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Abstract

Weakly supervised learning has drawn consider-
able attention recently to reduce the expensive
time and labor consumption of labeling massive
data. In this paper, we investigate a novel weakly
supervised learning problem called learning from
similarity-confidence (Sconf) data, where we aim
to learn an effective binary classifier from only un-
labeled data pairs equipped with confidence that
illustrates their degree of similarity (two exam-
ples are similar if they belong to the same class).
To solve this problem, we propose an unbiased
estimator of the classification risk that can be cal-
culated from only Sconf data and show that the
estimation error bound achieves the optimal con-
vergence rate. To alleviate potential overfitting
when flexible models are used, we further em-
ploy a risk correction scheme on the proposed
risk estimator. Experimental results demonstrate
the effectiveness of the proposed methods.

1. Introduction

In supervised classification, a vast quantity of exactly la-
beled data are required for training effective classifiers.
However, the collection of massive data with exact supervi-
sion is laborious and expensive in many real-world problems.
To overcome this bottleneck, weakly supervised learning
(Zhou, 2018) has been proposed and explored under vari-
ous settings, including but not limited to, semi-supervised
learning (Chapelle et al., 2006; Zhu & Goldberg, 2009; Niu
etal., 2013; Li & Zhou, 2015; Sakai et al., 2017; Li & Liang,
2019; Guo et al., 2020), positive-unlabeled learning (Elkan
& Noto, 2008; du Plessis et al., 2014; 2015; Kiryo et al.,
2017; Sansone et al., 2019), noisy-label learning (Natara-
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jan et al., 2013; Han et al., 2018b;a; Zhang et al., 2019;
Xia et al., 2019; 2020), partial-label learning (Cour et al.,
2011; Wang et al., 2019; Feng et al., 2020b; Lv et al., 2020),
complementary-label learning (Ishida et al., 2017; Yu et al.,
2018; Ishida et al., 2019; Feng et al., 2020a; Katsura &
Uchida, 2020; Chou et al., 2020), similarity-unlabeled learn-
ing (Bao et al., 2018), and similarity-dissimilarity learning
(Shimada et al., 2019).

In this paper, we consider a novel weakly supervised learn-
ing setting called similarity-confidence (Sconf) learning.
Under this setting, we aim to train a binary classifier from
only unlabeled data pairs equipped with similarity confi-
dence that demonstrates the degree of their pairwise sim-
ilarity, i.e., the possibility that two data points share the
same label, without any ordinarily labeled data. The Sconf
learning setting exists in many practical scenarios. Com-
pared with ordinary class labels, similarity labels are more
easily accessible in many applications (e.g., protein function
prediction (Klein et al., 2002)) and can alleviate potentially
biased decisions (Fisher, 1993). However, such similarity
labels could cause severe privacy leakage: for a data pair
equipped with a similarity label, the disclosure of the class
label of either of the two examples can subsequently reveal
the class label of another one. When the collected data are
sensitive (e.g., political opinions and religious orientations),
such leakage will lead to serious consequences. In this sce-
nario, similarity confidence is more favorable in the sense
of privacy-preserving: given the similarity confidence of a
data pair, people are uncertain if they share the same label
because the confidence only gives the probability that they
belong to the same class, e.g., even if the similarity confi-
dence is 70%, we still cannot assert that the data pair shares
the same label since the data pair can also be dissimilar with
possibility 30%. As a result, it is unable to exactly figure
out the underlying similarity label of the data pair from only
similarity confidence.

Another example is crowdsourcing (Howe, 2009). When
the data are annotated by crowdworkers, it is difficult for us
to always obtain high-quality crowdsourcing labels (Wang
& Zhou, 2015) due to the crowdworkers’ lack of domain
knowledge. When a data pair is annotated with both pair-
wise similarity and dissimilarity labels by different crowd-
workers, we can generate the similarity confidence by av-
eraging instead of choosing the majority of crowdsourcing



Learning from Similarity-Confidence Data

labels, which can alleviate noisy supervision. In these sce-
narios, Sconf learning makes it possible to learn an effective
binary classifier from only unlabeled data pairs equipped
with similarity confidence instead of hard labels.

Our main contributions in this paper are the following:

* We propose a novel Sconf learning framework (in Sec-
tion 5) that allows the use of ERM by constructing
an unbiased estimator of the classification risk with
only unlabeled data pairs with similarity confidence,
where any loss functions, models, and optimizers are
applicable in this setting.

¢ In Section 5, we derive an estimation error bound for
Sconf learning and show that it achieves the optimal
parametric convergence rate. Analysis of the influence
of noisy confidence also shows the robustness of our
Sconf learning framework.

e We leverage an effective empirical risk correction
scheme (Kiryo et al., 2017; Lu et al., 2020) for correct-
ing the obtained unbiased risk estimator to alleviate
potential overfitting and further show the consistency
of its risk minimizer (in Section 6).

» Extensive experiments on various datasets and deep
neural networks clearly demonstrate the effectiveness
of the proposed Sconf learning method and risk correc-
tion scheme (in Section 7).

2. Related Work

We illustrate Sconf learning and related problems in Fig-
ure 1. In what follows, we briefly review semi-supervised
clustering and similarity-based learning.

The research on similarity-based learning was pioneered
by the semi-supervised clustering (SSC) paradigm, where
pairwise similarity/dissimilarity is utilized to enhance the
clustering performance (Wagstaff et al., 2001; Basu et al.,
2002; Xing et al., 2002; Niu et al., 2012; Yi et al., 2013).
From the learning theory viewpoint, the SSC methods are
confined in the clustering setting and have no generalization
guarantee.

Recently, many studies have tried to solve the similarity-
based learning problem by empirical risk minimization
(ERM) with rigorous consistency analysis. In Bao et al.
(2018), it was shown that the classification risk can be re-
covered from similar data pairs and unlabeled data, which
enables the use of ERM and analysis on the estimation error.
However, the dissimilar data pairs are ignored in this work
and the collection of additional unlabeled data is inevitable.

Later, Shimada et al. (2019) made it possible to learn from
both similar and dissimilar data pairs by ERM, yet it is still
confined within the hard-label setting. Bao et al. (2020)
introduced a new performance metric for the binary discrim-

inative model and developed a surrogate risk minimization
framework with both similar and dissimilar data pairs.

On the other hand, the likelihood-based models (Hsu et al.,
2019; Wu et al., 2020) were proposed to conduct similarity-
based learning for multi-class classification tasks. The
loss functions in these methods are fixed and we cannot
directly optimize the classification-oriented losses in Bao
et al. (2020). Compared with these works, our proposed
Sconf learning framework is assumption-free on models,
loss functions, and optimizers, which makes it a flexible
framework when we use deep learning.

3. Preliminaries

In this section, we first briefly review the ordinary classifica-
tion problem and then show our problem setting where each
unlabeled data pair is merely equipped with similarity confi-
dence. Proofs are presented in supplementary materials.

3.1. Ordinary Classification Problem

Suppose that the feature space is X C R? and the la-
bel space is Y= {—1,+1}, the instance and its ordinary
class label (z, y) obey an unknown distribution with density
p(,y). Then the critical work is to find a decision function
g(+) : X — R that minimizes the classification risk:

R(g) = Ep(ay) [L(9(), y)], (1)

where £(-,+) : R x J) — R is a binary loss function, e.g.,
the 0-1 loss and logistic loss. An equivalent expression of
classification risk (1) used in the following sections is:

R(g) = m B [l(g(z), +1)] + 7 E_[((g(x), —1)]

R (g) R_(9)

where 71 = p(y = +1), 7— = p(y = —1) denote the
class prior probabilities. E, [] and E_[-] are expectations
on class-conditional distributions with densities p () =
p(xly = +1) and p_(x) = p(x|ly = —1), respectively.
The class posterior probabilities are denoted by 7 (x) =
p(y = +1jx) and r_(z) = p(y = —1|x).

3.2. Generation of Similarity-Confidence Data

To conduct ERM with only Sconf data, we first give the un-
derlying distributions of Sconf data pairs and further discuss
the expression and property of similarity confidence.

In this setting, we only have access to the unlabeled data
pairs with similarity confidence: S = {(x;,x}), s;}",,
where the similarity confidence s; = s(x;, z}) = p(y; =
yi|z;, ;) denotes the probability that x; and x) share
the same label y; = y.. Each unlabeled data pair in
{(=;, z})}_, is drawn independently from a simple dis-
tribution U? with density p(z,z’) = p(z)p(z’) and we
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Figure 1. Illustration of Sconf learning and related problems.

further denote by S,, the unlabeled data pairs with similarity

confidence {(x;, z})}1, ' K "p(x,x’). This formulation
implies that we can regard the decoupled unlabeled samples
{z;}, U{x/}, as drawn from the marginal distribu-
tion p(x) 1ndependent1y, which can be easily implemented
in real-world data collection. We also assume the sample
independence: (x,y) L (2',y’), which is an implicit as-
sumption used in Bao et al. (2018). Furthermore, we show
that the similarity confidence has the following property:

Lemma 1. (Equivalent expression of similarity confidence)

73 pt (®)py (&) 472 p_ (z)p-

p(x)p(z’)

s(z,x’) = @)

2)

4. Failure of Learning with One-Sided
Similarity Relation

As mentioned in Section 1, though we can recover classifi-
cation risk from both similar and dissimilar data (Shimada
et al., 2019), such a type of hard label could cause seri-
ous privacy leakage, which indicates that it is not favorable
when the data are sensitive. Such leakage may be allevi-
ated by learning from only one-sided similarity relation: we
only have similar (dissimilar) data pairs and no dissimilar
(similar) data pairs are provided. For example, when in-
vestigating political or religious orientations, people with
dissimilar opinions may refuse to give the answer in case
of potential conflicts. In these scenarios, only similar data
pairs are accessible. As reported in Hadsell et al. (2006),
learning with only similar data pairs can lead to degenerated
solutions. A natural optional idea is to combine one-sided
similarity relation with similarity confidence.

Can we learn an effective classifier from only one-sided
similarity relation and similarity confidence? Unfortunately,
the following experimental and theoretical results give a
negative answer to this question. Due to the space limitation,
we only provide the result when we only have similar data
pairs, and a completely analogous result with only dissimilar
data pairs is listed in the supplementary materials.

—— only Similar _
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ny =0.625

Number of examples

-10 -5 0 5 10 15 0.10 0.50 0.70 090‘
Slmllarltv confidence

Figure 2. Decision boundaries and the distribution of similarity
confidence.

Suppose we have a training set including only similar data
pairs, ie., 8§ = {(x;, z}) ! 1'lm'?l'p(af; z'|ly = 3') and
their 51m11anty confidences {s; }?_,. The following theorem
shows that it is theoretically poss1ble to conduct ERM with
only data provided above:

Theorem 1. With similar data pairs and their similarity
confidence, assuming that s(xz,x’') > 0 for all the pair
(z, '), we can get the unbiased estimator of classification
risk (1), i.e., Ep(a.a|y=y) [Rs(9)] = R(g), where

(7T-2‘r + 7T%) Z?:l 2n(my—m_)s;

Rs(g) =
n my—s;)(l(g(x;),—1)+£ wi =
) T el D et 1)

(si—m)(£(g(xi),+1)+£(g(x]),+1))

3)

It seems that we can conduct ERM on the obtained unbiased
risk estimator to get a binary classifier. Unfortunately, with
only one-sided similarity relation, we can only get collapsed
solutions empirically. Denote the empirical risk minimizer
of Eq. (3) with gs . Then we come to the following conclu-
sion:

Theorem 2. Suppose m, > w_ and 0-1 loss is used.
For similar data pairs, we assume that s; > w4 for
i =1,---,n. Then gs is a collapsed solution that clas-
sifies all the examples as positive.

A rough proof intuition for Theorem 2 is that the coefficients
of positive loss terms are always positive and those of nega-
tive loss terms are always negative, then minimizing Eq. (3)
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is equivalent to minimizing the positive counterpart and
maximizing the negative counterpart of classification risk,
which can lead to the collapsed solution. We can conclude
that though Eq. (3) is unbiased, it cannot well represent the
classification risk in Eq. (1).

To empirically illustrate the failure of learning with one-
sided similarity relation, we conducted experiments on a
synthetic dataset and show the distribution of similarity con-
fidence. The detailed statistics of the synthetic dataset are
provided in the supplementary materials. According to the
experimental results in Figure 2, the empirical minimiz-
ers of learning with only similar or dissimilar data pairs
yield collapsed results and their classification boundaries
are severely biased, which aligns with Theorem 2. The dis-
tribution of similarity confidence also meets our assumption

on {s;}1" .

As shown above, the incorporation of one-sided similarity
relation can lead to collapsed solution due to the highly
skewed distribution of similarity confidence. A potential
remedy for such failure is an underlying non-skewed distri-
bution of similarity confidence. Fortunately, we can achieve
this goal with only unlabeled data pairs. In the follow-
ing section, we show that given unlabeled data pairs with
similarity confidence, the hard similarity labels are all com-
pletely unnecessary, which means that we can successfully
train an effective classifier from only unlabeled data pairs
with similarity confidence.

5. Learning from Similarity-Confidence Data

In this section, we propose an unbiased risk estimator for
learning from only unlabeled data pairs with similarity con-
fidence and show the consistency of the proposed estimator
by giving its estimation error bound. Finally, we propose
an effective class-prior estimator for estimating 7 when
it is not given in advance. An analysis of the influence of
inaccurate similarity confidence is also provided by giving
a high-probability bound.

5.1. Unbiased Risk Estimator with Sconf Data

In this section, we derive an unbiased estimator of the clas-
sification risk in Eq. (1) with only Sconf data and establish
its risk minimization framework.

Based on the settings in Section 3.2, we first derive the
crucial lemma before deriving the unbiased estimator of
classification risk (1) from only Sconf data:

Lemma 2. The following equalities hold:

Ry (g) = Ey2[Ry(9)], R-(g) = Ey2[R_(g)], where

R+(g) =5 (si=m—)(L(g(®:),+1)+(g(x]),+1)) )

i=1 2n(my—m_) ’

R_(g) -y, (m4—si) (Ug(®i),—1)+(g(x7),—1)) (5)

2n(mq—m_) :

According to Lemma 2 above, we get the unbiased estima-
tor of each counterpart of the classification risk in Eq. (1).
Then we can simply derive the unbiased estimator of the
classification risk in Eq. (1) with only Sconf data:

Theorem 3. We can construct the unbiased estimator R(g)

of the classification risk (1), i.e., Ey2[R(g)] = R(g), with
only Sconf data as in the formulation below:

R(g) = Ry(g) + R-(9). (6)

Since there are no implicit assumptions on models, losses,
and optimizers in our analysis, any convex/non-convex loss
and deep/linear model can be used for Sconf learning.

5.2. Estimation Error Bound

Here we show the consistency of proposed risk estimator
R(g) in Eq. (6) by giving an estimation error bound. To
begin with, let G be our function class for ERM. Assume
there exists Cy > 0 that sup g [|9]lc < Cy and Cp > 0
such that sup|,|<¢, ¢(2,y) < C¢ holds for all y. Following
the usual practice (Mohri et al., 2012), we assume £(z, y) is
Lipschitz continuous w.rt. z for all |z| < Cy and all y with
a Lipschitz constant L,.

Let g* = argmingeg R(g) be the minimizer of classifi-
cation risk in Eq. (1), and § = argmingeg R(g) be the
minimizer of empirical risk in Eq. (6). Then we can derive
the following estimation error bound for Sconf learning:

Theorem 4. For any § > 0, the following inequality holds
with probability at least 1 — 0:

In2/6
2n

R({:]) _ R(g*) < 2LoNR (9) + 2C,

= mp—m_] [y —m_|

where R,,(G) is the Rademacher complexity of G for unla-
beled data of size n drawn from the marginal distribution
with density p(x).

The definition of the Rademacher complexity (Bartlett &
Mendelson, 2001) is provided in the supplementary material.
Note that the estimation error bound converges in the rate of
0,(1/+/n) if we assume that R,,(G) < Cg/+/n, where O,
denotes the order in probability and Cg is a non-negative
constant determined by the model complexity. This is a
natural assumption since many model classes (e.g., linear-
in-parameter models and fully-connected neural network
(Golowich et al., 2018)) satisfy this condition. We make this
assumption in the rest of this paper.
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Theorem 4 shows that the empirical risk minimizer con-
verges to the classification risk minimizer with high-
probability in the rate of O,(1/4/n). As shown in Mendel-
son (2008), this is the optimal parametric convergence rate
without additional assumptions.

5.3. Class-Prior Estimation from Similarity Confidence

In our Sconf learning, class-prior 7 plays an important role
in the construction of the unbiased risk estimator. Compared
with the previous work (Bao et al., 2018; Shimada et al.,
2019), we make a milder assumption on the data distribu-
tion, which aligns with the practical data collection process.
However, when the class-prior 7 is not given, we cannot
estimate it by mixture proportion estimation (Scott, 2015)
as in Bao et al. (2018) since we only have data drawn from a
single distribution U2. In this section, we propose a simple
yet effective class-prior estimator with only Sconf data.

We have the following theorem for the sample average of
similarity confidence:

Theorem 5. The sample average of similarity confidence is
an unbiased estimator of ﬂi + 72

Eg, [Z?zl S(%wi)} =72 4 x2.

n

Furthermore, according to McDiarmid’s inequality (Mc-
Diarmid, 1989), the sample average of similarity confi-
dence is consistent and converges to 71'_2Ir + 72 in the rate of
Op(exp(—n)), which is the optimal rate according to the
central limit theorem (Chung, 1974).

Let us denote 75 + w2 by mg. Assuming 74 > 7_, we can

calculate the class prior by 7 = 7%4“ According
to Theorem 5, we can approximate 7w with the average of
similarity confidence and the formulation above.

5.4. Analysis with Noisy Similarity Confidence

In the previous sections, we assumed that accurate confi-
dence is accessible. However, this assumption may not be
realistic in some practical tasks. We may have the question
that how the noisy similarity confidence can affect the learn-
ing performance? If our Sconf learning is not robust and
even a slight noise on the similarity confidence can cause
catastrophic degradation of performance? In this section,
we theoretically justify that the Sconf learning framework
is robust to noise on similarity confidence by bounding the
estimation error of learning with noisy confidence.

Suppose we are given the noisy Sconf data pairs: S,, =
{(x;,x}),5;}_,, where §; is the noisy similarity confi-
dence and is not necessary equal to s(x;, ;) (in fact, it can
take the form of any real number in [0, 1]). For simplicity,
we replace the accurate confidence {s;}?_; in Eq. (6) with
noisy ones {3;}?_, and denote the noisy empirical risk with

R(g). The minimizer of noisy risk is g = arg mig R(g). To
IS

quantify the influence of noisy similarity confidence, we
deduce the following estimation error bound:

Theorem 6. For any § > 0, the following inequality holds
with probability at least 1 — 0:

-\ * 4Lg9”{n(g) 4C, ln2/5 2Cpon,
R(g) R(g ) < |y —m_| +\7r+77r_| 2n +n|7r+77r_\7
where o, = >_"_| |s;—35;| is the summation of the deviation
of noisy similarity confidence.

In a straightforward way, the deduced estimation error
bound demonstrates the magnitude of the influence of noisy
similarity confidence: the estimation error of g is affected
up to the mean absolute error of noisy confidence and the
noisy confidence only has limited influence on the perfor-
mance of Sconf learning. If the summation of noise o,, has
a sublinear growth rate in high probability, Sconf learning
can even remain consistent, which shows that our Sconf
learning framework is robust to the noisy confidence.

6. Consistent Risk Correction

In the previous section, we showed the unbiased risk es-
timator that can recover the classification risk in Eq. (1)
from only Sconf data with rigorous consistency analysis. It
is noticeable that the positive and negative counterparts of
the empirical risk, i.e., R (¢) and R_(g), are not bounded
below and can go negative, while their expectations are
non-negative by definition. This contradiction can be prob-
lematic since as in previous works (Kiryo et al., 2017; Lu
et al., 2020) that severe overfitting usually occurs when the
empirical risk goes negative, especially when flexible mod-
els (e.g., deep models) are used. This phenomenon can be
also observed in Sconf learning, as shown in Figure 3. The
detailed setting of optimization algorithm is provided in
supplementary materials.

In this section, we alleviate this problem with a simple
yet effective risk correction on the proposed estimator (6).
We further show that the proposed corrected estimator can
preserve its consistency by bounding its estimation error.

6.1. General Risk Formulation

Can we alleviate the overfitting in Sconf learning without
collecting more data or changing the model? Here we give
a positive answer to this question by giving a slightly modi-
fied empirical risk estimator. Since the overfitting is caused
by negative empirical risk, it is a natural idea to make a
correction on the risk estimator when it goes negative. This
idea was first proposed in Kiryo et al. (2017), where the
data that yield a negative risk are ignored by applying a
non-negative risk estimator. Lu et al. (2020) further showed
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Both Kuzushiji-MNIST (Clanuwat et al., 2018) and CIFAR-10 (Krizhevsky, 2012) are manually corrupted into binary classification
datasets. In (a), we trained a 3-layer multi-layer perceptron (MLP) with ReLU (Nair & Hinton, 2010) on Kuzushiji-MNIST. In (b),
ResNet-34 (He et al., 2016) was trained on CIFAR-10. Adam (Kingma & Ba, 2015) was chosen as the optimization algorithm. Logistic
loss was used as the loss function. The generation of similarity confidence and the details of corrupted datasets are the same as those in

Section 7. The occurrence of overfitting and negative empirical risk is almost simultaneous: when the empirical risk (red line) goes
negative, the risk on test set (blue line) stops dropping and increases rapidly.

Figure 3. Illustration of the overfitting of unbiased Sconf learning.

that the information in those data can be helpful for general-
ization and should not be dropped. Based on the previous
works, we propose the consistently corrected risk estimator
for Sconf learning to enforce the non-negativity:

Definition 1. (Lu et al., 2020) A risk estimator R is called

the consistently corrected risk estimator if it takes the fol-
lowing form:

R(9) = f(R+(9)) + f(R-(9)), (7)
where f(z) = { iiﬂ xx2<007. and k > 0.

Denote the minimizer of consistently corrected Sconf risk
estimator (7) with § = argmingeg R(g), which can be ob-
tained by ERM. Two representative correction functions are
Non-Negative correction (Kiryo et al., 2017) and ABSolute
function (Lu et al., 2020), with £ = 0 and 1 respectively.
Their explicit formulations are shown below:

ﬁNN(g) = max {0, R+(g)} -+ max {0, R_ (g)} , (8

Ri(9)] +|R-(9)]. ©

EABS(Q) =

In Section 7, we will experimentally show their efficiency
in alleviating overfitting.

6.2. Consistency Guarantee

It is noticeable that }Nl(g) is an upper bound of the unbiased
risk estimator f%(g) for any fixed classifier g, which means
that R(g) is generally biased and does not align with the
consistency analysis in the previous section. Here we justify
the use of ERM by analyzing the consistency of R(g) and
its minimizer g. We first show that the corrected estimator
is consistent and the bias decays exponentially.

Theorem 7. (Consistency of R(g)) Assume that there are
a > 0and B > 0 such that Ry (g) > aand R_(g) > p.
According to the assumptions in Theorem 4, the bias of R(g)
decays exponentially as n — oo:

E[R(g)] — R(g) < Lt oy (,M) A.

|7y —m_| 2C7

where A = exp(a?)+exp(8?) and Ly = max{1, k} is the
Lipschitz constant of f(-). Furthermore, with probability at
least 1 —9:

|R(g) — R(g)|
L,C In2/6 (Ly+1)Cy (ri—7_)%n
< \7r+[—7f,| 2n + |7Tfr—7r,\[ €Xp <_ Jr2C’? ) A.

Based on Theorem 7, we show that the empirical risk mini-
mizer g obtained by ERM converges to g* in the same rate
of 0, (1//n).

Theorem 8. (Estimation error bound of g) Based on the

assumptions and notations above, with probability at least
1—4:

~ % 2(L 1)Cy mr—m_)%n
R(G) - R(g") <2 exp (—mepz i) A
2LR,. (G) In6/5 (2(Le+1)Cy
+ |y —m_| + 2n ( [Ty —m_| )

Theorem 8 shows that learning with f{( g) is also consistent
and it has the same convergence rate as learning with R(g)
since the additional exponential term is of lower order.

7. Experiments

In this section, we demonstrate the usefulness of proposed
methods on both synthetic and benchmark datasets with data
generation process in Section 5. Sconf-Unbiased, Sconf-
ABS and Sconf-NN are short for ERM with risk estimators
in Egs. (6), (8), and (9), respectively.
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Table 1. Mean and standard deviation of the classification accuracy over 5 trails in percentage with linear models on various synthetic
datasets. Std. is the standard deviation of Gaussian noise. The best and comparable methods based on the paired t-test at the significance

level 5% are highlighted in boldface.

Setup ‘ Sconf Sconf (std. =0.1) Sconf (std. =0.2) Sconf (std. =0.3) ‘ Supervised
A 89.91 +0.18 89.84 +0.03 89.55 + 0.64 89.64 +0.33 89.66 + 0.41
B 90.62 + 0.28 90.34 + 0.40 90.03 +0.33 89.49 + 0.92 90.71 +0.17
C 88.05 + 0.30 88.14 +0.14 87.92 + 0.57 87.91 + 0.38 88.14 £0.16
D 90.43 +0.14 90.29 + 0.30 90.40 + 0.15 90.20 +0.14 90.56 +0.16

-100 -75 -50 -25 00 25 50 75 100 -4 -2

(a) Setup A (b) Setup B

(c) Setup C

(d) Setup D

Sconf Sconf (Std. = 0.1)

Sconf (Std. =0.2)

Sconf (Std. =0.5) ~ - - - Supervised]

Figure 4. Illustration of Sconf learning on different scales of noise and Gaussian distributions on a single trail.

7.1. Synthetic Experiments

We experimentally characterize the behavior of Sconf learn-
ing and show its robustness to noisy confidence on the syn-
thetic datasets.

Setup: We generated the positive and negative data ac-
cording to the 2-dimensional Gaussian distributions with
different means and covariance for p (x) and p_(x). The
setups of data generation distributions are provided in the
supplementary material.

500 positive data and 300 negative data were generated inde-
pendently from each distribution for training. We dropped
the class labels for Sconf learning and generated the unla-
beled data pair according to the data generation process in
Section 5. Then we analytically computed the class pos-
terior probability r () from the two Gaussian densities
and equipped the unlabeled data pairs with true similarity
confidence, which was obtained based on Lemma 1. 1000
positive data and 600 negative data were generated in the
same way for testing.

The linear-in-input model f(x) = w'x + b and logistic
loss were used. We trained the model with Adam for 100
epochs (full-batch size) and default momentum parameter.
The learning rate was initially set to 0.1 and divided by 10
every 30 epochs. To generate noisy similarity confidence,
we added zero-mean Gaussian noise with different scales
of standard deviation chosen from {0.1,0.2, 0.3} on the
obtained similarity confidence. When the noisy similarity
confidence was over 1 or below 0, we clipped it to 1 or
rounded up to 0, respectively. The results of fully supervised

learning are also provided.

Experimental results: The results are shown in Table 1 and
Figure 4. Compared with fully supervised learning, Sconf
learning has similar accuracy on all synthetic datasets. The
decline in performance under different scales of noise is not
significant, which shows the robustness of Sconf learning.

7.2. Benchmark Experiments

Here we conducted experiments with deep neural networks
on the more realistic benchmark datasets.

Datasets: We evaluated the performance of proposed meth-
ods on six widely-used benchmarks MNIST (LeCun et al.,
1998), Fashion-MNIST (Xiao et al.), Kuzushiji-MNIST
(Clanuwat et al., 2018), EMNIST (Cohen et al., 2017),
SVHN (Netzer et al., 2011), and CIFAR-10 (Krizhevsky,
2012). Following Lu et al. (2020), we manually corrupted
the multi-class datasets into binary classification datasets.
The detailed statistics of datasets are in the supplementary
materials.

Baselines: We compared our methods with both statistical
learning-based and representation learning-based similarity
learning baselines, including similarity-dissimilarity learn-
ing (SD) (Shimada et al., 2019), Siamese network (Koch
et al., 2015), and contrastive loss (Hadsell et al., 2006).
Since we can only get the vector representation rather than
class label using Siamese network and contrastive loss, we
adopted the one-shot setting in (Koch et al., 2015) and ran-
domly chose two samples with different labels as the pro-
totypes. Then prediction is determined according to the
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Table 2. Mean and standard deviation of the classification accuracy over 5 trials in percentage with deep models. The best and comparable

methods based on the paired t-test at the significance level 5% are highlighted in boldface.

Proposed Baselines

Datasets
Sconf-Unbiased Sconf-ABS Sconf-NN SD Siamese Contrastive
MNIST 87.22 £2.11 96.12 + 2.31 96.04 +1.23 86.57 +0.78 55.08 &+ 3.94 71.91 £2.39
Kuzushiji-MNIST 78.12 + 3.08 89.25 + 1.58 90.00 £ 0.55 76.42 +4.09 59.82 +6.15 67.18 £ 5.41
Fashion-MNIST 86.28 + 7.03 91.44 + 0.39 91.37 +0.30 83.61 +8.94 58.29 £+ 4.42 64.97 + 5.76
EMNIST-Digits 87.96 + 1.67 96.62 + 0.06 96.21 +£0.11 76.18 £11.21 53.08 £ 2.55 66.37 & 5.40
EMNIST-Letters 77.14 £ 3.71 86.32 + 1.20 86.72 +1.39 76.18 £11.21 55.76 £+ 3.95 60.29 + 3.14
EMNIST-Balanced 68.61 + 10.21 74.94 + 2.92 74.83 + 3.40 64.03 + 14.66 52.61 + 1.22 58.30 £ 2.19
CIFAR-10 65.68 = 5.03 84.71+1.41 84.49 +1.14 60.39 £+ 6.56 59.83 £2.75 54.38 £1.48
SVHN 72.88 +3.15 83.51 + 0.65 82.37 +£0.23 71.48 £5.43 60.90 £+ 5.01 69.26 + 2.97
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Figure 5. Experimental Results of proposed methods. Dark colors

similarity between each test instance and the prototypes.

Experimental setup: We trained the proposed methods and
baseline methods with the same model on a certain dataset
with logistic loss. Different models are used on different
datasets as summarized in Figure 5. Since Siamese net-
work and contrastive loss is representation learning-based,
the output dimensions for them were changed to 300 on
MNIST, Kuzushiji-MNIST, Fashion-MNIST, EMNIST and
further increased to 1000 on CIFAR-10 and SVHN. For
all the methods, the optimization algorithm was chosen to
be Adam (Kingma & Ba, 2015) and the detailed setting is
listed in supplementary materials. For ERM-based meth-
ods: Sconf-Unbiased, Sconf-ABS, Sconf-NN, and SD, the
validation accuracy was also calculated according to their
empirical risk estimators on a validation set consisted of
Sconf data, which means that we do not have to collect
additional ordinarily labeled data for validation when using
ERM-based methods.

To simulate real similarity confidence, We generated the
class posterior probability p(y =+1|x) using logistic regres-
sion with the same network for each dataset, and obtained
the similarity confidence according to Lemma 1. Since
the baseline methods requires data with hard similarity la-

Risk w.r.t. 0-1 loss

Risk w.r.t. 0-1 loss

Risk w.r.t. 0-1 loss

(c) Fashion-MNIST, MLP

06 05

0.0

Risk w.r.t. 0-1 loss
s
o

-0.2

-04

0 10 20 30 40 50 60 0 10 20 30 40 50 60
Epoch Epoch

(g) SVHN, ResNet-18 (h) CIFAR-10, ResNet-34

show the mean accuracy and light colors show the standard deviation.

bels, we generated the similarity label for each data pair
according to the Bernoulli distribution determined by their
similarity confidence. Note that we ask the labelers for
similarity confidence values in real-world Sconf learning,
but we generated them through a probability classifier here.
The class labels are only used for estimating the similarity
confidence and the test sets are not used in any process of
experiments except for testing steps.

We implemented all the methods by Pytorch (Paszke et al.,
2019), and conducted the experiments on NVIDIA Tesla P4
GPUs. Experimental results are reported in Figure 5 and
Table 2.

Experimental results: It can be observed from Table 2 that
the proposed methods: Sconf-Unbiased, Sconf-ABS, and
Sconf-NN outperformed the baseline methods on all the
datasets. Among all the methods, Siamese network and con-
trastive loss performed poorly since they are representation
learning-based rather than classification-oriented. Though
the goal of SD learning is classification, it failed to compete
with the proposed methods because it can only utilize the
similarity labels degenerating from similarity confidence,
which can cause the loss of supervision information.

The efficiency of the risk correction schemes on mitigat-
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ing overfitting is illustrated in Figure 5 and Table 2. For
Sconf-Unbiased, the learning curves in Figure 5 show that
when the empirical risk of Sconf-Unbiased (red full line)
goes negative, the test loss increases rapidly, which indi-
cates the occurrence of overfitting. As a consequence, the
performance of Sconf-Unbiased became catastrophic com-
pared with Sconf-ABS and Sconf-NN as shown in Table
2. Thanks to the risk correction schemes that enforce the
non-negativity of empirical risk, Sconf-ABS and Sconf-NN
did not suffer from the overfitting caused by negative empir-
ical risk and greatly outperformed Sconf-Unbiased and all
the baseline methods. For Sconf-ABS and Sconf-NN, the
learning curves of their test and training loss are consistent,
i.e., the minimization of training loss corresponding to the
corrected risk estimators implies the minimization of classi-
fication risk. This observation indicates that the corrected
risk estimators can better represent the classification risk
compared with the unbiased risk estimator.

8. Conclusion

We proposed a novel weakly supervised learning setting and
effective algorithms for learning from unlabeled data pairs
equipped with similarity confidence, where no class labels
or similarity labels are needed. We proposed the unbiased
risk estimator from unlabeled data pairs with similarity con-
fidence and further improved its performance against over-
fitting via a risk correction scheme. Furthermore, we proved
the consistency of the minimizers of the risk estimator and
corrected risk estimators. Experimental results showed that
the proposed methods outperform baseline methods and our
proposed risk correction scheme can effectively mitigate
overfitting caused by negative empirical risk.
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