The highest test log marginal likelihood is 
obtained when the generated samples come from the true 
posterior distribution. 
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Figure 4. Violin-Box plot of test log marginal likelihoods on the 
sparse signal recovery problems. We draw 10,000 posterior sam-
ples to estimate the log marginal likelihood of 1000 test observa-
tions and repeat 20 times to obtain confdence bands. 

We compare our method with three baselines that use the 

same initial distribution. The frst two are parallel samplers 
where for each sample we frst sample the initial distribution 
and then run 20 HMC accept/reject steps. The step sizes 
and masses are tuned either by a grid search to maximize 
the log marginal likelihood on a validation set or the step 
sizes are tuned such that the average acceptance probability 
is 0.65. The fnal baseline is sequential—the No-U-Turn 
sampler. To generate samples, we frst sample the initial dis-
tribution once then run 15000 accept/reject steps, discarding 
the frst 5000 samples. The hyperparameters are tuned using 
dual averaging during the burn-in period. Full experimental 
details are in the Supplementary Material. 

The results are shown in Figure 4 and we see that our method 
generally outperforms the baselines. It is also noticeable 
that the sequential sampler (NUTS) has a very high variance 
between repeats. This is because it is very sensitive to the 
initialization point. NUTS performs well in the very few 
cases where the initialization is close to a posterior mode 
with good properties. However, if it is initialized close a 
sub-optimal mode, it will likely stay there for the whole run 
and fnd hyperparameters only suited to this local region 
giving a very poor log likelihood. The parallel samplers do 
not have this issue as they have a new initialization point for 
each sample. We also note that, in this case, using SKSD to 
tune s results in a slight degradation in performance. On this 
problem, α = 1 is already well suited to fnd a good initial 
distribution and, indeed, the value for s tuned by SKSD was 
very close to 1. 

4.3. Deep Latent Gaussian Models 

We now focus on training Variational Autoencoders (VAEs) 
(Kingma & Welling, 2014; Rezende et al., 2014). These are 
generative models of the form p(x, z) = pθ(x|z)N (z; 0, I), 
explaining observed data x with a latent variable z and a like-
lihood pθ(x|z) parameterized by a neural network NNθ(z) 
with parameters θ and input z. The standard training in 
VAEs is to use a factorized Gaussian distribution qψ(z|x) 
parameterized by NNψ(x) to approximate pθ(z|x) and train 
(θ, ψ) jointly by maximizing the ELBO. 

Our approximation to pθ(z|x) is the HMC chain output 
(T )distribution q (z|x). The initial state of the HMC chain φ 

(0)is sampled from q (z|x), which is given by a factorized ψ 
Gaussian distribution parameterized by NNψ(x) and appro-
priately scaled by s as before. The parameters ψ are trained 
by minimizing the α-divergence and s is trained using the 
SKSD. We train φ and θ by jointly maximizing the objective 
in (1) with respect to these two parameters. We consider 
HMC chains of length 30 with 5 leapfrog iterations per step 
and tune a different step size parameter per dimension and 
per step in the HMC chain while the mass parameters are all 
kept constant and equal to 1 all throughout the HMC chain. 

Note that we use only one set of HMC hyperparameters for 
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Table 2. Average test marginal log-likelihood and its standard error 
(SE) estimated using HAIS for different methods for MNIST and 
Fashion MNIST. For methods with a scale factor s, we report the 
fnal scale after training. We also report the best log-likelihood 
values from previous works. 

MNIST Fashion MNIST 
Model Scale Mean SE Scale Mean SE 

VAE - -85.08 0.22 - -108.54 0.60 
DReG-IWAE - -83.73 0.21 - -104.48 0.58 
maxELT α = 0 1.0 -83.48 0.21 1.0 -104.08 0.58 
maxELT α = 1 1.0 -82.46 0.21 1.0 -103.57 0.58 
maxELT α = 0 SKSD 6.79 -81.91 0.20 5.58 -103.18 0.58 
maxELT α = 1 SKSD 3.90 -81.94 0.20 3.59 -102.29 0.57 

Hoffman - -81.74 0.20 - -103.04 0.58 
Ruiz & Titsias - -82.45 0.21 - -105.13 0.59 
Salimans et al. - -81.94 - - -104.44 0.59 
Caterini et al. - -82.62 - - -104.26 0.58 

all pθ(z|x) targets, independently of x. One could make 
the hyperparameters depend on x through an amortization 
network, but we found that this did not improve performance. 
We consider two benchmark datasets: MNIST and Fashion 
MNIST. As is common, we use binarized images and a 
Bernoulli likelihood pθ(x|z) parameterized with the same 
convolutional architecture as Salimans et al. (2015). Full 
experimental details are in the Supplementary Material. 

We evaluate the quality of our trained models using the 
marginal log-likelihood log pθ(x) on the test set estimated 
using Hamiltonian Annealed Importance Sampling or HAIS 
(Sohl-Dickstein & Culpepper, 2012). Results are shown in 
Table 2. We also report log-likelihood values for multiple 
baselines. Using the same neural architecture, we imple-
mented the standard VAE and IWAE3 models. We also 
implemented another method for tuning φ (Hoffman, 2017) 
where the step sizes are adjusted to make the minimum 
average acceptance probability in each minibatch equal to 
0.25. Furthermore, we implemented the method for tuning 
ψ from Ruiz & Titsias (2019) while the HMC step sizes 
were tuned to ensure the mean average acceptance proba-
bility in each minibatch is equal to 0.65. We update θ as 
in our method and use the same number of leapfrog steps 
for a fair comparison. Finally, we report results for MNIST 
from Salimans et al. (2015) and Caterini et al. (2018) which 
include HMC hyperparameter tuning during training and 
use the same network architecture as us. These authors only 
evaluated on MNIST, so we reimplemented their methods 
for Fashion MNIST4. We confrm signifcant differences 
between the models using paired t-tests. Full results are in 

3We used the DReG estimator from (Tucker et al., 2019) for 
the IWAE. 

4We reimplemented Salimans et al. (2015) ourselves 
and used the implementation from https://github.com/ 
anthonycaterini/hvae-nips for Caterini et al. (2018) 

the Supplementary Material. 

On both datasets, the HMC based methods achieve better 
performance than VAE or IWAE, showing that reducing the 
approximation bias of the variational distribution with HMC 
greatly helps. Furthermore, we see that adding the scale 
factor to our method signifcantly improves performance as 
this avoids degenerate behaviour when training the HMC 
hyperparameters. We note that, without any scaling s, α = 1 
outperforms α = 0 due to α = 0 resulting in a too narrow 
initial distribution. With scaling, the SKSD automatically 
widens the initial distribution making the performance of 
both methods similar. Finally, we observe that HMC based 
methods top out at similar log-likelihood values (within 
around one standard error). We believe this is due to the 
methods reaching the limits of the chosen neural network 
architecture on these datasets, with no more gains to be 
made from more accurate posterior approximations. 

4.4. Molecular Confgurations 

Finally, we evaluate our method on the complex real-world 
problem of sampling equilibrium molecular confgurations 
from the Boltzmann distribution of the molecule Alanine 
Dipeptide. The unnormalized target distribution for the 
atom coordinates x is e−u(x), where u denotes the potential 
energy of the system, which can be obtained using the laws 
of physics. This problem is usually tackled via Molecular 
Dynamics (MD) simulations. Here, we aim to produce 
independent samples from e−u(x) using our trained short 
HMC chains. We do not operate directly on the Cartesian 
coordinates but apply the coordinate transform presented by 
Noé et al. (2019), to map some of the Cartesian coordinates 
to bond lengths, bond angles, and dihedral angles. The fnal 
dimensionality for x is 60. For more details, we refer to the 
Supplementary Material. 

For the initial distribution, we use a normalizing fow based 
on real-valued non-volume preserving (RNVP) transforma-
tions (Dinh et al., 2017), followed by 50 HMC steps with 10 
leapfrog iterations per step. We used different methods to 
train the fow and the HMC hyperparameters. The fow was 
trained with α = {0, 1}-divergence and by ML. The latter 
was done using 105 training data samples obtained via a 
MD simulation5. As in the case with 2D densities and with 
sparse signals but unlike in the VAE case, we frst trained 
the fows and then kept them fxed when tuning the HMC 
hyperparameters and the scale factor. 

For each initial distribution type, the HMC hyperparameters 
were tuned according to maxELT alone or by maxELT with 
SKSD scale training. As a baseline, we optimized the HMC 
parameters via grid search, keeping step sizes and masses 

5The same dataset was used to obtain the mean and variances 
required in the normalization step of the coordinate transform. 

https://github.com/anthonycaterini/hvae-nips
https://github.com/anthonycaterini/hvae-nips
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(a) Ground truth (MD) (b) maxELT & SKSD 

Figure 5. Ramachandran plot of (a) the ground truth determined 
via a MD simulation and (b) samples from the model with the 
proposal trained with ML and HMC hyperparameters being tuned 
by maxELT & SKSD. 

constant across dimensions and HMC step, varying these 
two parameters in a grid and picking the combination that 
gave the lowest median marginal KL-divergence to the MD 
training data. We also considered another baseline by ad-
justing the step size value such that the average acceptance 
probability was 0.65 (referred to as pa = 0.65). Further 
implementation details are given in the Supplementary Ma-
terial. 

A new MD simulation was run to obtain 106 ground truth 
samples for evaluating the performance of the different 
methods. For tractability, this is done by comparing the 
marginal distributions of the generated and ground truth 
samples. First, we use Ramachandran plots (Ramachandran 
et al., 1963), which are 2D histograms for the two dihedral 
angles in the bonds connecting an amino acid to the pro-
tein backbone. These plots are frequently used to analyse 
how proteins fold locally. In the Alanine Dipeptide case we 
can obtain a Ramachandran plot for the bond connecting 
the two amino acids forming this molecule. Two sample 
plots are shown in Figure 5. We compute KL divergences 
between the 2D histograms (Ramachandran plots) for the 
ground truth samples and for the samples generated by the 
different methods. The results are given in Figure 6. All 
the corresponding Ramachandran plots are shown in the 
Supplementary Material. Our method outperforms the base-
lines for all proposals except for the one trained with the 
α = 0-divergence, where it improves upon grid search but 
performs worse than the pa = 0.65 baseline. 

Finally, for each dimension of x and using kernel density 
estimation, we compute the KL-divergences between the 
1D densities produced by the ground truth samples and 
by the samples generated by the different methods. We 
perform a Wilcoxon test to check whether the resulting 
60 divergence values (one per dimension) are consistently 
lower for one method or another. Table 3 shows p-values 
for the case in which maxELT & SKSD is being tested for 
having lower KL-divergences than the baselines. In all but 
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Figure 6. Visualization of the KL-divergences of the proposal and 
the models where different HMC hyperparameter tuning schemes 
were used. 

Table 3. P-values of the Wilcoxon test with the alternative hypoth-
esis that the model with HMC parameters tuned by maxELT & 
SKSD leads to lower KL-divergences of the marginals with respect 
to the ground truth than the respective baseline. 

Grid search pa = 0.65 

α = 0 0.0030 0.39 
α = 1 0.0030 0.0040 
ML 0.010 5.1e-5 

one case maxELT & SKSD leads a signifcant improvement 
over the baselines and in the remaining case the two methods 
are on par with each other. All the other remaining p-values 
can be found in the Supplementary Material. 

5. Discussion and Related Work 
Our experiments show a general trend that, when we solely 
optimize the objective in (1), the value of α used signif-
cantly affects performance. However, when applying the 
SKSD scaling, this difference becomes smaller, showing 
that this technique is useful for automatically fnding a suit-
able initial distribution. 

A limitation of the method is that the hyperparameter op-
timization procedure must be run before samples can be 
produced. Therefore, our method is most applicable in 
cases where the optimization time is outweighed by the time 
savings gained through better hyperparameter choices and 
a faster mixing speed. This is the case for diffcult prob-
lems where choosing reasonable hyperparameters is highly 
non-trivial and also for problems where a large number of 
samples need to be produced for a downstream task. 

Previous works have also used VI to obtain an objective for 
the gradient based tuning of HMC hyperparameters. As dis-
cussed previously, Salimans et al. (2015); Wolf et al. (2016) 
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consider the entire joint distribution of the HMC chain as 
the variational distribution. The higher dimensionality in-
creases the looseness of the variational bound, making the 
method highly sensitive to the length of the chain and the 
accuracy of a reverse dynamics approximation. Our exper-
iments in section 4.3 show we can consider much longer 
chains and perform just as well without needing a reverse 
approximation. Caterini et al. (2018) also construct an al-
ternative ELBO for HMC. However, they only sample the 
auxiliary momentum variables once at the start of the chain 
which reduces the empirical performance of HMC. 

In contrast to these methods, some gradient based tuning 
techniques do not use ideas from VI but instead optimize a 
proxy for mixing speed. Levy et al. (2018) generalize the 
standard leapfrog integrator used in HMC with multi-layer 
perceptrons which are then trained by maximizing a modi-
fed version of the expected squared jumped distance. We 
improve upon this objective by directly optimizing conver-
gence speed by using gradient information from the target 
distribution itself. It would be an interesting direction to 
use our objective to train this generalised leapfrog oper-
ator. Finally, Titsias & Dellaportas (2019) consider the 
gradient based tuning of the Markov transition operator, 
pφ(xt|xt−1), in the case of a single long MCMC chain. 
They optimize with respect to the expected acceptance prob-
ability for the next step in the chain, regularized with the 
entropy of pφ(xt|xt−1). Unfortunately, as this entropy is in-
tractable when using the leapfrog algorithm as the transition 
operator, it cannot be applied to HMC in its current form. 

There are also many non-gradient based heuristics for tuning 
HMC hyperparameters. The popular No-U-Turn Sampler 
(Hoffman & Gelman, 2014) can adaptively set the number of 
leapfrog steps L to avoid U-turns and fnd a global constant 
for the step sizes by adjusting the average acceptance rate. In 
section 4.1, we found we can outperform NUTS even though 
we do not adaptively set L. With our objective, we can tune 
individual step sizes (and masses) for each dimension and 
step in the chain, allowing for a much higher degree of 
granular control over the algorithm. Furthermore, we do not 
need to rely on ‘rules of thumb’ such as standard acceptance 
rate targets used in many algorithms (Hoffman & Gelman, 
2014; Hoffman, 2017) but we can automatically tune all 
continuous hyperparameters using information from the 
target distribution directly. 

Other works use MCMC as part of a hybrid inference 
scheme. Ruiz & Titsias (2019) propose a novel objective to 
improve the training of the initial distribution using MCMC 
samples. However, their objective cannot be used for tuning 
MCMC as it encourages fnal samples to be close to the 
initial distribution. Hoffman et al. (2019) use normalizing 
fows to warp the target distribution such that it is close to 
an isotropic Gaussian and thus easy to sample from using 

HMC. Though, they must still use gradient-free optimiza-
tion on a heuristic to tune the HMC parameters, one could 
investigate performance if hyperparameters were instead 
tuned using our differentiable objective. 

Our work also builds upon methods from statistical mechan-
ics. The Boltzmann Generator (Noé et al., 2019) opened up 
this line of research by using a normalizing fow to sample 
molecular confgurations. We found we can improve upon 
this by using the fow as the initial distribution for HMC, 
fne tuning the fow samples with our short chains. Our 
Alanine Dipeptide experiment comes from the recent work 
of Wu et al. (2020) on stochastic normalizing fows, which 
consist of stochastic steps interspersed between determin-
istic steps in a normalizing fow. It is possible to combine 
such models with our approach, using our objective to tune 
hyperparameters within the stochastic layers. We leave this 
extension to future work. 

6. Conclusion 
In this work, we presented a new objective motivated by 
VI that can be easily used for the gradient-based optimiza-
tion of HMC hyperparameters. We provided a fully auto-
matic method for choosing an initial distribution for the 
HMC chain that reduces burn-in time and aids optimization. 
Evaluating on multiple real-world problems, we found our 
method is competitive with or improves upon existing meth-
ods for tuning hyperparameters. We hope this encourages 
further work applying this idea to other methods that use 
HMC and that would beneft from increased convergence 
speed. 
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