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Abstract

Designing novel protein sequences for a desired
3D topological fold is a fundamental yet non-
trivial task in protein engineering. Challenges ex-
ist due to the complex sequence—fold relationship,
as well as the difficulties to capture the diversity of
the sequences (therefore structures and functions)
within a fold. To overcome these challenges,
we propose Fold2Seq, a novel transformer-based
generative framework for designing protein se-
quences conditioned on a specific target fold.
To model the complex sequence—structure rela-
tionship, Fold2Seq jointly learns a sequence em-
bedding using a transformer and a fold embed-
ding from the density of secondary structural
elements in 3D voxels. On test sets with sin-
gle, high-resolution and complete structure in-
puts for individual folds, our experiments demon-
strate improved or comparable performance of
Fold2Seq in terms of speed, coverage, and reli-
ability for sequence design, when compared to
existing state-of-the-art methods that include data-
driven deep generative models and physics-based
RosettaDesign. The unique advantages of fold-
based Fold2Seq, in comparison to a structure-
based deep model and RosettaDesign, become
more evident on three additional real-world chal-
lenges originating from low-quality, incomplete,
or ambiguous input structures. Source code and
data are available at https://github.com/
IBM/fold2seq.
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1. Introduction

Computationally designing protein sequences that fold into
desired 3D structures has a broad range of applications rang-
ing from therapeutics to materials (Kraemer-Pecore et al.|
2001). Despite significant advancements in methodologies
and computing power, this task known as inverse protein de-
sign still remains challenging, primarily due to the vast size
of the sequence space as well as the difficulty of learning a
function that maps from the 3D structure space to the 1D
sequence space.

While majority of data-driven approaches (Chen et al.,2019;
O’Connell et al.,[2018; 'Wang et al., |2018b; Ingraham et al.,
2019; [Strokach et al.| |2020) are focusing on designing se-
quences for a desired backbone structure, only a few works
(Greener et al.|[2018}; [Karimi et al.,|[2020) have studied pro-
tein design for a desired fold. A protein fold is defined by
the spatial arrangement (or topology) of its 3D form of local
segments called secondary structure elements or SSEs (Hou
et al.||2003). As protein structure is inherently hierarchical,
a complete native structure can have fold combinations and
a fold can be present in many protein structures. A sim-
ple fold or topological architecture can be highly adaptable,
as shown by the low-sequence homology among its mem-
bers, and the different functions they carry out (Basanta
et al.l 2020; [Chandra et al., 2001; [Boutemy et al., 2011).
Therefore, a primary goal of de novo protein design is to
generate a larger and more diverse set of protein structures
than currently available yet still consistent with a specific
fold, which has proven to be a means for achieving new func-
tions through design (Basanta et al.,|2020; Woolfson et al.|
2015). In contrast, targeting a backbone structure per se is
known to restrict the diversity and novelty of the designs,
as “high-resolution protein backbone coordinates contain
some memory of the original native sequence” (Kuhlman
et al.} [2003). Accordingly, an ensemble of structures is a
better representative of a fold than a single structure, as it
additionally captures the structural and therefore functional
diversity within the fold.

Compared to structure-based protein design, fold-based
protein design carries additional challenges: the difficul-
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ties of learning a good fold representation for accurately
capturing the diversity of the fold space and the complex
fold-sequence relationship. Despite the impressive progress
made by recent data-driven methods, aforementioned chal-
lenges are not fully solved. First, the current fold represen-
tation methods are either hand-designed, or constrained and
do not capture the complete original fold space (Greener|
et al., 2018 [Karimi et al} [2020; Koga et al., 2012), re-
sulting in poor generalization or efficiency. Second, the
(1D) sequence encoding and the (3D) fold encoding are
learned separately in previous methods, which makes two
latent domains heterogeneous. Such heterogeneity across
two domains actually increases the difficulty of learning the
complex sequence—fold relationship.

To fill the aforementioned gaps, the main contributions of
this work are as follows:

1. We propose a novel fold representation, through first
representing the 3D structure by the voxels of the SSE den-
sity, and then learning the fold representation through a
transformer-based fold encoder. Compared to previous fold
representations, this one has several advantages: it preserves
the entire spatial information of SSEs in a scale-free manner,
does not need any pre-defined rules, and can be automati-
cally extracted from a given protein structure. The density
model also loosens the structure rigidity so that the structural
variation and missing information is better handled.

2. We employ a novel joint sequence—fold embedding
learning framework into the transformer-based auto-encoder
model. By learning a joint latent space between sequences
and folds, Fold2Seq, mitigates the heterogeneity between
two different domains and is able to better capture the
sequence-fold relationship, as reflected in the results.

3. We develop several novel fold-level assessment metrics.
Using those, we demonstrate that Fold2Seq has superior or
comparable performance in perplexity, sequence recovery
rate, and structure recovery rate, when compared to com-
peting methods including the state-of-the-art RosettaDesign
and other neural-net models on the benchmark test set. More
importantly, Fold2Seq-generated sequences provide better
coverage (diversity) within a specified fold. Ablation study
shows that this improved performance can be directly at-
tributed to our algorithmic innovations.

4. Experiments on real-world challenges comprised of low-
resolution structures, structures with missing residues, and
Nuclear Magnetic Resonance (NMR) ensembles further
demonstrate the unique practical utility and versatility of
Fold2Seq compared to the structure-based baselines.

2. Related Work

Data-driven Protein Design. A significant surge of protein
design studies that deeply exploit the data through modern

artificial intelligence algorithms has been witnessed in the
last three years. There appear a gallery of methods that
focus on design protein sequences conditioned on the back-
bone structure (Chen et al.l [2019; 0O’ Connell et al., 2018},
Wang et al., 2018b). Recently, |Strokach et al.| (2020) formu-
lated the inverse protein design as a constraint satisfaction
problem (CSP) and applied the graph neural networks for
generating protein sequences conditioned on the residue-
residue distance map. Ingraham et al.|(2019) developed a
graph-based transformer for generating protein sequences
conditioned on the either rigid or flexible protein backbone
information. Nevertheless, there are only a few studies
that investigated protein design conditioned directly on the
protein fold. |Greener et al.| (2018)) used the conditional
variational autoencoder for generating protein sequences
conditioned on a given fold. |[Karimi et al.| (2020) developed
a guided conditional Wasserstein Generative Adversarial
Networks (gcWGAN) also for the fold-based design.

Protein Fold Representation. For an extensive overview
of molecular representations, including those of proteins,
please see |David et al.[ (2020). Murzin et al.| (1995) and
Orengo et al.| (1997) manually classified protein structures
in a hierarchical manner based on their structural similarity,
resulting into one-hot encoding of the fold representations.
Taylor| (2002) represents a protein fold using a “periodic
table” that was later used for inverse fold design (Greener|
et al.,|2018)). However, it considers three pre-defined folds
(aBa layer, afBa layer and o barrel) for defining a fold
space, limiting the spatial information content of the fold
significantly. [Hou et al.|(2003)) chose hundreds of represen-
tative proteins and calculated the similarity scores among
them. This similarity matrix was then converted into a
distance matrix for kernel Principal Component Analysis
(kPCA). A similar idea was used in |Karimi et al.| (2020) for
inverse protein design. This representation needs a set (all-
a, all-3, a/B and a+p) of structures along with a similarity
metric for defining a fold space, which may lead to biased
or restricted representation of the fold space. Further, use
of a similarity (or distance) matrix between fold pairs to
learn fold representation, in principle, may not preserve the
detailed spatial information of the fold. Finally, Koga et al.
(2012) summarized three rules that describe the junctions
between adjacent secondary structure elements for a specific
fold. These rules are hand designed for a subset of struc-
tures, which makes the representation restricted to a small
part of the fold space and offers limited generalizability
during conditional sequence generation.

Joint Embedding Learning. Joint embedding learning
across different data modalities was first proposed by Ngiam!
et al.| (2011)) on audio and video signals. Since then, such
approaches have been widely used in cross modal retrieval
or captioning (Arandjelovic & Zisserman) 2018 |Gu et al.|
2018 [Peng & Q1, 20195 |Chen et al., |2018; |[Wang et al.,
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Figure 1: (a) The structure of T4 lysozyme (PDB ID 107L). The secondary structures are colored as: helices in red, beta
sheets in yellow, loops in green and bend/turn in blue. (b) The structure is rescaled to fit the 40A x 40A x 40A cubic box.
(c) The box is discretized into voxels. (d) Features of each voxel are obtained from the structure content of the voxel.

2013 |Dognin et al.;[2019). In few/zero-shot learning, joint
feature-label embedding was used (Zhang & Saligramal
2016} |Socher et al.,[2013)). Several studies have shown use-
fulness of learning joint embedding for single modal classi-
fication (Ngiam et al., 2011; Wang et al., 2018a; |Toutanoval
et al.,2015)). Moreover, |Chen et al.|(2018)) used joint embed-
ding learning for text to shape generation. Joint sequence—
label embedding is also explored for or applied to molecular
prediction/generation (Cao & Shenl 2021} |Das et al., [2018).

3. Methods
3.1. Background

A protein consists of a linear chain of amino acids (residues)
that defines its 1D sequence. Chemical composition and
interactions with neighboring residues drive the folding
of a sequence into different secondary structure elements
or SSEs (helix, beta-sheet, loop, etc., see Fig. Eka)), that
eventually forms a complete native 3D structure. A protein
fold captures the structural consensus of the 3D topology
and the composition of those secondary structure elements.

3.2. Fold Representation through 3D voxels of the SSE
density

In de novo protein design that we target, no backbone struc-
ture is assumed. Instead, a topological “blueprint” (consis-
tent with the desired fold) is given. And initial backbone
structures can be generated accordingly using fragment as-
semblies (Huang et al., 2016)). In this study we focus on gen-
erating fold representations once the structures are available
and additionally explore the challenges from such “blueprint”
input structures through three real-world challenges.

We hereby describe how we represent the 3D structure to ex-
plicitly capture the fold information, as illustrated in Fig.[T}
The position (3D coordinates) of each residue is represented
by its a-carbon. For a given protein of length N, we first
translate the structure to match its center of geometry (a-
carbon) with the origin of the coordinate system. We then
rotate the protein around the origin to let the first residue be
on the negative side of z-axis (principal component-based

orienting was also explored as in Training and Decoding
Strategy). We denote the resulting residue coordinates
as c¢i1,cCa,...,cy. The secondary structure label to each
residue is assigned based on their SSE assignment (Kabsch
& Sander, |1983)) in Protein Data Bank (Berman et al., | 2000).
We consider 4 types of secondary structure labels: helix,
beta strand, loop and bend/turn. In order to consider the
distribution of different secondary structure labels in the 3D
space, we discretize the 3D space into voxels. Due to the
scale-free definition of a protein fold, we rescale the original
structure, so that it fits into a fixed-size cubic box. Based
on the distribution of sizes of single-chain, single-domain
proteins in the CATH database (Sillitoe et al.l 2019), we
choose a 40A x 40A x 40A box with each voxel of size
2A x 2A x 2A. We denote the scaling ratio as » € R3. For
voxel 7, we denote the coordinates of its center as v;. We
assume that the contribution of residues j to voxel ¢ follows
a Gaussian form:

_lej or —vill3

Yij = exp( 5] ) -t (1)

o
where t; € {0, 1}* is the one-hot encoding of the secondary
structure label of amino acid j. The standard deviation is
chosen to be 2A. We sum up all residues together to obtain
the final features of the voxel i: y; = Zjvzl y;;. The fold
representation y € R20%20X20x4 ig the 4D tensor of y;
over all 20 x 20 x 20 voxels. This fold representation using
3D SSE densities better captures scale-free SSE topologies
that define folds, while removing fold-irrelevant structure
details. It results in sequence generation that explores the
sequence space available to a specific fold more widely (as
shown in experiments).

3.3. Fold2Seq with Joint Sequence-Fold Embedding

Model Architecture. In the training stage, our model con-
sists of three major components: a sequence encoder: hg(+),
a fold encoder: hy(-) and a sequence decoder: p(x|h(-)), as
shown in Fig. 2| (Left).

(1) Sequence Encoder/Decoder. Both sequence encoder
and decoder are implemented using the vanilla transformer
model and a vanilla sequence embedding module (learnable
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Figure 2: The architecture of the Fold2Seq model during the training and inference stages. (Training Scheme): During

training, the model includes three major components:

(top) Sequence Encoder, (middle) Fold Encoder and (bottom)

Sequence Decoder. The dashed arrows represent the process for getting cyclic loss. (Inference Scheme): During the
inference, the model only needs the fold encoder and the sequence decoder for conditionally decoding sequences.

lookup table + sinusoidal positional encoding), as described
in|Vaswani et al.|(2017). All training sequences are padded
to the maximum length N of 200, as 77% of single-domain
sequence lengths in the CATH dataset are < 200.

(ii) Fold Encoder. A fold representation y € R20%20x20x4

will go through a fold encoder, which contains 6 residual
blocks followed by a 3D positional encoding. Each residual
block has two 3D-convolutional layers (3 x 3 x 3) and batch
normalization layers. The 6 residual blocks transform y to
a tensor with the shape 5 x 5 x 5 x d, where d is the hidden
dimension. The 3D positional encoding is a simple 3D
extension of the sinusoidal encoding described in the vanilla
transformer model, as shown in the Supporting Information
(SI) Sec. 1. After the positional encoding, the 4D tensor is
flattened to be 2D with the shape 125 X d, as the input of a
transformer encoder. The output of the transformer encoder,
ht(y), is the latent fold representation of y.

We propose a simple fold-to-sequence reconstruction loss
based on the auto-encoder model: REy = p(x|hs(y)).
However, as mentioned earlier, training based on RE ; alone
suffers from the heterogeneity of « and y. To overcome this
challenge, we first encode the sequence x through the se-
quence encoder into the latent space as h(x), which could
be done through a simple sequence-to-sequence reconstruc-
tion loss: RE; = p(x|hs(x)). We then learn a joint latent
space between h¢(y) and hs () through a novel sequence-
fold embedding learning framework with additional losses
detailed below.

Joint Embedding Learning. Typically, learning a joint
embedding across two domains needs two intra-domain

losses and one cross-domain loss (Chen et al., 2018). An
intra-domain loss forces two semantically similar samples
from the same domain to be close to each other in the latent
space, while a cross-domain loss forces two semantically
similar samples in different domains to be closer.

In our case, the meaning of ‘semantically similar’ is that the
proteins should have the same fold(s). Therefore, we con-
sider a supervised learning task for learning intra-domain
similarity: fold classification. Specifically, the outputs of
both encoders: hy(y) € RY*? and hy(z) € R will
be averaged along [; and [; dimensions, followed by a
MLP+softmax layer to perform fold classification (shown
as two blue blocks in Fig.[2), where [/, and [ are the length
of the sequence and the fold, respectively. The parameters of
the two MLP layers are shared. The category labels follow
the fold (topology) level of hierarchical protein structure
classification in CATH4.2 dataset (Sillitoe et al.,[2019) (see
Section [3.4). As a result, we propose the following two
intra-domain losses: FCy and FCj, i.e. the cross entropy
losses of fold classification from Ay (y) and hs(x) respec-
tively. The benefits of these two classification tasks are as
follows: First, it will force the fold encoder to learn the
fold representation. Second, as we perform the same super-
vised learning task on the latent vectors from two domains,
it will not only learn the intra-domain similarity, but also
cross-domain similarity. In contrast, without explicit cross-
domain learning, the two latent vectors h s (y), hs(z) could
still have minimal alignment between them.

In the transformer decoder, each element in the non-self
attention matrix is calculated by the cosine similarity be-
tween the latent vectors from the encoder and the decoder,
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respectively. Inspired by this observation, we maximize the
cosine similarity (shown as the ‘Cosine Similarity in Fig.[2)
between hy(y) € R >4 and hy(x) € R!=*? as the cross-
domain loss. We first calculate the matrix-product between
h¢(y) and hy(x) as Q = hy(y) - hs(x)T,Q € R,
The ith row in Q represents the similarity between ith po-
sition in the fold and every position of the sequence. We
would like to find the best-matching sequence piece with
each position in the fold. To achieve this, the similarity ma-
trix @ first goes through a row-wise average pooling with
kernel size k, followed by the row-wise max operation:

q= ?O%((Angoolfow(Q)), q e R, 2

where row indicates row-wise operation. We choose k =
3, i.e. the scores of every 3 contiguous positions in the
sequence will be averaged. We finally average over all
positions in the fold to get the final similarity score: CS =
mean(q).

Besides the cosine similarity loss, inspired by the earlier
CycleGAN work (Zhu et al., 2017), we add a cyclic loss
(shown as the red block of “Cyclic Loss” in Fig.[2]) to
be another term of our cross-domain loss. Specifically, we
take the argmax of the output of fold-to-sequence model:
x’ = argmax p(x|h(y)), and send it back to the sequence
encoder for generating the cyclic-seq latent state: h,(x')
(shown as the dashed line in Fig.[2)). This cyclic-seq latent
state will compare with the native seq latent state hs(x)
through the square of the L2 distance:

CY = [|hs() — hS(w)H% 3)
To summarize, the complete loss objective is the following:

L= AlREf + ARE; + )\3FCf + MFC + )\5(CY — CS)7

“4)
where \; through )5 are the hyperparameters for controlling
the relative importance among these losses.

Training and Decoding Strategy. During experiments we
found that, if the sequence encoder and the fold encoder
were trained together, the fold encoder had little parameter
improvement while the sequence encoder dominated the
training. To overcome this issue, we consider a two-stage
training strategy. In the first stage, we train the sequence-to-
sequence model regularized by the sequence intra-domain
loss: Ly = AaRE, + M\ FC;. After the first stage is finished,
we start the second training stage. We train the fold-to-
sequence model regularized by the fold intra-domain loss
and the cross-domain loss while keeping the sequence en-
coder frozen: Ly = A\{REf + A3FCy + A\5(CY — CS). The
comparison between the one-stage training and two-stage
training strategies are described in details in SI Sec. 2.

We implement our model in Pytorch (Paszke et al., 2019).
Each transformer block has 4 layers and d = 256 latent di-
mensions. In order to increase the robustness of our model

for rotated structures, we augment our training data by right-
hand rotating the each structure by 90°, 180° and 270°
along each axis (X,y,z). As a result, we augment our train-
ing data by 3 x 3 = 9 folds. While orienting proteins
along principal axes is better using global shapes, we find
neither orientations along principal axes nor denser augmen-
tations (45°) empirically boosted the model performance
(See Result in Sec. 4). The learning rate schedule fol-
lows the original transformer paper (Vaswani et al., 2017).
We use the exponential decay (Blundell et al., 2015) for
As = 1/ ofepoch—e jpn the loss function, while )\; through
A4 and e are tuned based on the validation set, resulting in
A1 = 1.0, A2 = 1.0, A3 = 0.02, \y = 1.0, e = 3. We train
our model on 2 Tesla K80 GPUs, with batch size 128. In
every training stage we train up to 200 epochs with an early
stopping strategy based on the validation loss.

During inference, one only needs the fold encoder and the se-
quence decoder for conditional sequence generation (Fig. [2]
(Right)). Top-k sampling strategy (Fan et al., 2018)) is used
for sequence generation, where k is tuned to be 5 based on
the validation set.

3.4. Benchmark Datasets

We used protein structure data from CATH 4.2 (Sillitoe
et al., 2019) filtered by 100% sequence identity. We remove
proteins that (1) are multi-chain or non-contiguous in se-
quence; (2) contain other than 20 natural amino acids; or (3)
have length longer than 200. We randomly split the dataset
at the fold level into 95%, 2.5%, 2.5% as dataset (a), (b) and
(c), respectively, which means that the three datasets have
non-overlapping folds. We further randomly split the dataset
(a) at the structure level into 95%, 2.5% and 2.5% as dataset
(al), (a2) and (a3), respectively. Datasets (al), (a2), and (a3)
have overlapping folds. We use dataset (al) as the training
set, (b)+(a2) as the validation set, (a3) as the In-Distribution
(ID) test set and (c) as the Out-of-Distribution (OD) test
set. The folds of the ID test set overlap with the training
set, whereas the folds of the OD test set do not. Statistics of
these datasets are presented in SI Sec. 3.

To quantitatively measure their difficulty levels, we cal-
culate the averaged maximum sequence identity (amsi)
between a given test set IT' and the training set as:
amsiy = ﬁ > je Dy MaXpe Dy, (SIM(x;, Tk )), where
Dirain and D are the training and test (1) set, respectively;
SIM(x;, zx) is the sequence identity (See SI Sec. 4) be-
tween sequence x; and xj. We found amsip = 36.3% and
amsiop = 16.3%, showing that the OD test set represents a
much more difficult generalization task compared to the ID.

3.5. Assessment Metrics

Ideally, the most appropriate and rigorous criteria for evalu-
ating fold-based protein design methods is to check the
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consistency between the structures of the generated se-
quences and the desired fold. However, as protein struc-
ture prediction is very computationally expensive, and sim-
ilar sequences usually indicate similar folds or structures,
many earlier structure-based methods (Ingraham et al.,|2019;
Madani et al.| |2020) report performance in the sequence do-
main. Here, considering that a fold is comprised of multiple
structures, we define four fold-level metrics that is able to
assess the quality of the designed sequences for a desired
fold. For a test set D, we use ¢ € Dy to represent a fold in
Dy and j € Dy (or k € Dy) to represent a protein in Dr.

(Fold-level) Per-residue perplexity. Based on (Ingra;
ham et al., 2019; Madani et al.l [2020), the structure-
level per-residue PerPLexity (ppl) for test Dy is defined
as: pplstructure(DT) = GXP(—Wlﬂ ZjGDT ]%] Ing(wj‘yj))a
where L; is the length of sequence j. Here we consider
per-residue perplexity for fold i:

1
—o s 2
"je

max(

SEOUn log p(zky;)), (5)

PPliola(?)

where S; is set of structures in fold 7. We compute the mean
and standard deviation of pplq(7) over all folds in Dr.

(Fold-level) Sequence Recovery. We define the set of
the generated sequences (structures) conditioned on struc-
ture j as G;. In structure-based design, we usually define
the Sequence Recovery rate (sr) for y; as sTggucture (j) =
Ig—lj‘ >_geg, SIM(zg, ;). Here we consider the fold-level
sequence recovery rate for fold i:

|s| Z \gj Zg max{SiM(, @)} (6)

S 7"fold

(Fold-level) Coverage (Diversity). We also measure how
the generated sequences from a single (or few) represen-
tative structure(s) could capture the diversity of sequences
(thus of structures and functions) within a fold. To do so,
for fold i, we randomly pick one structure £ from S, as
the representative. We then measure how many sequences
within that fold are captured by the generated sequences
conditioned on the representative. As a result, we define the
COVerage (cov) for fold ¢ as:

covoa (i |S | Z 1 max{SIM xg,x;)} = 30%).

(7
We use the rule of thumb: two sequences likely belong to
the same fold if their identity is above 30% (Rost, |1999).

(Fold-level) Structure Recovery. We last assess design
accuracy directly in the structure domain. In structure-
based design, similar to the sequence recovery, the sTruc-
ture Recovery (tr) rate is defined as: trgucre(j) =

|g71,-\ degj TM(y,,y;), where TM(y,,yx) is the TM-
score (Zhang & Skolnick, 2004) between structures y, and
yr.. Here we extend it to fold-level structure recovery:

9€g;

JES;

7ot (1

We used the iTasser Suite (Yang et al.l[2015)), one of the state-
of-the-art protein structure prediction software, to predict
the structure of the designed sequences. For all metrics in
the sequence domain, we have set |G;| = 100 for every
7 € Dy. However, as iTasser usually takes at least one day
for predicting the structure of a single protein, for trgq in
the structure domain, we use |G;| = 1 forevery j € Dy. We
also include the performances of different methods based
on the structure-level metrics in SI Sec. 5.

3.6. Baseline Methods

Data-driven. We consider two data-driven fold-based meth-
ods that design sequences conditioned on a desired fold:
cVAE (Greener et al., 2018)) and gcWGAN (Karimi et al.,
2020). We also consider a recent structure-based method,
Graph_trans (Ingraham et al.|[2019), that uses graph specifi-
cation on the backbone structure as input and has shown to
outperform earlier structure-based methods in terms of the
structure-level metrics. We used Graph_trans conditioned on
the flexible backbone for comparison. Physics-based. We
then consider the state-of-the-art principle-driven method,
RosettaDesig (Huang et al., 2011).

4. Experiments on Benchmark Test Sets.

Perplexity and Sequence Recovery Comparison. We
first compare ppls,q of Fold2Seq with those of the baseline
methods (except RosettaDesign, as pplgoq is not applicable
to it). For reference, we also show the per-residue perplexity
under the uniform distribution and the frequencies through
all natural sequences in UniRef50 (Suzek et al.| 2015). We
do not report standard deviation on these perplexities as they
are unconditional distributions. Performances on two test
sets are summarized in Table[Ta] showing that Fold2Seq has
the smallest ppls,1q on ID test set and the second smallest on
OD test set. We have also tested different data augmentation
strategies including orientations along principal axes and
denser augmentations (45°). Neither strategy significantly
boosted the model performance for the OD set (pplgoa: 12.2
(2.7) and 12.0 (2.5), respectively).

Next, we compare different methods for recovering the na-
tive sequences within a desired fold. Also, for comparison,
we calculate the expected similarity between two random

'RosettaDesign uses MCMC sampling and energy calculation
to search for best sequences. The input to RosettaDesign consists
of the backbone of the native structure and the SSE of each residue.
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Table 1: Performance of different methods assessed by (a)
Avg. pplioia (std. dev.) and (b) Avg. srgq (std. dev.) (%).

(a)

Model ID Test OD Test
Uniform 20.0 20.0
Natural 18.0 18.0
¢cVAE 13.2(2.2) 152(2.3)
gcWGAN 123 (2.3) 143 (2.5)
Graph_trans 9.6 (2.9) 11.5@3.3)
Fold2Seq 9.0 (5.3) 12.0(24)

(b)

Model

Random across two folds
cVAE

gcWGAN

RosettaDesign
Graph_trans

Fold2Seq

Random within same fold

ID Test
12.8 (7.9)
18.2 (6.7)
20.6 (5.4)
22.1(5.7)
28.8 (11.3)
27.2 (6.3)
39.1 (9.4)

OD Test
12.8 (7.9)
17.3(5.2)
19.2 (3.7)
22.3(3.5)
27.1 (4.0)
25.2(3.2)
39.1 (9.4)

sequences in our whole dataset belonging to two different
folds and belonging to the same folds. The results are sum-
marized in Table[Tb] Overall, Graph_trans and Fold2Seq out-
perform other methods by a big margin, while Graph_trans
shows slightly better performance than Fold2Seq. This is
because Graph_trans is the only baseline that utilizes more
high-resolution structural information beyond the fold level
as the input. However, a structure-based method may not
capture the similarity and diversity within the fold space.
To highlight this point, we use t-SNE to visualize the fold
embeddings h after the fold encoder for the proteins in the
OD test sets. The results in SI Sec. 8 evidently show that
the embeddings of same-fold proteins from Graph_trans are
less clustered than those from Fold2Seq.

Coverage (Diversity). Coverage, as defined in Eq[7] is
shown in Table [2al We split the folds within the testsets
based on the number of sequences within each fold (|S;|)
using a cutoff of 3. Overall, Fold2Seq shows better cover-
age, compared to other baselines. In most cases, coverages
on more diverse folds (|S;| > 3) have smaller standard de-
viations due to large |S;| in the denominator of Eq. [7} We
then directly compare Fold2Seq with Graph_trans by count-
ing the number of folds for which Fold2Seq yields better
covod(1). As shown in Table [2b] Fold2Seq provides better
coverage in 68%-88% folds, implying that the proposed
method can better capture the diversity within a fold com-
pared to Graph_trans.

Moreover, we compare with an alternative version of
Graph_trans: Graph_trans_all, which conditions on each
structure within a fold and then combines the sequences gen-
erated over all conditions (instead of one) for calculating the
coverage. Though such an approach treats structure inputs
separately and do not target what makes diverse structures

common to a fold or distinguished across folds (evident in
visualization of learned embeddings in SI Sec. 8). Table [2a]
shows that Fold2Seq outperforms Graph_trans_all in most
cases except in the OD test set with |S;| > 3.

Table 2: (a) Avg. covgq (std. dev. in %). (b) Fold2Seq(f)
and Graph_trans(g) head-to-head coverage comparison.

(@)
ID Test OD Test

Subset ‘S,l <3 |S7| >3 ‘SLl <3 |S,| >3
cVAE 16.2(17.3) 133 (16.1) | 15.2(16.3) 11.3(12.4)
gcWGAN 189 (15.3) 20.5(21.2) | 17.3(13.4) 15.3(12.8)
Graph_trans  19.4 (28.9) 24.1 (25.1) | 26.9(32.5) 20.2(19.8)
Graph_trans_all  28.9 (32.3) 25.3(30.1) | 30.2(25.2) 21.3(23.7)
RosettaDesign  20.3 (17.3) 17.3(16.2) | 21.2(20.3) 17.5(18.9)
Fold2Seq 32.9 (33.5) 28.9 (27.8) | 34.3(38.3) 20.7(17.7)

()

ID Test OD Test

#eovt, 14 (1) > covf (1) 104 53 13 8
Total #folds 118 78 18 10
Ratio 0.88 0.68 0.72 0.80

Structural Recovery Comparison with RosettaDesign.
Besides sequence-domain assessments, we examine if the
structure of a Fold2Seq-generated sequence is of the same
or similar folds to the native structure. Due to the associated
computational expense, we limit structure predictions to
proteins designed by Fold2Seq and RosettaDesign. We first
compare the distributions of ¢sgq(2) on two test sets (ID and
OD); results are shown in Fig. [3(a). Fold2Seq shows signifi-
cant improvement against RosettaDesign. The performance
of Fold2Seq on ID test set is better than that on OD,thus
matching their expected difficulty levels. RosettaDesign per-
forms similarly on both sets due to its physics-based nature
that does not rely on learning from a training set.

To quantitatively measure the performance difference
between the two methods, we define Atsgpa(i) =
tspom?Sed ;) ggRosetta(;) and perform one-sided one-
sampled t-test over Atsgg, with the null hypothesis as
“Atsgq < 0.0” on two test sets. The resulting P-value;p, =
1.58E — 23 and P-valuepp = 0.00012 demonstrate that,
overall, Fold2Seq can generate more reliable structures com-
pared to RosettaDesign. The two distributions over Atsgq
are shown in Fig[3{b-c). We also randomly pick some de-
signed structures within the fold ¢ with Atsgoq(7) > 0.0 and
Atsgoa(?) < 0.0, and visualize them in Fig. S4 and Fig. S5
in SI Sec. 7, respectively.

The computational efficiency in terms of inference is shown
for Fold2Seq and RosettaDesign in Fig. [3{d) . Compared to
RosettaDesign on CPU, Fold2Seq on CPU and that on GPU
are almost 100 times and 5000 times faster, respectively.

Generalizability Analysis. For each fold in the test sets,
we calculate the maximum sequence identity (MSI) between
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Figure 3: (a). trga(4) distributions of RosettaDesign and Fold2Seq. (b, ¢). The distributions of Atrq(7) for ID test set and
OD test set, respectively. (d). Run time of Fold2Seq and RosettaDesign for generating one protein sequence: CPU: Intel
Xeon E5-2680 v4 2.40GHz, GPU: Nvidia Tesla K80. (). Avg. srq() for the OD test set with a continuous stretch of

missing residues.

a randomly selected sequence from that fold and all folds in
the training set (one random sequence per fold). We split all
folds in the test set into several bins. The performances of
DPPliolds STold and covgelg OVer bins are shown in SI Fig. S3.
In most cases, as the MSI increases, all methods have bet-
ter performances in all three metrics except RosettaDesign
which does not need a training set. For the low MSI bins
that demand generalizability, Fold2Seq is the best performer
in pplsoq on the ID test set and in covgq on both test sets,
as well as the second best (next to Graph_trans) in ppls,1q on
the OD test set and in sr,q on both test sets.

Ablation Study. To rigorously delineate the contributions
of each algorithmic innovation, we perform an ablation
study (detailed in SI Sec. 9). The performance on the two
test sets in terms of averaged sroq 1S summarized in Table
[Bal Key observations are: (i) ‘String’ to ‘voxel’ change
and addition of 2 FC losses provide the largest performance
gain (2-3%). (ii) Use of transformer and the cyclic loss
improves performance by around 2%. (iii) In contrast, the
improvement due to the addition of RE, and CS is minor.
(iv) Further, the inclusion of the two FC losses as the intra-
domain loss is crucial for joint embedding learning. By
calculating the averaged pairwise L2 distance among the
hidden fold vectors, h¢(y), for proteins in the OD test set,
we found that such distance is smaller with FC losses (3.25)
than without FC losses (5.35), which echoes our rationales
of proposing fold-classification losses in the Method section.
In summary, our novel design of the 3D voxel representa-
tion and the joint embedding learning framework, which

Table 3
(a) Avg. sriola (std. dev.) (%) for variants in ablation study.
Model ID Test OD Test
cVAE 18.2(6.7) 17.3(5.2)
Trans_string RE;  20.0 (8.31) 19.2(3.45)
Trans_voxel RE; 22.5(7.34) 21.3(3.33)
+RE,+CS 22.8 (8.01) 21.9(2.34)
+2FC  25.6(6.34) 23.7(2.34)
+CY (Fold2Seq) 27.2(6.3) 25.2(3.2)

(b) Avg. sTsiructure (Std. dev.) (%) for low resolution structures,
and Avg. sTo1d and covred (std. dev.) (%) for NMR ensembles.

Model Low_res Set
Graph_trans 19.9 (4.8)
RosettaDesign 17.2 (6.3)
Fold2Seq  21.2 (3.1)
STto1q for NMR ID Test OD Test
Fold2Seq;,1e 24.1 (3.9) 22.2 (3.8)
Fold2Seq, erpe 252 (3.5) 24.1 (4.2)
CovVgolg for NMR ID Test OD Test
Graph_trans,;  19.5(26.3) 17.5(28.5)
FoleSeqSingle 24.1 (3.9) 22.2 (3.8)
Fold2Seq, erpe 252 (3.5) 24.1 (4.2)

includes intra-domain and cyclic losses, leads to significant
performance improvement.

5. Experiments on Real-world Challenges.

To further explore the practical utility of our model, we
perform three real-world challenging design tasks condi-
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tioned on: (1) Low-resolution structures; (2) Structures with
missing residues; and (3) NMR ensembles, representing
low-quality, incomplete, and ambiguous data, respectively.

Low-Resolution Structures. We first create the low-
resolution structure dataset from Protein Data Bank, which
contains 164 single-chain proteins with low resolutions rang-
ing from 6A to 12A. This set has maximum sequence iden-
tity (MSI) below 30% compared to the training set. We
compare Fold2Seq’s performance on this set with those
of Graph_trans and RosettaDesign. Since the fold infor-
mation is not available for these low-resolution structures,
we report structure-level sequence recovery (S7syuycture) i
Table [3b] showing that Fold2Seq outperforms other base-
lines. As Fold2Seq uses the high-level fold information (by
re-scaling the structure, discretizing the space, and smooth-
ing the spatial secondary structure element information by
neighborhood averaging), the model’s performance is less
sensitive compared to RosettaDesign or Graph_trans, when
test structures are of lower resolution. To further solidify
the results, we randomly pick three Fold2Seq’s designed se-
quences on three different proteins respectively and recover
their structures through iTasser Suite. As a result, we receive
trgructure @ 0.39,0.46,0.33 on protein 2W6G_G, SBW9_L
and SUJ8_H, respectively, indicating structural similarity
with the target structure.

Structures with Missing Residues. We next perform the
design task where the input structures have missing residues.
In order to mimic the real-world scenario, for every pro-
tein in our OD test set, we select a stretch of residues at
random starting positions with length p, for which 1D and
3D information was removed. We compared Fold2Seq with
Graph_trans at p = {5%, 10%, 15%, 20%, 25%, 30%}, as
shown in Fig. B[e). When p is small, the performance
of Fold2Seq is on par with Graph_trans. As p increases,
Fold2Seq outperforms Graph_trans with a consistent mar-
gin. We also perform one-sided, two-sample t-tests with
null hypothesis: srgq of Graph_trans is larger than that
of Fold2Seq and obtain P-value of 0.028 (at 10% missing
rate) or <1E-3 (at higher missing rates). This shows that
Fold2seq is less sensitive to the availability of complete and
detailed backbone structure information.

NMR Structural Ensemble. We finally apply Fold2Seq to
a structural ensemble of NMR structures. We filter the NMR
structures from our two test sets and obtain 57 proteins in
30 folds from the ID set and 30 proteins in 10 folds from the
OD set. On average each protein has around 20 structures.
Handling NMR ensembles using Fold2Seq is straightfor-
ward, when compared to Graph_trans and RosettaDesign:
after we obtain the voxel-based features through Eq|[l|for
each model (structure) within one NMR ensemble, we sim-
ply average them across all models. The sequence recovery
results of Fold2Seq for NMR ensembles are shown in Table
[3b] along with a single structure baseline. Results show

that Fold2Seq performs better on both ID and OD proteins,
when ensemble structure information is available. This is
consistent with our hypothesis that our fold representation
better captures the structural variations present within a sin-
gle fold. Moreover, we compare the coverage performance
of Fold2Seq against multiple Graph_trans which collectively
uses the ensemble of all models within a NMR structure,
and all NMR structures within a fold. As shown in Table
[3b] Fold2Seq designs using single or averaged SSE densi-
ties achieved higher coverage than Graph_trans did using
all structures, which shows that Fold2Seq has better effi-
ciency and scalability for inverse fold design compared to
structure-based methods with diverse structure inputs.

6. Conclusion and Future Work

In this paper, we design a novel transformer-based model
to learn a fold representation from scale-free and coarse
topological features extracted from 3D voxels of secondary
structure elements within and across folds and use those as
conditional inputs to design protein sequences. In order to
mitigate the heterogeneity between the sequence domain and
the fold domain, we learn the joint sequence—fold represen-
tation through novel intra-domain and cross-domain losses.
On benchmark datasets containing single, high-resolution,
complete input structures, Fold2Seq performs better or sim-
ilarly, compared to the existing neural net models and the
state-of-the-art principle-driven RosettaDesign method, in
terms of perplexity, sequence recovery rate, coverage and
structural recovery. Ablation study shows that this superior
performance can be directly attributed to our novel algo-
rithmic innovations, including the fold representation, joint
sequence-fold embedding, and various losses. Moreover,
we demonstrate the unique practical utility of Fold2Seq
compared to structure-based neural net models in a set of
real-world design tasks with challenging conditional inputs
such as low resolution structures, structures with region of
missing residues, and NMR structural ensembles.

Future work will focus on upgrading fold embedding from
convolutional neural networks to advanced architectures
such as certain SE(3)-equivariant ones, learning representa-
tions in a continuous rather than a discrete fold space, and
designing multi-domain and multi-chain proteins.
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