
Optimizing persistent homology based functions

Mathieu Carrière 1 Frédéric Chazal 2 Marc Glisse 2 Yuichi Ike 3 Hariprasad Kannan 2 Yuhei Umeda 3

Abstract
Solving optimization tasks based on functions
and losses with a topological flavor is a very ac-
tive, growing field of research in data science and
Topological Data Analysis, with applications in
non-convex optimization, statistics and machine
learning. However, the approaches proposed in
the literature are usually anchored to a specific ap-
plication and/or topological construction, and do
not come with theoretical guarantees. To address
this issue, we study the differentiability of a gen-
eral map associated with the most common topo-
logical construction, that is, the persistence map.
Building on real analytic geometry arguments, we
propose a general framework that allows us to de-
fine and compute gradients for persistence-based
functions in a very simple way. We also pro-
vide a simple, explicit and sufficient condition for
convergence of stochastic subgradient methods
for such functions. This result encompasses all
the constructions and applications of topological
optimization in the literature. Finally, we pro-
vide associated code, that is easy to handle and to
mix with other non-topological methods and con-
straints, as well as some experiments showcasing
the versatility of our approach.

1. Introduction
Persistent homology is a central tool in Topological Data
Analysis that allows to efficiently infer relevant topological
features of complex data in a descriptor called persistence di-
agram. It has found many applications in Machine Learning
(ML) where it initially played the role of a feature engi-
neering tool, either through the direct use of persistence
diagrams or through dedicated ML architectures that handle
them—see, e.g., (Hofer et al., 2017; Umeda, 2017; Carrière
et al., 2020; Dindin et al., 2020; Kim et al., 2020). For

1Université Côte d’Azur, Inria, France 2Université Paris-Saclay,
CNRS, Inria, Laboratoire de Mathématiques d’Orsay, France
3Fujitsu Ltd., Kanagawa, Japan. Correspondence to: Mathieu
Carrière <mathieu.carriere@inria.fr>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

the last few years, a growing number of works have suc-
cessfully been using persistence theory in different ways,
focusing on, for instance, better understanding, designing
and improvement of neural network architectures—see, e.g.,
(Rieck et al., 2019; Moor et al., 2020; Carlsson & Gabriels-
son, 2020; Gabrielsson & Carlsson, 2019)—or design regu-
larization and loss functions incorporating topological terms
and penalties for various ML tasks—see, e.g., (Chen et al.,
2019; Hofer et al., 2019; 2020; Clough et al., 2020). These
new use cases of persistence generally involve minimiz-
ing functions that depend on persistence diagrams. Such
functions are in general non-convex and not differentiable,
and thus their theoretical and practical minimization can
be difficult. In some specific cases, persistence-based func-
tions can be designed to be differentiable and/or some effort
have to be made to compute their gradient, so that stan-
dard gradient descent techniques can be used to minimize
them—see e.g., (Wang et al., 2020; Poulenard et al., 2018;
Brüel-Gabrielsson et al., 2020). In the general case, re-
cent attempts have been made to better understand their
differential structures (Leygonie et al., 2021). Moreover,
building on powerful tools provided by software libraries
such as PyTorch or TensorFlow, practical methods allowing
to encode and optimize a large family of persistence-based
functions have been proposed and experimented with (Brüel-
Gabrielsson et al., 2020; Solomon et al., 2021). However,
in all these cases, the algorithms used to minimize these
functions do not come with theoretical guarantees of con-
vergence to a global or local minimum.

Contributions and organization of the article. The aim
of this article is to provide a general framework that includes
almost all persistence-based functions from the literature,
and for which stochastic subgradient descent algorithms are
easy to implement and come with convergence guarantees.

More precisely, we first observe that the persistence map,
converting a filtration over a given simplicial complex 1 into
a persistence diagram, can be thought of as a map between
Euclidean spaces (Section 2). This observation allows us to
prove that the persistence map is semi-algebraic and, using
classical arguments from o-minimal geometry, to study the

1The presentation is restricted to simplicial complexes for sim-
plicity, but this generalizes to other complexes as well. We present
an example with cubical complexes in Supplementary Material.

Optimizing persistent homology based functions

differentiability of the persistence of parametrized families
of filtrations (Section 3). Then, building on the recent work
of (Davis et al., 2020), we consider the minimization prob-
lem of persistence-based functions and show that under mild
assumptions, stochastic subgradient descent algorithms ap-
plied to such functions converge almost surely to a critical
point (Section 4). We also provide a simple corresponding
Python implementation for minimizing functions of persis-
tence2, and we illustrate it with several examples from the
literature (Section 5).

2. Filtrations and persistence diagrams
In this section, we show that the persistence map is nothing
but a permutation of the coordinates of a vector containing
the filtration values.

2.1. Simplicial complexes and filtrations

Recall that given a set V , a (finite) simplicial complex K is
a collection of finite subsets of V that satisfies (1) {v} ∈ K
for any v ∈ V , and (2) if σ ∈ K and τ ⊆ σ then τ ∈ K.
An element σ ∈ K with |σ| = k + 1 is called a k-simplex.

Given a simplicial complex K and a subset R of R, a filtra-
tion of K is an increasing sequence (Kr)r∈R of subcom-
plexes of K with respect to the inclusion, i.e., Kr ⊆ Ks for
any r ≤ s, and such that

⋃
r∈RKr = K.

To each simplex σ ∈ K, one can associate its filtering index
Φσ = inf{r ∈ R : σ ∈ Kr}. Thus, when K is finite, a
filtration of K can be conveniently represented as a filtering
function Φ: K → R. Equivalently, it can be represented
as a |K|-dimensional vector Φ = (Φσ)σ∈K in R|K| whose
coordinates are the indices of the simplices of K and that
satisfies the following condition: if σ, τ ∈ K and τ ⊆ σ,
then Φτ ≤ Φσ . As a consequence, if the vectorized filtration
Φ depends on a parameter, the corresponding family of
filtrations can be represented as a map from the space of
parameters to R|K| in the following way.

Definition 2.1. Let K be a simplicial complex and A a set.
A map Φ: A→ R|K| is said to be a parametrized family of
filtrations if for any x ∈ A and σ, τ ∈ K with τ ⊆ σ, one
has Φτ (x) ≤ Φσ(x).

2.2. Persistence computation from filtrations

We briefly recall how the computation of the persistence
diagram of a filtered simplicial complex decomposes into:
(i) a purely combinatorial part only relying on the order
on the simplices induced by the filtration, and (ii) a part
relying on the filtration values. A detailed introduction to
persistent homology and its computation can be found in,

2It is publicly available at https://github.com/
MathieuCarriere/difftda

e.g., (Edelsbrunner & Harer, 2010; Boissonnat et al., 2018).

Let K be a simplicial complex endowed with a filtration
and corresponding filtering function Φ ∈ R|K|, where |K|
is the number of non-empty simplices of K.

First part: combinatorial part (persistence pairs). The
filtering function Φ induces a total preorder on the elements
of K as follows: τ � σ if Φτ ≤ Φσ. This preorder can
be refined into a total order by breaking ties in some fairly
arbitrary way, as long as it is consistent with the face relation,
i.e., if τ ⊆ σ, then τ � σ. One way to break ties is to sort
simplices that have the same filtration value by dimension,
and then order the ones that are still equivalent according to
some arbitrary indexing of the simplices. For instance, one
can represent simplices by their decreasing list of vertices,
and sort equivalent simplices using the lexicographic order
on those lists. In the following, we will assume that the
total order is a function of the preorder, in particular it is
deterministic and does not depend on the exact values of Φ.
Note that while different orders may yield different pairings,
they all translate to the same persistence diagram in the
second part. The basic algorithm to compute persistence
iterates over the ordered set of simplices σ1 � · · · � σ|K|
is according to Algorithm 1 below—see Section 11.5.2 in
(Boissonnat et al., 2018) for a detailed description of the
algorithm.

Algorithm 1 Persistence pairs computation (sketch)
Input: Ordered sequence of simplices σ1 � · · · � σ|K|
K0 = ∅
Pairs0 = Pairs1 = · · · = Pairsd−1 = ∅
for j = 1 to |K| do
k = dimσj
Kj = Kj−1 ∪ σj
if σj does not create a new k-dimensional homology
class in Kj then

A (k − 1)-dimensional homology class created in
Kl(j) by σl(j) for some l(j) < j becomes homolo-
gous to 0 in Kj .
Pairsk−1 ← Pairsk−1 ∪ {(σl(j), σj)};

end if
end for
Output: Persistence pairs in each dimension
Pairs0,Pairs1, . . . ,Pairsd−1

Note that for each dimension k, some k-dimensional sim-
plices may remain unpaired at the end of the algorithm; their
number is equal to the k-dimensional Betti number of K.

Second part: associated filtration values. The persis-
tence diagram of the filter function Φ is now obtained
by associating to each persistent pair (σl(j), σj) the point
(Φσl(j)

,Φσj). Moreover, to each unpaired simplex σl is

https://github.com/MathieuCarriere/difftda
https://github.com/MathieuCarriere/difftda

Optimizing persistent homology based functions

associated the point (Φσl
,+∞).

If p is the number of persistence pairs and q is the number of
unpaired simplices, then |K| = 2p+ q and the persistence
diagram D(Φ) of the filtration Φ of K is made of p points
in R2 (counted with multiplicity) and q points (also counted
with multiplicity) with infinite second coordinate. Choosing
the lexicographical order on R× (R ∪ {+∞}), the persis-
tence diagram D(Φ) can be represented as a vector in R|K|
and the output of the persistence algorithm can be simply
seen as a permutation of the coordinates of the input vector
Φ. Moreover, this permutation only depends on the order
on the simplices of K induced by Φ.

Definition 2.2. The subset of points of a persistence dia-
gram D with finite coordinates (resp. infinite second coor-
dinate) is called the regular part (resp. essential part) of D
and denoted by Dreg (resp. Dess).

With the notations defined above, Dreg and Dess can be
represented as vectors in R2p and Rq , respectively.

Note that, in practice, the above construction is usually done
dimension by dimension to get a persistence diagram for
each dimension in homology, by restricting to the subset
of simplices of dimension k and k + 1. Without loss of
generality, and to avoid unnecessary heavy notation, in the
following we consider the whole persistence diagram, made
of the union of the persistence diagrams in all dimensions k.

3. Differentiability of functions of persistence
o-minimal geometry provides a well-suited setting to de-
scribe the parametrized families of filtrations encountered in
practice and to exhibit interesting differentiability properties
of their composition with the persistence map.

3.1. Background on o-minimal geometry

In this section, we recall some elements of o-minimal ge-
ometry, which are needed in the next sections—see, e.g.,
(Coste, 2000) for a more detailed introduction.

Definition 3.1 (o-minimal structure). An o-minimal struc-
ture on the field of real numbers R is a collection (Sn)n∈N,
where each Sn is a set of subsets of Rn such that:

1. S1 is exactly the collection of finite unions of points
and intervals;

2. all algebraic subsets3 of Rn are in Sn;

3. Sn is a Boolean subalgebra of Rn for any n ∈ N;

4. if A ∈ Sn and B ∈ Sm, then A×B ∈ Sn+m;

5. if π : Rn+1 → Rn is the linear projection onto the first
n coordinates and A ∈ Sn+1, then π(A) ∈ Sn.

3Recall that an algebraic set is the 0-level set of a polynomial.

An element A ∈ Sn for some n ∈ N is called a definable
set in the o-minimal structure. For a definable set A ⊆ Rn,
a map f : A → Rm is said to be definable if its graph is a
definable set in Rn+m.

Definable sets are stable under various geometric operations.
The complement, closure and interior of a definable set are
definable sets. The finite unions and intersections of de-
finable sets are definable. The image of a definable set by
a definable map is itself definable. Sums and products of
definable functions as well as compositions of definable
functions are definable—see Section 1.3 in (Coste, 2000).
In particular, the max and min of finite sets of real-valued
definable functions are also definable. An important prop-
erty of definable sets and definable maps is that they admit a
finite Whitney stratification (van den Dries & Miller, 1996).
This implies that (i) any definable setA ⊆ Rn can be decom-
posed into a finite disjoint union of smooth submanifolds
of Rn and (ii) for any definable map Φ: A → Rm, A can
also be decomposed into a finite union of smooth manifolds
such that the restriction of Φ on each of these manifolds is a
differentiable function.

The simplest example of o-minimal structures is given by the
family of semi-algebraic subsets4 of Rn (n ∈ N). Although
most of the classical parametrized families of filtrations are
semi-algebraic, the o-minimal framework actually allows to
consider larger families. In particular, the result of (Wilkie,
1996) says that the family of images of the sublevel sets
of functions in R[x1, . . . , xN , exp(x1), . . . , exp(xN)] for
some N ∈ N under linear projections is an o-minimal struc-
ture, which allows us to mix exponential functions with
semi-algebraic functions.

3.2. Persistence diagrams of definable parametrized
families of filtrations

Let K be a simplicial complex and Φ: A → R|K| be a
parametrized family of filtrations that is definable in a given
o-minimal structure. If for any x, x′ ∈ A, the preorders
induced by Φ(x) and Φ(x′) on the simplices of K are
the same, i.e., for any σ1, σ2 ∈ K, Φσ1

(x) ≤ Φσ2
(x)

if and only if Φσ1
(x′) ≤ Φσ2

(x′), then the pairs of sim-
plices (σi1 , σj1), . . . , (σip , σjp), and the unpaired simplices
σip+1

, . . . , σip+q
that are computed by the persistence Algo-

rithm 1 are independent of x. Then, ∀x ∈ A, the persistence
diagram D = D(Φ(x)) of Φ(x) is

D =

p⋃
k=1

(Φσik
(x),Φσjk

(x)) ∪
q⋃

k=1

(Φσip+k
(x),+∞),

(1)

where |K| = 2p+ q.

4It is the family of all finite unions and intersections of level
sets and sublevel sets of polynomials (Benedetti & Risler, 1991).

Optimizing persistent homology based functions

Given the lexicographic order on R × (R ∪ {+∞}), the
points of any finite multi-set D ⊆ R× (R∪ {+∞}) with p
points in R2 and q points in R× {+∞} can be ordered in
non-decreasing order, and D can be represented as a vector
in R2p+q. As a consequence, denoting by FiltK the set of
vectors in R|K| that define a filtration on K, the persistence
map Pers : FiltK → R|K| that assigns to each filtration of
K its persistence diagram consists of a permutation of the
coordinates of R|K|. This permutation is constant on the set
of filtrations that define the same preorder on the simplices
of K. This leads to the following statement.

Proposition 3.2. Given a simplicial complex K, the map
Pers : FiltK ⊆ R|K| → R|K| is semi-algebraic, and thus
definable in any o-minimal structure. Moreover, there exists
a semi-algebraic partition of FiltK such that the restriction
of Pers to each element of this partition is a Lipschitz map.

Proof. See Supplementary Material.

Since there exists a finite semi-algebraic partition of FiltK
on which Pers is a locally constant permutation, the subd-
ifferential (see Section 4 for the definition) of Pers is well-
defined and obvious to compute: each coordinate in the
output (i.e., the persistence diagram) is a copy of a coordi-
nate in the input (i.e., the filtration values of the simplices).
This implies that every partial derivative is either 1 or 0. The
output can be seen as a reindexing of the input, and this is
indeed how we implement it in our code, so that automatic
differentiation frameworks (PyTorch, TensorFlow, etc.) can
process the function Pers directly and do not need explicit
gradient formulas—see Section 5. Note that the subdiffer-
ential depends on the arbitrary refinement of the preorder in
Subsection 2.2.

Corollary 3.3. LetK be a simplicial complex and Φ: A→
R|K| be a definable (in a given o-minimal structure)
parametrized family of filtrations. The map Pers ◦ Φ: A→
R|K| is definable.

Note that according to the remark following Proposition 3.2,
if Φ is differentiable, the subdifferential of Pers ◦ Φ can
be easily computed in terms of the partial derivatives of Φ
using, for example, Equation (1).

It also follows from standard finiteness and stratifiability
properties of definable sets and maps that Pers ◦ Φ is differ-
entiable almost everywhere. More precisely:

Proposition 3.4. Let K be a simplicial complex and
Φ: A → R|K| a definable parametrized family of filtra-
tions, where dimA = m. Then there exists a finite defin-
able partition of A, A = S t O1 t · · · t Ok such that
dimS < dimA := m and, for any i = 1, . . . , k, Oi is a
definable manifold of dimension m and Pers ◦ Φ: Oi → D
is differentiable.

3.3. Examples of definable families of filtrations

Vietoris-Rips filtrations. The family of Vietoris-Rips fil-
trations built on top of sets of n points x1, . . . , xn ∈ Rd is
the semi-algebraic parametrized family of filtrations

Φ: A = (Rd)n → R|∆n| = R2n−1,

where ∆n is the simplicial complex made of all the faces
of the (n − 1)-dimensional simplex. It is defined, for any
x = (x1, . . . , xn) ∈ A and any simplex σ ⊆ {1, . . . , n},
by

Φσ(x) = max
i,j∈σ

‖xi − xj‖.

One easily checks that the permutation induced by Pers is
constant on the connected components of the complement
of the union of the subspaces Si,j,k,l = {(x1, . . . , xn) :
‖xi − xj‖ = ‖xk − xl‖} over all the 4-tuples (i, j, k, l)
such that at least 3 of the 4 indices i, j, k, l are distinct. This
example naturally extends to Vietoris-Rips-like filtrations
in the following way. Let A ⊂Mn(R) be the set of n× n
symmetric matrices with non-negative entries and 0 on the
diagonal. This is a semi-algebraic subset of the space of
n-by-n matricesMn(R) ' Rn2

, of dimension m = (n−
1)(n − 2)/2. The map Φ: A → R|∆n| = R2n

defined by
Φσ(M) = maxi,j∈σmi,j for any M = (mi,j)1≤i,j≤n ∈
A, is a semi-algebraic family of filtrations. Note that the set
S of Proposition 3.4 can be chosen to be the set of matrices
with at least 2 entries that are equal.

Weighted Rips filtrations. Given a function f : Rd → R,
the family of weighted Rips filtrations Φ: A = (Rd)n →
R|∆n| = R2n

associated with f is defined, for any x =
(x1, . . . , xn) ∈ A and any simplex σ ⊆ {1, . . . , n}, by

• Φσ(x) = 2f(xj) if σ = [j];

• Φσ(x) = max(2f(xi), 2f(xj), ‖xi − xj‖ + f(xi) +
f(xj)), if σ = [i, j], i 6= j;

• Φσ(x) = max(Φ[i,j](x), i, j ∈ σ) if |σ| ≥ 3.

Since Euclidean distances and max function are semi-
algebraic, this family of filtrations is definable as soon as
the weight function f is definable.

This example easily extends to the case where the weight
function depends on the set of points x = (x1, . . . , xn): the
weight at vertex y is defined by f(x, y) with f : (Rd)n ×
Rd → R. A particular example of such a family is given
by the so-called DTM filtration (Anai et al., 2020), where
f(x, y) is the average distance from y to its k-nearest neigh-
bors in x. In this case, f is semi-algebraic, and the family
of DTM filtrations is semi-algebraic.

Optimizing persistent homology based functions

The o-minimal framework also allows us to consider weight
functions involving exponential functions (Wilkie, 1996),
such as, for instance, kernel-based density estimates with
Gaussian kernels.

Sublevel sets filtrations. Let K be a simplicial complex
with n vertices v1, . . . , vn. Any real-valued function f de-
fined on the vertices of K can be represented as a vec-
tor (f(v1), . . . , f(vn)) ∈ Rn. The family of sublevel
sets filtrations Φ: A = Rn → R|K| of functions on the
vertices of K is defined by Φσ(f) = maxi∈σ fi for any
f = (f1, . . . , fn) ∈ A and any simplex σ ⊆ {1, . . . , n}.
This filtration is also known as the lower-star filtration
of f . The function Φ is obviously semi-algebraic, and
for Proposition 3.4 to hold it is sufficient to choose S =⋃

1≤i<j≤n{f = (f1, . . . , fn) ∈ A : fi = fj}.

4. Minimization of functions of persistence
Using the same notation as in the previous section, recall that
the space of persistence diagrams associated with a filtration
of K is identified with R|K| = (R2)p × Rq, where each
point in the p copies of R2 is a point with finite coordinates
in the persistence diagram and each coordinate in Rq is the
x-coordinate of a point with infinite persistence.

Definition 4.1. A function E : R|K| = (R2)p × Rq →
R is said to be a function of persistence if it is invariant
to permutations of the points of the persistence diagram,
i.e., for any (p1, . . . , pp, e1, . . . , eq) ∈ (R2)p × Rq and any
permutations α, β of the sets {1, . . . , p} and {1, . . . , q},
respectively, one has

E(pα(1), . . . , pα(p), eβ(1), . . . , eβ(q))

= E(p1, . . . , pp, e1, . . . , eq).

It follows from this permutation invariance and Proposi-
tion 3.2 that if a function of persistence E : R2p+q =
R|K| → R is locally Lipschitz, then the composition
E ◦ Pers is also locally Lipschitz. Moreover, if E is
definable in an o-minimal structure, then for any defin-
able parametrized family of filtrations Φ: A ⊆ Rd →
R|K|, the composition L = E ◦ Pers ◦ Φ: A → R is
also definable. As a consequence, L has a well-defined
Clarke subdifferential ∂L(z) := Conv{limzi→z∇L(zi) :
L is differentiable at zi}, since it is differentiable almost
everywhere thanks to Proposition 3.4.

4.1. Stochastic gradient descent

To minimize L, we consider the differential inclusion

dz

dt
∈ −∂L(z(t)) for almost every t,

whose solutions z(t) are the trajectories of the subgradient
of L. They can be approximated by the standard stochastic

subgradient algorithm given by the iterations of

xk+1 = xk − αk(yk + ζk), yk ∈ ∂L(xk), (2)

where the sequence (αk)k is the learning rate and (ζk)k is
a sequence of random variables. In (Davis et al., 2020),
the authors prove that under mild technical conditions on
these two sequences, the stochastic subgradient algorithm
converges almost surely to a critical point of L as soon as L
is locally Lipschitz.

More precisely, consider the following assumptions, which
correspond to Assumption C in (Davis et al., 2020):

1. for any k, αk ≥ 0,
∑∞
k=1 αk = +∞ and,

∑∞
k=1 α

2
k <

+∞;
2. supk ‖xk‖ < +∞, almost surely;
3. denoting by Fk the increasing sequence of σ-algebras
Fk = σ(xj , yj , ζj , j < k), there exists a function
p : Rd → R which is bounded on bounded sets such
that almost surely, for any k,

E[ζk|Fk] = 0 and E[‖ζk‖2|Fk] < p(xk).

These assumptions are standard and not very restrictive.
Assumption 1 depends on the choice of the learning rate
by the user and is easily satisfied, e.g., taking αk = 1/k.
Assumption 2 is usually easy to check for most of the func-
tions L encountered in practice. Assumption 3 is a standard
condition, which states that, conditioned upon the past, the
variables ζk have zero mean and controlled moments; e.g.,
this can be achieved by taking a sequence of independent
and centered variables with bounded variance that are also
independent of the xk’s and yk’s.

Under these assumptions, the following result is an immedi-
ate consequence of Corollary 5.9 in (Davis et al., 2020).

Theorem 4.2. LetK be a simplicial complex, A ⊆ Rd, and
Φ: A→ R|K| a parametrized family of filtrations of K that
is definable in an o-minimal structure. LetE : R|K| → R be
a definable function of persistence such thatL = E◦Pers◦Φ
is locally Lipschitz. Then, under the above assumptions 1, 2,
and 3, almost surely the limit points of the sequence (xk)k
obtained from the iterations of Equation (2) are critical
points of L and the sequence (L(xk))k converges.

The above theorem provides explicit conditions ensuring the
convergence of stochastic subgradient descent for functions
of persistence. The main criterion to be checked is the lo-
cally Lipschitz condition for L. From the remark following
Definition 4.1, it is sufficient to check that Φ and E are
Lipschitz. Regarding Φ, it is obvious for the examples of
Subsection 3.3. However, this is not the case for some other
examples, such as the so-called alpha-complex filtration
that can be made locally Lipschitz using a simple technical
trick—see Supplementary Material.

Optimizing persistent homology based functions

4.2. Examples of definable locally Lipschitz functions
of persistence

Total persistence. LetE be the sum of the distances to the
diagonal of each point of a persistence diagram with finite
coordinates: given a persistence diagram represented as a
vector in R2p+q , D = ((b1, d1), . . . , (bp, dp), e1, . . . , eq),

E(D) =

p∑
i=1

|di − bi|.

Then E is obviously semi-algebraic, and thus definable in
any o-minimal structure. It is also Lipschitz.

Wasserstein and bottleneck distance Given a persis-
tence diagram D, and another target persistence diagram
D∗, the bottleneck distance between the regular part of D
and that of D∗ (see Definition 2.2) is given by

E(D) = dB(Dreg, D
∗
reg) = min

m
max

(p,p∗)∈m
||p− p∗||∞,

where m is a partial matching between Dreg and D∗reg, i.e.,
a subset of (Dreg ∪∆) × (D∗reg ∪∆), with ∆ = {(x, x) :
x ∈ R} being the diagonal in R2, such that every point of
Dreg \ ∆ and D∗reg \ ∆ appears exactly once in m. One
can easily check that the map E is semi-algebraic, and thus
definable in any o-minimal structure. It is also Lipschitz.
This property also extends to the case where the bottleneck
distance is replaced by the so-called Wasserstein distance
Wp with p ∈ N (Cohen-Steiner et al., 2010), or its approx-
imation, the Sliced Wasserstein distance (Carrière et al.,
2017). Optimization of these functions and other functions
of bottleneck and Wasserstein distances have been used, for
example, in shape matching (Poulenard et al., 2018). See
also the example on 3D shape in Supplementary Material.

Persistence landscapes (Bubenik, 2015) To any given
point p = (x, y) ∈ R2 with x = b+d

2 and y = d−b
2 , asso-

ciate the function Λp : R→ R defined by

Λp(t) =

t− b (t ∈ [b, b+d2])

d− t (t ∈ (b+d2 , d])

0 (otherwise).

Given a persistence diagram D, the persistence landscape
of D is a summary of the arrangement of the graphs of the
functions Λp, p ∈ D:

λD(k, t) = k -max
p∈D

Λp(t), t ∈ [0, T], k ∈ Z+,

where k -max is the kth largest value in the set, or 0
when the set contains less than k points. Given a posi-
tive integer k, a finite set {t1, . . . , tn} ⊂ R, and a sim-
plicial complex K, the map that associates the vector

(λD(k, t1), . . . , λD(k, tn)) to each persistence diagram D
of a filtration of K is Lipschitz (Bubenik, 2015) and clearly
semi-algebraic.

Other classical ways to vectorize persistence diagrams are
the linear representations (Chazal & Divol, 2018) which
are also definable in o-minimal structures, such as, e.g., per-
sistence images (Adams et al., 2017)—see Supplementary
Material. In (Divol & Lacombe, 2020), the authors give
explicit conditions for such representations to be locally
Lipschitz.

5. Numerical illustrations
We showed in Sections 3 and 4 that the usual stochastic
gradient descent procedure of Equation (2) enjoys some con-
vergence properties for persistence-based functions. This
means in particular that the algorithms available in standard
libraries such as TensorFlow and PyTorch, which imple-
ment stochastic gradient descent (among other optimization
methods), can be leveraged and used as is for differentiat-
ing persistence diagrams, while still ensuring convergence.
The purpose of this section is to illustrate that our code,
which implements the general gradient defined in Proposi-
tion 3.4 for persistence-based functions, and which is based
on Gudhi5 and TensorFlow, can be readily used for studying
several different persistence optimization tasks. Along the
way, we also suggest regularization terms that one can add
to topological losses in order to avoid unwanted behaviors.
We only present a few applications due to lack of space, and
we refer the interested reader to Supplementary Material
and the publicly available code for more examples.

Point cloud optimization. A toy example in persistence
optimization is to modify the positions of the points in
a point cloud so that its homology is maximized (Brüel-
Gabrielsson et al., 2020; Gameiro et al., 2016). In this ex-
periment, we start with a point cloud X sampled uniformly
from the unit square S = [0, 1]2, and then optimize the
point coordinates so that the loss L(X) = P (X) + T (X)
is minimized. Here T (X) := −

∑
p∈D ‖p − π∆(p)‖2∞

is a topological penalty, D is the 1-dimensional persis-
tence diagram associated with the Vietoris-Rips filtration of
X , π∆ stands for the projection onto the diagonal ∆, and
P (X) :=

∑
x∈X d(x, S) is a penalty term ensuring that the

point coordinates stay in the unit square. The topological
penalty T (X) was used in (Brüel-Gabrielsson et al., 2020),
and ensures that points in the persistence diagram D are as
far away from the diagonal as possible, which in turns means
that the corresponding holes in the point cloud are as large
as possible. However, we point out that if one uses T (X)
alone without the penalty P (X), as in (Brüel-Gabrielsson
et al., 2020), then convergence is very difficult to reach since

5See https://gudhi.inria.fr/

https://gudhi.inria.fr/

Optimizing persistent homology based functions

inflating the point cloud with dilations can make the topo-
logical penalty T (X) arbitrarily small. In contrast, using
our second term P (X) in addition to T (X) constrains the
points to stay in a fixed region S of the Euclidean plane. An-
other effect of the penalty P (X) is to flatten the boundary
of the created holes along the boundary of S. See Figure 1
for an illustration.

Figure 1. Illustration of point cloud optimization. We initialize
with a random point cloud (upper left), and we show the optimized
point cloud (upper right) when optimization is done with topolog-
ical and regularization losses. We also show the convergence of
the total loss (lower right). When only topological loss is used,
the optimized point cloud inflated some loops to minimize the loss
(lower left). Note how the coordinates are now much larger.

Dimensionality reduction. In this experiment, we show
how our general setup can be used to reduce dimension with
the so-called topological autoencoders introduced in (Moor
et al., 2020). In this family of autoencoders, a topological
loss T (X,Z) between the input space X and latent space Z
is used in addition to the usual loss D(X,Z) =

∑
i ‖xi −

zi‖22. This topological loss was computed in (Moor et al.,
2020) by (i) computing the permutations induced by the
persistence map (see Subsection 3.2) of the Vietoris-Rips
complexes built from the input space X and the latent space
Z, (ii) computing, for each simplex in these permutations,
the corresponding edge that induces its filtration value, and
(iii) measuring, for all those edges, the differences between
the edge lengths in X and the same edge lengths in Z. To
sum up, the loss function is defined as

L(X,Z) = ‖MX [πX]−MZ [πX]‖22
+ ‖MX [πZ]−MZ [πZ]‖22,

where MX ,MZ are the distance matrices of the input and
the latent spaces respectively, and where πX , πZ denote
the indices of the entries in MX ,MZ that are picked by

the permutation induced by the persistence map to gen-
erate the Vietoris-Rips persistence diagrams of X and Z.
Note that L is obviously semi-algebraic and thus fits in our
framework. Moreover, in our setup we can directly use the
bottleneck and Wasserstein distances between the Vietoris-
Rips persistence diagrams of the input and latent spaces as
the topological loss. This is relevant since in (Moor et al.,
2020) the authors pointed out that looking at homology in
dimension larger than 1 was not adding anything for their
loss, and stuck to 0-dimensional homology. We show in Fig-
ure 2 an example in which 1-dimensional homology is also
important, that is, a point cloud in R3 that is comprised of
two nested circles, which is then non-linearly embedded in
in R9 by converting each point p = (x, y, z) into the expo-
nential of the 3x3 anti-symmetric matrix whose coefficients
are x, y and z. We then train an autoencoder made of four
fully-connected layers with 32 neurons and ReLU activa-
tions, using the usual loss, the usual plus the topological loss
described above, and the usual plus a topological loss com-
puted as L(X,Z) = W1(DX , DZ), i.e., the 1-Wasserstein
distance between the 1-dimensional Vietoris-Rips persis-
tence diagrams of the input and latent spaces. It can be seen
from Figure 2 that autoencoders without the Wasserstein
loss cannot embed the point cloud in the plane perfectly,
while using the Wasserstein loss between the 1-dimensional
Vietoris-Rips persistence diagrams improves on the result
by separating better the two intrinsic circles.

Figure 2. Example of dimension reduction with autoencoders. An
initial point cloud made of two circles (upper left) is embedded in
R9, and then fed to autoencoders that either do not use topology, or
only use the distances induced by the persistence maps in dimen-
sion 0. The resulting embeddings (lower left, we only show one
but the two are similar) cannot separate the circles, while using
1-dimensional topology induces a better embedding (lower right).
Convergence of the loss function is also provided (upper right).

Filter selection. In this experiment, we address a very
common issue in Topological Data Analysis, filter selection.
Indeed, when computing persistence diagrams in order to

Optimizing persistent homology based functions

Dataset Baseline Before After Difference
vs01 100.0 61.3 99.0 +37.6
vs02 99.4 98.8 97.2 -1.6
vs06 99.4 87.3 98.2 +10.9
vs09 99.4 86.8 98.3 +11.5
vs16 99.7 89.0 97.3 +8.3
vs19 99.6 84.8 98.0 +13.2
vs24 99.4 98.7 98.7 0.0
vs25 99.4 80.6 97.2 +16.6

Dataset Baseline Before After Difference
vs26 99.7 98.8 98.2 -0.6
vs28 99.1 96.8 96.8 0.0
vs29 99.1 91.6 98.6 +7.0
vs34 99.8 99.4 99.1 -0.3
vs36 99.7 99.3 99.3 -0.1
vs37 98.9 94.9 97.5 +2.6
vs57 99.7 90.5 97.2 +6.7
vs79 99.1 85.3 96.9 +11.5

Table 1. Accuracy scores obtained from persistence diagrams before and after performing our optimization over the image filtration. Note
that the difference between the scores is almost always positive, i.e., there is almost always improvement after our optimization process.
Scores do not have standard deviations since we use the train/test splits of the mnist.load data function in TensorFlow 2.

generate topological features from a data set for further
data analysis, the filter function that is being used to filter
the data set always has to be specified a priori. Here, we
provide a very simple heuristic to tune it if it comes from
a parametrized family F of filters and if the learning task
is supervised, which is the case in, e.g., classification. We
simply start from a random guess in F and then optimize
the following criterion, inspired from (Zhao & Wang, 2019):

L(f) =

N∑
l=1

∑
i,j:yi=yj=lWp(Di(f), Dj(f))∑
i,j:yi=l

Wp(Di(f), Dj(f))
, (3)

which amounts to minimizing the distances between persis-
tence diagrams that share the same label, and increasing the
distances between persistence diagrams with different la-
bels. Note that the batch size that we use in this optimization
process has a big influence on the computation time, since
the larger the batch size, the more Wasserstein distances we
will have to compute in our cost. To cope with this issue, we
actually used the Sliced Wasserstein distance SW (Carrière
et al., 2017) instead of Wp, which, since it is computed with
projections onto lines, can be defined entirely with matrix
operations that are usually available in any library with au-
todifferentiation. This drastically improves on computation
time, while remaining in our framework since the Sliced
Wasserstein distance is also a semi-algebraic function.

We classify images from the MNIST data set. We assign
values to the pixels using a height function given by a direc-
tion (parametrized by an angle in the Euclidean plane), and
we use 0-dimensional persistence diagrams computed after
optimizing this direction using loss (3). See Figure 3.

We then compute the accuracy scores obtained with a ran-
dom forest classifier for the (binary) classification tasks
digit x vs. digit y for all pairs 0 ≤ x, y ≤ 9, using the first
five persistence landscapes with resolution 100 associated
with the persistence diagrams before and after optimization.
Even though our primary goal is to demonstrate that op-
timizing the filter almost always lead to an improvement,
we also add a baseline score obtained by training a random

Figure 3. Example of images and directions inducing different
height functions. Different directions generate different height
functions and filtrations and thus different persistence diagrams.
In this experiment, we optimize over the direction so that the
persistence diagrams are the most efficient for image classification.

forest classifier directly on the images for proper compar-
ison. Some of the scores are displayed in Table 1 (the full
table can be found in Supplementary Material). Interest-
ingly, when starting with a random direction, scores can be
much worse than the baseline, but our optimization process
is then able to select the best direction that induces the best
persistence diagrams (with respect to the classification task)
without prior knowledge on the data set.

6. Conclusion
In this article we introduced a theoretical framework that
encompasses most of the previous methods for optimiz-
ing topology-based functions. In particular, we obtained
convergence results for very general classes of functions
with topological flavor computed with persistence theory,
and provided corresponding code that one can use to repro-
duce previously introduced topological optimization tasks.
For future work, we are planning to further investigate
tasks related to classifier regularization in ML (Chen et al.,
2019), and to improve on computation time using, e.g., vine-
yards (Cohen-Steiner et al., 2006).

Optimizing persistent homology based functions

References
Adams, H., Emerson, T., Kirby, M., Neville, R., Peterson,

C., Shipman, P., Chepushtanova, S., Hanson, E., Motta,
F., and Ziegelmeier, L. Persistence images: A stable
vector representation of persistent homology. Journal of
Machine Learning Research, 18(1):218–252, 2017.

Anai, H., Chazal, F., Glisse, M., Ike, Y., Inakoshi, H., Tinar-
rage, R., and Umeda, Y. DTM-based Filtrations. In
Topological Data Analysis, pp. 33–66. Springer, 2020.

Benedetti, R. and Risler, J.-J. Real algebraic and semialge-
braic sets. Hermann, 1991.

Boissonnat, J.-D., Chazal, F., and Yvinec, M. Geometric
and topological inference, volume 57. Cambridge Uni-
versity Press, 2018.

Brüel-Gabrielsson, R., Ganapathi-Subramanian, V., Skraba,
P., and Guibas, L. J. Topology-aware surface reconstruc-
tion for point clouds. In Computer Graphics Forum,
volume 39, pp. 197–207. Wiley Online Library, 2020.

Brüel-Gabrielsson, R., Nelson, B., Dwaraknath, A., Skraba,
P., Guibas, L., and Carlsson, G. A topology layer for
machine learning. In 23rd International Conference on
Artificial Intelligence and Statistics (AISTATS 2020), pp.
1553–1563. PMLR, 2020.

Bubenik, P. Statistical topological data analysis using persis-
tence landscapes. Journal of Machine Learning Research,
16(1):77–102, 2015.

Carlsson, G. and Gabrielsson, R. B. Topological approaches
to deep learning. In Topological Data Analysis, pp. 119–
146. Springer, 2020.

Carrière, M., Cuturi, M., and Oudot, S. Sliced Wasser-
stein kernel for persistence diagrams. In 34th Interna-
tional Conference on Machine Learning (ICML 2017),
volume 70, pp. 664–673. JMLR.org, 2017.

Carrière, M., Chazal, F., Ike, Y., Lacombe, T., Royer, M.,
and Umeda, Y. PersLay: a neural network layer for persis-
tence diagrams and new graph topological signatures. In
23rd International Conference on Artificial Intelligence
and Statistics (AISTATS 2020), pp. 2786–2796. PMLR,
2020.

Chazal, F. and Divol, V. The density of expected persis-
tence diagrams and its kernel based estimation. In 34th
International Symposium on Computational Geometry
(SoCG 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, 2018.

Chen, C., Ni, X., Bai, Q., and Wang, Y. A topological
regularizer for classifiers via persistent homology. In

22nd International Conference on Artificial Intelligence
and Statistics (AISTATS 2019), volume 89, pp. 2573–
2582. PMLR, 2019.

Clough, J., Byrne, N., Oksuz, I., Zimmer, V. A., Schn-
abel, J. A., and King, A. A topological loss function for
deep-learning based image segmentation using persistent
homology. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2020.

Cohen-Steiner, D., Edelsbrunner, H., and Morozov, D. Vines
and vineyards by updating persistence in linear time. In
Amenta, N. and Cheong, O. (eds.), 22nd Annual Sym-
posium on Computational Geometry (SoCG 2006), pp.
119–126. Association for Computing Machinery, 2006.

Cohen-Steiner, D., Edelsbrunner, H., Harer, J., and Mileyko,
Y. Lipschitz functions have Lp-stable persistence. Foun-
dations of computational mathematics, 10(2):127–139,
2010.

Coste, M. An introduction to o-minimal geometry. Istituti
editoriali e poligrafici internazionali Pisa, 2000.

Davis, D., Drusvyatskiy, D., Kakade, S. M., and Lee, J. D.
Stochastic subgradient method converges on tame func-
tions. Foundations of Computational Mathematics, 20(1):
119–154, 2020.

Dindin, M., Umeda, Y., and Chazal, F. Topological data
analysis for arrhythmia detection through modular neural
networks. In Canadian Conference on Artificial Intelli-
gence, pp. 177–188. Springer, 2020.

Divol, V. and Lacombe, T. Understanding the topology and
the geometry of the persistence diagram space via optimal
partial transport. Journal of Applied and Computational
Topology, 5:1–53, 2020.

Edelsbrunner, H. and Harer, J. Computational topology: an
introduction. American Mathematical Soc., 2010.

Gabrielsson, R. B. and Carlsson, G. Exposition and interpre-
tation of the topology of neural networks. In 2019 18th
IEEE International Conference On Machine Learning
And Applications (ICMLA), pp. 1069–1076. IEEE, 2019.

Gameiro, M., Hiraoka, Y., and Obayashi, I. Continuation
of point clouds via persistence diagrams. Physica D:
Nonlinear Phenomena, 334:118–132, 2016.

Hofer, C., Kwitt, R., Niethammer, M., and Uhl, A. Deep
learning with topological signatures. In Advances in
Neural Information Processing Systems 30 (NIPS 2017),
pp. 1634–1644. Curran Associates, Inc., 2017.

Hofer, C., Kwitt, R., Niethammer, M., and Dixit, M.
Connectivity-optimized representation learning via per-
sistent homology. In 36th International Conference on

Optimizing persistent homology based functions

Machine Learning (ICML 2019), pp. 2751–2760. PMLR,
2019.

Hofer, C., Graf, F., Niethammer, M., and Kwitt, R. Topo-
logically densified distributions. In 37th International
Conference on Machine Learning (ICML 2020), volume
119, pp. 4304–4313. PMLR, 2020.

Kim, K., Kim, J., Zaheer, M., Kim, J., Chazal, F., and
Wasserman, L. Efficient topological layer based on per-
sistent landscapes. In Advances in Neural Information
Processing Systems 33 (NeurIPS 2020), 2020.

Leygonie, J., Oudot, S., and Tillmann, U. A framework for
differential calculus on persistence barcodes. Foundations
of Computational Mathematics (to appear), 2021.

Moor, M., Horn, M., Rieck, B., and Borgwardt, K. Topolog-
ical autoencoders. In 37th International Conference on
Machine Learning (ICML 2020), volume 119, pp. 7045–
7054, 2020.

Poulenard, A., Skraba, P., and Ovsjanikov, M. Topological
function optimization for continuous shape matching. In
Computer Graphics Forum, volume 37, pp. 13–25. Wiley
Online Library, 2018.

Rieck, B., Togninalli, M., Bock, C., Moor, M., Horn,
M., Gumbsch, T., and Borgwardt, K. Neural persis-
tence: a complexity measure for deep neural networks
using algebraic topology. In 7th International Confer-
ence on Learning Representations (ICLR 2019). OpenRe-
views.net, 2019.

Solomon, Y., Wagner, A., and Bendich, P. A fast and robust
method for global topological functional optimization. In
24th International Conference on Artificial Intelligence
and Statistics (AISTATS 2021), volume 130, pp. 109–117.
PMLR, 2021.

Umeda, Y. Time series classification via topological data
analysis. Information and Media Technologies, 12:228–
239, 2017.

van den Dries, L. and Miller, C. Geometric categories and
o-minimal structures. Duke Mathematical Journal, 84(2):
497–540, 1996.

Wang, F., Liu, H., Samaras, D., and Chen, C. Topogan:
A topology-aware generative adversarial network. In
European Conference on Computer Vision (ECCV), 2020.

Wilkie, A. J. Model completeness results for expansions
of the ordered field of real numbers by restricted pfaffian
functions and the exponential function. Journal of the
American Mathematical Society, 9(4):1051–1094, 1996.

Zhao, Q. and Wang, Y. Learning metrics for persistence-
based summaries and applications for graph classification.
In Advances in Neural Information Processing Systems
32 (NeurIPS 2019), pp. 9855–9866. Curran Associates,
Inc., 2019.

