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A. Proofs Omitted from Section 4
In this section, we provide the complete proof of the hardness result in Theorem 1. This is based on a reduction from the
promise-problem version of LABEL-COVER, which we define next.

The following is the formal definition of an instance of the LABEL-COVER problem.

Definition 3 (LABEL-COVER instance). An instance of LABEL-COVER consists of a tuple (G,Σ,Π), where:

• G := (U, V,E) is a bipartite graph defined by two disjoint sets of nodes U and V , connected by the edges inE ⊆ U×V ,
which are such that all the nodes in U have the same degree;

• Σ is a finite set of labels; and

• Π := {Πe : Σ→ Σ | e ∈ E} is a finite set of edge constraints.

Definition 4 (Labeling). Given an instance (G,Σ,Π) of LABEL-COVER, a labeling of the graph G is a mapping
π : U ∪ V → Σ that assigns a label to each vertex of G such that all the edge constraints are satisfied. Formally, a labeling
π satisfies the constraint for an edge e = (u, v) ∈ E if π(v) = Πe(π(u)).

The classical LABEL-COVER problem is the search problem of finding a valid labeling for a LABEL-COVER instance
given as input. In the following, we consider a different version of the problem, which is the promise problem associated
with LABEL-COVER instances, defined as follows.

Definition 5 (GAP-LABEL-COVERc,b). For any pair of numbers 0 < b < c < 1, we define GAP-LABEL-COVERc,b as
the following promise problem.

• Input: An instance (G,Σ,Π) of LABEL-COVER such that either one of the following is true:

– there exists a labeling π : U ∪ V → Σ that satisfies at least a fraction c of the edge constraints in Π;
– any labeling π : U ∪ V → Σ satisfies less than a fraction b of the edge constraints in Π.

• Output: Determine which of the above two cases hold.

In order to prove Theorem 1, we make use of the following result due to Raz (1998) and Arora et al. (1998).

Theorem 8 (Raz (1998); Arora et al. (1998)). For any ε > 0, there exists a constant kε ∈ N that depends on ε such that the
promise problem GAP-LABEL-COVER1,ε restricted to inputs (G,Σ,Π) with |Σ| = kε is NP-hard.

Next, we provide the complete proof of Theorem 1.

Theorem 1. For every 0 < α ≤ 1, it is NP-hard to compute an α-approximate solution to BAYESIAN-OPT-SIGNAL,
even when the sender’s utility is such that, for every θ ∈ Θ, fθ(R) = 1 iff |R| ≥ 2, while fθ(R) = 0 otherwise.

Proof. We provide a reduction from GAP-LABEL-COVER1,ε. Our reduction maps an instance (G,Σ,Π) of LABEL-
COVER to an instance of BAYESIAN-OPT-SIGNAL with the following properties:

• (completeness) if the LABEL-COVER instance admits a labeling satisfying all the edge constraints (recall c = 1), then
the BAYESIAN-OPT-SIGNAL instance has a signaling scheme with sender’s expected utility≥

(
1− ε

|Σ|

)
1
|Σ| ≥

1
2|Σ| ;

• (soundness) if the LABEL-COVER instance is such that any labeling satisfies at most a fraction ε of the edge constraints,
then an optimal signaling scheme in the BAYESIAN-OPT-SIGNAL instance has sender’s expected utility at most 2ε

|Σ| .

By Theorem 8, for any ε > 0 there exists a constant kε ∈ N that depends on ε such that GAP-LABEL-COVER1,ε restricted
to inputs (G,Σ,Π) with |Σ| = kε is NP-hard. Given 0 < α ≤ 1, by setting ε = α

4 and noticing that 2ε/|Σ|
1/2|Σ| = 4ε = α, we

can conclude that it is NP-hard to compute an α-approximate solution to BAYESIAN-OPT-SIGNAL.
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Construction Given an instance (G,Σ,Π) of LABEL-COVER defined over a bipartite graph G := (U, V,E), we build
an instance of BAYESIAN-OPT-SIGNAL as follows.

• For each label σ ∈ Σ, there is a corresponding state of nature θσ ∈ Θ. Moreover, there is an additional state θ0 ∈ Θ.
Thus, the total number of possible states is d = |Σ|+ 1.

• The prior distribution is µ ∈ int(∆Θ) such that µθσ = ε
|Σ|2 for every θσ ∈ Θ and µθ0 = 1− ε

|Σ| .

• For every vertex v ∈ U ∪ V of the graph G, there is a receiver rv ∈ R. Thus, n = |U ∪ V |.

• Each receiver rv ∈ R has mrv = |Σ|+ 1 possible types. The set of types of receiver rv is Krv = {kσ | σ ∈ Σ}∪{k0}.

• A receiver rv ∈ R of type kσ ∈ Krv has utility such that urv,kσθσ
= 1

2 and urv,kσθσ′
= −1 for all θσ′ ∈ Θ : θσ′ 6= θσ,

while urv,kσθ0
= − ε

2|Σ|2 . Moreover, a receiver rv ∈ R of type k0 has utility such that urv,k0θ = −1 for all θ ∈ Θ.

• The sender’s utility is such that, for every θ ∈ Θ, the function fθ : 2R → [0, 1] satisfies fθ(R) = 1 if and only if
R ⊆ R : |R| ≥ 2, while fθ(R) = 0 otherwise.

• The subset K ⊆ K of type profiles that can occur with positive probability is K := {kuv,σ | e = (u, v) ∈ E, σ ∈ Σ},
where, for every edge e = (u, v) ∈ E and label σ ∈ Σ, the type profile kuv,σ ∈ K is such that kuv,σru = kσ , kuv,σrv = kσ′

with σ′ = Πe(u), and kuv,σrv′
= k0 for every rv′ ∈ R : rv′ /∈ {ru, rv}.

• The probability distribution λ ∈ int(∆K) is such that λk = 1
|E||Σ| for every k ∈ K.

Notice that, in the BAYESIAN-OPT-SIGNAL instances used for the reduction, the sender’s payoff is 1 if and only if at least
two receivers play action a1, while it is 0 otherwise. Let us also recall that direct signals for a receiver rv ∈ R are defined by
the set Srv := 2Krv , with a signal being represented as the set of receiver’s types that are recommended to play action a1.

Completeness Let π : U ∪ V → Σ be a labeling of the graph G that satisfies all the edge constraints. We define a
corresponding direct signaling scheme φ : Θ→ ∆S as follows. For any label σ ∈ Σ, let sσ ∈ S be a signal profile such
that the signal sent to receiver rv ∈ R is sσrv = {kσ}, i.e., only a receiver of the type kσ is told to play a1, while all the other
types are recommended to play a0. Moreover, let sπ ∈ S be a signal profile in which the signal sent to receiver rv ∈ R is
sπrv = {kσ} with σ ∈ Σ : σ = π(v), i.e., each receiver rv is told to play action a1 only if her/his type is kσ for the label
σ assigned to vertex v by the labeling π, otherwise she/he is recommended to play a0. Then, we define φθσ (sσ) = 1 for
every state of nature θσ ∈ Θ, while φθ0(sπ) = 1. Notice that the signaling scheme φ is deterministic, since each state of
nature is mapped to only one signal profile (with probability one). As a first step, we prove that the signaling scheme φ is
persuasive. Let us fix a receiver rv ∈ R. After receiving a signal s = {kσ} ∈ Srv with σ ∈ Σ : σ 6= π(v), by definition of
φ, the receiver’s posterior belief is such that state of nature θσ is assigned probability one. Thus, if the receiver has type
kσ, then she/he is incentivized to play action a1, since urv,kσθσ

= 1
2 > 0 (recall that urv,kσθσ

is the utility different “action a1

minus action a0” when the state is θσ). Instead, if the receiver has type k ∈ Krv : k 6= kσ, then she/he is incentivized to
play action a0, since either k = k0 and urv,k0θσ

= −1 < 0 or k = kσ′ with σ′ ∈ Σ : σ′ 6= σ and urv,kσ′θσ
= −1 < 0. After

receiving a signal s = {kσ} ∈ Srv with σ = π(v), the receiver’s posterior belief is such that the states of nature θσ and θ0

are assigned probabilities proportional to their corresponding prior probabilities, respectively µθσ and µθ0 (she/he cannot
tell whether sσ or sπ has been selected by the sender). Thus, if the receiver has type kσ , then she/he is incentivized to play
action a1, since her expected utility difference “action a1 minus action a0” is the following:

µθσ
µθσ + µθ0

urv,kσθσ
+

µθ0
µθσ + µθ0

urv,kσθ0
=

1

µθσ + µθ0

[
ε

|Σ|2
1

2
−
(

1− ε

|Σ|

)
ε

2|Σ|2

]
>

1

µθσ + µθ0

[
ε

2|Σ|2
− ε

2|Σ|2

]
= 0.

If the receiver has a type different from kσ, simple arguments show that the expected utility difference is negative,
incentivizing action a0. This proves that the signaling scheme φ is persuasive. Next, we bound the sender’s expected utility
in φ. Notice that, when the state of nature is θ0, if the receivers’ type profile is kuv,σ ∈ K with σ = π(u) for some edge
e = (u, v) ∈ E, then both receivers ru and rv play action a1. This is readily proved since kuv,σru = kσ and kuv,σrv = kσ′

with σ = π(u) and σ′ = π(v) (recall that π(v) = Πe(u) as φ satisfies all the edge constraints), and, thus, both ru and rv
are recommended to play a1 when the state is θ0. As a result, under signaling scheme φ, when the receivers’ type profile
is kuv,σ ∈ K, then the sender’s resulting payoff is one (recall the definition of functions fθ). By recalling that each type
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profile kuv,σ ∈ K with σ = π(u) (for each edge e = (u, v) ∈ E) occurs with probability λkuv,σ = 1
|E||Σ| , we can lower

bound the sender’s expected utility (see the objective of Problem (1)) as follows:

∑
k∈K

λk
∑
θ∈Θ

µθ
∑
s∈S

φθ(s)fθ
(
Rks
)
≥ µθ0

∑
kuv,σ∈K:σ=π(u)

λkuv,σ = µθ0
1

|Σ|
=

(
1− ε

|Σ|

)
1

|Σ|
.

Soundness By contradiction, suppose that there exists a direct and persuasive signaling scheme φ : Θ→ ∆S that provides
the sender with an expected utility greater than 2ε

|Σ| . Since the sender can extract an expected utility at most of ε
|Σ| from

states of nature θ ∈ Θ with θ 6= θ0 (as
∑
θ∈Θ:θ 6=θ0 µθ = ε

|Σ| and the maximum value of functions fθ is one), then it must be
the case that the expected utility contribution due to state θ0 is greater than ε

|Σ| . Let us consider the distribution over signal
profiles φθ0 ∈ ∆S induced by state of nature θ0. We prove that, for each signal profile s ∈ S such that φθ0(s) > 0 and each
receiver rv ∈ R, it must hold that |sr| ≤ 1, i.e., at most one type of receiver rv is recommended to play a1. First, notice that
a receiver of type k0 cannot be incentivized to play a1, since urv,k0θ = −1 for all θ ∈ Θ. By contradiction, suppose that
there are two receiver’s types kσ, kσ′ ∈ Krv with kσ 6= kσ′ such that kσ, kσ′ ∈ sr (i.e., they are both recommended to play
a1). By letting ξ ∈ ∆Θ be the posterior belief of receiver rv induced by sr, for type kσ it must be the case that:

ξθσu
rv,kσ
θσ

+
∑

θσ′′∈Θ:θσ′′ 6=θσ

ξθσ′′u
rv,kσ
θσ′′

+ ξθ0u
rv,kσ
θ0

=
1

2
ξθσ −

∑
θσ′′∈Θ:θσ′′ 6=θσ

ξθσ′′ −
ε

2|Σ|2
ξθ0 > 0,

since the signaling scheme is persuasive, and, thus, a receiver of type kσ must be incentivized to play action a1. This
implies that ξθσ > 2

∑
θσ′′∈Θ:θσ′′ 6=θσ

ξθσ′′ ≥ 2ξθσ′ . Analogous arguments for type kσ′ imply that ξθσ′ > 2ξθσ , reaching a
contradiction. This shows that, for each s ∈ S such that φθ0(s) > 0 and each rv ∈ R, it must be the case that |sr| ≤ 1.
Next, we provide the last contradiction proving the result. Let us recall that, by assumption, the sender’s expected utility
contribution due to θ0 is

∑
k∈K λk

∑
s∈S φθ0(s)fθ0

(
Rks
)
≥ ε
|Σ| . By an averaging argument, this implies that there must

exist a signal profile s ∈ S such that φθ0(s) > 0 and
∑
k∈K λkfθ0

(
Rks
)
≥ ε
|Σ| . Let s ∈ S be such signal profile. Let us

define a corresponding labeling π : U ∪ V → Σ of the graph G such that, for every vertex v ∈ U ∪ V , it holds π(v) = σ,
where σ ∈ Σ is the label corresponding to the unique type kσ of receiver rv that is recommended to play action a1 under s
(if any, otherwise any label is fine). Since

∑
k∈K λkfθ0

(
Rks
)
≥ ε
|Σ| and it holds λk = 1

|E||Σ| and fθ0
(
Rks
)
∈ {0, 1} for

every k ∈ K, it must be the case that there are at least ε|E| type profiles k ∈ K such that fθ0
(
Rks
)

= 1. Since a receiver of
type k0 cannot be incentivized to play action a1, the value of fθ0

(
Rks
)

can be one only if there are at least two receivers
with types different from k0 that play action a1. Thus, it must hold that fθ0

(
Rks
)

= 0 for all the type profiles kuv,σ ∈ K
such that σ 6= π(u) (as kuv,σru would be equal to kσ with σ 6= π(u) and kσ /∈ sru). For the type profiles kuv,σ ∈ K such
that σ = π(u) (one per edge e = (u, v) ∈ E of the graph G), the value of fθ0

(
Rks
)

is one if and only if π(v) = Πe(u), so
that both receivers ru and rv are told to play action a1. As a result, this implies that there must be at least ε|E| edges e ∈ E
for which the labeling π satisfies the corresponding edge constraint Πe, which is a contradiction.

B. Proofs Omitted from Section 5
Theorem 3. Given an oracle ϕα (as in Definition 1) for some 0 < α ≤ 1, a learning rate η ∈ (0, 1], and an approximation
error ε ∈ [0, 1], Algorithm 1 has α-regret

RTα ≤
|ET |
2η

+
ηT

2
+
εT

2η
,

with a per-iteration running time poly(t).

Proof. First, we bound the per-iteration running time of Algorithm 1. For any t ∈ [T ], we have Et =
⋃
t′∈[t] e

t′ , which
represents the set of feedbacks observed up to iteration t. Thus, it holds |Et| ≤ t. At iteration t ∈ [T ], the algorithm works
with vectors xt and yt+1. The first one belongs to XEt−1 (as it is returned by ϕα at iteration t− 1), and, thus, it has at most
t− 1 non-zero components. Similarly, since yt+1 = xt + η1et , it holds that yt+1 ∈ [0, 2]p and yt+1

e = 0 for all e /∈ Et,
which implies that yt+1 has at most t non-zero components. As a result, we can sparsely represent vectors xt and yt+1 so
that Algorithm 1 has a per-iteration running time bounded by t for any iteration t ∈ [T ], independently of the actual size p
of the vectors. Moreover, notice that yt+1 satisfies the conditions required by the inputs of the oracle ϕα.
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Next, we bound the α-regret of Algorithm 1. For the ease of notation, in the following, for any vector x ∈ X and subset
E ⊆ E , we let xE := τE(x). Moreover, for any t ∈ [T ], we let It := I

{
et /∈ Et−1

}
, which is the indicator function that is

equal to 1 if and only if et /∈ Et−1, i.e., when the feedback et at iteration t has never been observed before. Fix x ∈ αX .
Then, the following relations hold:∣∣∣∣xEt − xt+1

∣∣∣∣2 ≤ ∣∣∣∣xEt − yt+1||2 + ε (4a)

=
∣∣∣∣xEt − xt − η1et∣∣∣∣2 + ε (4b)

=
∣∣∣∣xEt−1 + It xet1et − xt − η1et

∣∣∣∣2 + ε (4c)

=
∣∣∣∣xEt−1 + It xet1et − xt

∣∣∣∣2 + η2 − 2η1>et
(
xEt−1 + It xet1et − xt

)
+ ε (4d)

=
∣∣∣∣xEt−1 − xtEt−1

∣∣∣∣2 + It
∣∣xet − xtet∣∣2 + η2 − 2η1>et

(
xEt−1 + It xet1et − xt

)
+ ε (4e)

≤
∣∣∣∣xEt−1 − xtEt−1

∣∣∣∣2 + It + η2 − 2η1>et
(
xEt−1 + It xet1et − xt

)
+ ε. (4f)

Notice that Equation (4b) holds by definition of ϕα since xEt ∈ αXEt , Equation (4d) follows from xEt = xEt−1 +It xet1et ,
while Equation (4e) can be derived by decomposing the first squared norm in the preceding expression. By using the last
relation above, we can write the following:∑

t∈[T ]

1>et
(
x− xt

)
=
∑
t∈[T ]

1>et
(
xEt−1 + It xet1et − xt

)
(5a)

≤ 1

2η

∑
t∈[T ]

(∣∣∣∣xEt−1 − xtEt−1

∣∣∣∣2 − ∣∣∣∣xEt − xt+1
∣∣∣∣2 + It + η2 + ε

)
(5b)

=
1

2η

∑
t∈[T ]

(
It + η2 + ε

)
(5c)

=
1

2η

(
|ET |+ Tη2 + Tε

)
, (5d)

where Equation (5c) is obtained by telescoping the sum. Then, the following concludes the proof:

RTα := αmax
y∈Y

∑
t∈[T ]

u(y, et)−
∑
t∈[T ]

u(yt, et) ≤ αmax
x∈X

∑
t∈[T ]

xet −
∑
t∈[T ]

xtet = αmax
x∈X

∑
t∈[T ]

1>et
(
x− xt

)
= max
x∈αX

∑
t∈[T ]

1>et
(
x− xt

)
≤ 1

2η

(
|ET |+ Tη2 + Tε

)
.

C. Proofs Omitted from Section 6.1
Theorem 4. Given ε ∈ R+ and an approximate separation oracle Oα, with 0 < α ≤ 1, there exists a polynomial-time
approximation algorithm for BAYESIAN-OPT-SIGNAL returning a signaling scheme with sender’s utility at least αOPT−ε,
where OPT is the value of an optimal signaling scheme. Moreover, the algorithm works in time poly( 1

ε ).

Proof of theorem 4. The dual problem of LP (1) reads as follows:

min
z,d

∑
θ∈Θ

dθ (6a)

s.t. µθ
∑
r∈R

∑
k∈sr

ur,kθ zr,sr,k + dθ ≥ µθ
∑
k∈K

λkfθ(R
k
s ) ∀θ ∈ Θ,∀s ∈ S (6b)

zr,s,k ≤ 0 ∀r ∈ R,∀s ∈ Sr,∀k ∈ Kr : k ∈ s, (6c)
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where d ∈ R|Θ| is the vector of dual variable corresponding to the primal Constraints (1c), and z ∈ R|R×Sr×Kr|− is the
vector of dual variable corresponding to Constraints (1b) in the primal. We rewrite the dual LP (6) so as to highlight the
relation between an approximate separation oracle for Constraints (6b) and the oracle Oα. Specifically, we have

min
z≥0,d

∑
θ∈Θ

dθ (7a)

s.t. dθ ≥ µθ

(∑
k∈K

λkfθ(R
k
s ) +

∑
r∈R

∑
k∈sr

ur,kθ zr,sr,k

)
∀θ ∈ Θ,∀s ∈ S. (7b)

Now, we show that it is possible to build a binary search scheme to find a value γ? ∈ [0, 1] such that the dual problem with
objective γ? is feasible, while the dual with objective γ? − β is infeasible. The constant β ≥ 0 will be specified later in the
proof. The algorithm requires log(β) steps and works by determining, for a given value γ̄ ∈ [0, 1], whether there exists a
feasible pair (d, z) for the following feasibility problem F :

F



∑
θ∈Θ

dθ ≤ γ̄

dθ ≥ µθ

(∑
k∈K

λkfθ(R
k
s ) +

∑
r∈R

∑
k∈sr

ur,kθ zr,sr,k

)
∀θ ∈ Θ,∀s ∈ S

z ≥ 0.

At each iteration of the bisection algorithm, the feasibility problem F is solved via the ellipsoid method. The algorithm is
inizialized with l = 0, h = 1, and γ̄ = 1

2 . If F is infeasible for γ̄, the algorithm sets l ← (l + h)/2 and γ̄ ← (h+ γ̄)/2.
Otherwise, if F is (approximately) feasible, it sets h← (l+ h)/2 and γ̄ ← (l+ γ̄)/2. Then, the procedure is repeated with
the updated value of γ̄. The bisection procedure terminates when it determines a value γ? such that F is feasible for γ̄ = γ?,
while it is infeasible for γ̄ = γ? − β. In the following, we present the approximate separation oracle which is employed at
each iteration of the ellipsoid method.

Separation Oracle Given a point (d̄, z̄) in the dual space, and γ̄ ∈ [0, 1], we design an approximate separation oracle to
determine if the point (d̄, z̄) is approximately feasible, or to determine a constraint of F that is violated by such point. For
each θ ∈ Θ, r ∈ R, and s ∈ Sr, let

wθr,s := µθ
∑
k∈s

ur,kθ z̄r,s,k.

When the magnitude of the weights |wθr,s| is small, we show that it is enough to employ the optimization oracle Oα in order
to find a violated constraint, or to certify that all the constraints are approximately satisfied. On the other hand, when the
weights |wθr,s| are large (in particular, when the largest weight has exponential size in the size of the problem instance),
the optimization oracle Oα loses its polynomial time guarantees (see Definition 2). We show how to handle those specific
settings in the following case analysis:

• Equation (7b) implies that dθ ≥ 0 for each θ ∈ Θ. Then, if there exists a θ ∈ Θ such that d̄θ < 0, we return the
violated constraint (θ,∅) (that is, dθ ≥ 0).

• If there exists θ ∈ Θ such that d̄θ > 1, then the first constraint of F must be violated as γ̄ ∈ [0, 1].

• If there exists a receiver r ∈ R and a signal s ∈ Sr such that wθr,s > 1, then the constraint of F corresponding to the
pair (θ, s) is violated, because dθ ≤ 1.

• If no violated constraint was found in the previous steps, we proceed by checking if there exists a state θ′ ∈ Θ, a
receiver r′ ∈ R, and a signal s′ ∈ Sr, such that wθ

′

r′,s′ ≤ −|R|. If this is the case, we observe that for any pair (θ′, s),
with s ∈ S : sr = s′, the corresponding constraint in F reads

µθ
∑
k∈K

λkfθ(R
k
s ) +

∑
r∈R\{r′}

wθ
′

r,sr + wθ
′

r′,s′ ≤ 0,

since d̄ ≥ 0 if the current step is reached. For wθ
′

r′,s′ ≤ −|R| the above constraints are trivially satisfied, and therefore
we can safely manage (for the current iteration of the ellipsoid method) any such constraint by setting wθ

′

r′,s′ = −|R|.
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If none of the previous steps returned a violated constraint, we can safely assume that 0 ≤ dθ ≤ 1 and −|R| ≤ wθr,s ≤ 1,
for each θ ∈ Θ, r ∈ R, and s ∈ Sr. Moreover, we observe that, by definition, for each r ∈ R and θ ∈ Θ, it holds wθr,∅ = 0.
Since the magnitude of the weights is guaranteed to be small (that is, weights are guaranteed to be in the range [−|R|, 1]),
for each θ ∈ Θ we can invoke Oα(θ,K, λ,wθ, δ) to determine an sθ ∈ S such that

µθ
∑
k∈K

λkfθ(R
k
sθ ) +

∑
r∈R

wθr,sθr ≥ max
s∈S

{
αµθ

∑
k∈K

λkfθ(R
k
s ) +

∑
r∈R

wθr,sr

}
− δ,

where δ is an approximation error that will be defined in the following. If at least one sθ is such that (θ, sθ) is violated, we
output that constraint, otherwise the algorithm returns that the LP is feasible.

Putting It All Together The bisection algorithm computes a γ? ∈ [0, 1] and a pair (d̄, z̄) such that the approximate
separation oracle does not find a violated constraint. The following lemma defines a modified LP and shows that (d̄, z̄) is a
feasible solution for this problem and has value at most γ?.

Lemma 9. The pair (d̄, z̄) is a feasible solution to the following LP and has value at most γ?:

min
z≥0,d

∑
θ∈Θ

dθ

s.t. dθ ≥ αµθ
∑
k∈K

λkfθ(R
k
s ) + µθ

∑
r∈R

∑
k∈sr

ur,kθ zr,sr,k − δ ∀θ ∈ Θ,∀s ∈ S.

Proof. The value is at most γ? by assumption (that is, the separation oracle does not find a violated constraint for (d̄, z̄)
in F with objective γ?). Analogously, it holds that d̄θ ∈ [0, 1] for each θ ∈ Θ, and wθr,s ≤ 1 for each r ∈ R, s ∈ Sr, and
θ ∈ Θ. Suppose, by contradiction, that (θ, s′) is a violated constraint of the modified LP above. Then, given d̄, oracle Oα
would have found an s ∈ S such that

µθ
∑
k∈K

λkf(Rks ) + µθ
∑
r∈R

∑
k∈sr

ur,kθ z̄r,sr,k ≥ α
∑
θ∈Θ

µθ
∑
k∈K

λkfθ(R
k
s′) + µθ

∑
r∈R

∑
k∈s′r

ur,kθ z̄r,s′r,k − δ > d̄θ,

where the first inequality follows by Definition 2, and the second from the assumption that the modified dual is infeasible.
Hence, Oα would return a violated constraint, reaching a contradiction.

The dual problem of the LP of Lemma 9 reads as follows:

max
φ

∑
s∈S

∑
θ∈Θ

φθ(s)

(
αµθ

∑
k∈K

λk fθ(R
k
s )− δ

)
s.t.

∑
θ∈Θ

µθ
∑

s:sr=s′

φθ(s)u
r,k
θ ≥ 0 ∀r ∈ R,∀s′ ∈ Sr,∀k ∈ Kr : k ∈ s′

∑
s∈S

φθ(s) = 1 ∀θ ∈ Θ

φθ(s) ≥ 0 ∀θ ∈ Θ, s ∈ S.

By strong duality, Lemma 9 implies that the value of the above problem is at most γ?. Then, let OPT be value of the optimal
solution to LP (1). The same solution is feasible for the LP we just described, where it has value

αOPT − |Θ|δ ≤ γ?. (10)

Now, we show how to find a solution to the original problem (LP (1)) with value at least γ? − β. Let H be the set of
constraints returned by the ellipsoid method run on the feasibility problem F with objective γ? − β.

Lemma 10. LP (1) with variables restricted to those corresponding to dual constraintsH returns a signaling scheme with
value at least γ? − β. Moreover, the solution can be determined in polynomial time.
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Proof. By construction of the bisection algorithm, F is infeasible for value γ? − β. Hence, the following LP has value at
least γ? − β:

min
z≥0,d

∑
θ∈Θ

dθ

s.t. dθ ≥ µθ

(∑
k∈K

λkfθ(R
k
s ) +

∑
r∈R

∑
k∈sr

ur,kθ zr,sr,k

)
∀(θ, s) ∈ H.

Notice that the primal of the above LP is exactly LP (1) with variables restricted to those corresponding to dual constraints
inH, and that the former (restricted) LP has value at least γ? − β by strong duality. To conclude the proof, the ellipsoid
method guarantees thatH is of polynomial size. Hence, the LP can be solved in polynomial time.

Let APX be the value of an optimal solution to LP (1) restricted to variables corresponding to dual constraints inH. Then,

APX ≥ γ? − β
≥ αOPT − |Θ|δ − β
≥ αOPT − ε,

where the first inequality holds by Lemma 10, the second inequality follows from Equation (10), and the last inequality is
obtained by setting δ = ε

2|Θ| and β = ε
2 .

D. Proofs Omitted from Section 6.2
Theorem 5. Given a subset K ⊆ K, a vector y ∈ [0, 2]|K| such that yk = 0 for all k /∈ K, and an approximation error
ε ∈ R+, for any 0 < α ≤ 1, the approximate projection oracle ϕα(K,y, ε) can be computed in polynomial time by querying
the approximate separation oracle Oα.

Proof. The problem of computing the projection of point y on XK (see Equation (2)) can be formulated via the following
convex programming problem, which we denote by P :

P



min
φ,x

∑
k∈K

(xk − yk)2

s.t.
∑
θ∈Θ

µθ

∑
s∈S:
sr=s′

φθ(s)u
r,k
θ

 ≥ 0 ∀r ∈ R,∀s′ ∈ Sr,∀k ∈ Kr : k ∈ s′

∑
s∈S

φθ(s) = 1 ∀θ ∈ Θ

φθ(s) ≥ 0 ∀θ ∈ Θ,∀s ∈ S

xk ≤
∑
θ∈Θ

∑
s∈S

µθ φθ(s)fθ(R
k
s ) ∀k ∈ K.

.

Then, we compute the Lagrangian of P by introducing dual variables zr,s,k ≤ 0 for each r ∈ R, s ∈ Sr, and k ∈ s, dθ ∈ R
for each θ ∈ Θ, vθ,s ≤ 0 for each θ ∈ Θ, s ∈ S, and νk ≥ 0 for each k ∈ K. Specifically, the Lagrangian of P reads as
follows

L(φ,x, z,v,ν,d) :=
∑
k∈K

(xk − yk)2 +
∑
r∈R

∑
s′∈Sr

∑
k∈s′

zr,s,k

(∑
θ∈Θ

µθ
∑

s:sr=s′

φθ(s)u
r,k
θ

)

+
∑

θ∈Θ,s∈S

vθ,sφθ(s) +
∑
θ∈Θ

dθ

(∑
s∈S

φθ(s)− 1

)

+
∑
k∈K

νk

xk − ∑
θ∈Θ,s∈S

µθφθ(s)fθ(R
k
s )

.
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We observe that Slater’s condition holds for P (all constraints are linear, and by setting x = 0 any signaling scheme φ
constitutes a feasible solution). Therefore, by strong duality, an optimal dual solution must satisfy the KKT conditions. In
particular, in order for stationarity to hold, it must be 0 ∈ ∂φθ(s)(L) for each s and θ. Then, for each θ ∈ Θ and s ∈ S , we
have

∂φθ(s)(L) =
∑
r∈R

∑
k∈sr

µθzr,sr,ku
r,k
θ + vθ,s + dθ −

∑
k∈K

νkµθfθ(R
k
s ) = 0.

Then, for each θ ∈ Θ and s ∈ S, we obtain∑
r∈R

∑
k∈sr

µθzr,sr,ku
r,k
θ + dθ −

∑
k∈K

νkµθfθ(R
k
s )) ≥ 0. (12)

Moreover, stationarity has to hold with respect to variables x. Formally, for each k ∈ K,

∂xk
(L) = 2(xk − yk)νk = 0.

Therefore, for each k ∈ K,
xk = yk −

νk
2
. (13)

By Equations (12) and (13), we obtain the following dual quadratic program

D



max
z,v,ν,d

∑
k∈K

(
νkyk −

ν2
k

4

)
−
∑
θ∈Θ

dθ

s.t. dθ ≥
∑
k∈K

νkµθfθ(R
k
s ) +

∑
r∈R

∑
k∈sr

µθzr,sr,ku
r,k
θ ∀θ ∈ Θ,∀s ∈ S

zr,s,k ≥ 0 ∀r ∈ R,∀s ∈ Sr,∀k ∈ Kr : k ∈ s

νk ≥ 0 ∀k ∈ K,

in which the objective function is obtained by observing that each term φθ(s) in the definition of L is multiplied by
∂φθ(s)(L), which has to be equal to zero by stationarity. Similarly to what we did in the proof of Theorem 4, we repeatedly
apply the ellipsoid method equipped with an approximate separation oracle to problem D . In this case, the analysis is more
involved than what happens in Theorem 4, because we are interested in computing an approximate projection on αXK rather
than an approximate solution of P . We proceed by casting D as a feasibility problem with a certain objective (analogously
to F in Theorem 4). In particular, given objective γ ∈ [0, 1], the objective function of D becomes the following constraint
in the feasibility problem ∑

k∈K

(
νkyk −

ν2
k

4

)
−
∑
θ∈Θ

dθ ≥ γ. (14)

Then, given an approximation oracle Oα which will be specified later, we apply to the feasibility problem the search
algorithm described in Algorithm 2.

Algorithm 2 SEARCH ALGORITHM

Input: Error ε, y ∈ R|K|+ , subspace K ⊆ K.
1: Initialization: β ← ε

2 , δ ← ε
2|Θ| , γ ← |K|+ β, andH ← ∅.

2: repeat
3: γ ← γ − β
4: HUNF ← H
5: H ← {violated constraints returned by the ellipsoid method on D with objective γ and constraintsHUNF}
6: until D is feasible with objective γ (see Equation (14))
7: returnHUNF

At each iteration of the main loop, given an objective value γ, Algorithm 2 checks whether the problem D is approximately
feasible or unfeasible, by applying the ellipsoid algorithm with separation oracleOα. LetH be the set of constraints returned
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by the separation oracle (the separating hyperplanes due to the linear inequalities). At each iteration, the ellipsoid method
is applied on the problem with explicit constraints in the current set HUNF (that is, each constraint in HUNF is explicitly
checked for feasibility), while the other constraints are checked through the approximate separation oracle. Algorithm 2
returns the set of violated constraintsHUNF corresponding to the last value of γ for which the problem was unfeasible. Now,
we describe how to implement the approximate separation oracle employed in Algorithm 2. Then, we conclude the proof by
showing how to build an approximate projection starting from the setHUNF computed as we just described.

Approximate Separation Oracle Let (z̄, v̄, ν̄, d̄) be a point in the space of dual variables. Then, let, for each θ ∈ Θ,
r ∈ R, and s ∈ Sr,

wθr,s :=
∑
k∈s

z̄r,s,kµθu
r,k
θ .

First, we can check in polynomial time if one of the constraint inH is violated. If at least one of those constraint is violated,
we output that constraint. Moreover, if the constraint corresponding to the objective is violated, we can output a separation
hyperplane in polynomial time since the constraint has a polynomial number of variables. Then, by following the same
rationale of the proof of Theorem 4 (offline setting), we proceed with a case analysis in which we ensure it is possible to
output a violated constraint when |νk| or |wθr,s| are too large to guarantee polynomial-time sovability by Definition 2.

• First, it has to hold dθ ∈ [0, 4|K|] for each θ ∈ Θ. Indeed, if dθ < 0, then the constraint relative to (θ,∅) would
be violated. Otherwise, suppose that there exists a θ with d̄θ > 4|K|. Two cases are possible: (i) the constraint
corresponding to the objective is violated, which allows us to output a separation hyperplane; (ii) it holds∑

k∈K

(
ν̄kyk −

ν̄2
k

4

)
> 4|K|,

which implies that there exists a k ∈ K such that ν̄kyk − ν̄2
k/4 > 4. However, we reach a contradiction since, by

assumption, yk ≤ 2 for each k ∈ K, and therefore it must hold ν̄kyk − ν̄2
k/4 ≤ 2ν̄k − ν̄2

k/4 ≤ 4.

• Second, we show how to determine a violated constraint when ν̄k /∈ [0, |K| + 10]. Specifically, if there exists a
k ∈ K for which ν̄k < 0, then the objective is negative, and we can return a separation hyperplane (corresponding to
Equation (14)). If there exists a νk > |K|+ 10, then

∑
k′∈K

(
ν̄k′yk′ −

ν̄2
k′

4

)
≤ 2νk −

ν̄2
k

4
+

∑
k′∈K\{k}

(
2ν̄k′ −

ν̄2
k′

4

)

≤ 2|K|+ 20− |K|
2

4
− 5|K| − 25 + 4|K|

= −|K|
2

4
+ |K| − 5

< 0,

where the first inequality follows by the assumption that yk ≤ 2 for each k ∈ K, and the second inequality follows
from the fact that 2νk− ν̄2

k/4 has its maximum in ν̄k = 4 and, when ν̄k ≥ |K|+ 10, the maximum is at ν̄k = |K|+ 10
since the function in concave. Hence, we obtain that Constraint (14) is violated.

• Finally, suppose that there exists a θ ∈ Θ, r ∈ R, s ∈ Sr such that wθr,s > 4|K|. Then, the constraint corresponding to
(θ, s) is violated (because dθ ≤ 4|K|, otherwise we would have already determined a violated constraint in the first
case of our analysis). If, instead, there exists a θ ∈ Θ, r ∈ R, s ∈ Sr such that wθr,s < −4|K||R| − 10, then, for all
the inequalities (θ, s′) with s′r = s, it holds d̄θ ≥ 0 and

µθ
∑
k∈K

ν̄kfθ(R
k
s ) +

∑
r′∈R\{r}

wθr′,s′
r′

+ wθr,s′r ≤ 0.

In this last case, all the inequalities corresponding to (θ, s′) with s′r = s are guaranteed to be satisfied. Then, we can
safely manage all the inequalities comprising of wθr,s ≤ −4|K||R| − 10 by setting wθr,s = −4|K||R| − 10.
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After the previous steps, it is guaranteed that |wθr,s| ≤ 4|K||R| + 10 for each θ, r, s, and νk ∈ [0, |K| + 10] for each k.
Hence, we can employ an oracle Oα with |wθr,s| and λθk = νkµθ, which is guaranteed to be polynomial in the size of the
instance by Definition 2. Let δ be an error parameter which will be defined in the remainder of the proof. For each θ ∈ Θ,
we call the oracle Oα(θ,K, {νk}k∈K ,wθ, δ). Each query to the oracle returns an sθ. If at least one of the constraints
corresponding to a pair (θ, sθ) is violated, we output that constraint. Otherwise, if for each θ ∈ Θ the constraint (θ, sθ) is
satisfied, we conclude that the point is in the feasible region.

Putting It All Together Algorithm 2 terminates at objective γ?. It is easy to see that the algorithm terminates in
polynomial time because it must return feasible when γ = 0. Our proof proceeds in two steps. First, we prove that a
particular problem obtained from P has value at least γ?. Then, we prove that the solution of P with only variables in
HUNF has value close to γ?. Finally, we show that the two solutions are, respectively, the projection and an approximate
projection on a set that includes αXK . This will complete the proof.

If the algorithm terminates at objective γ∗, the following convex optimization problem is feasible (see Theorem 4).10

∑
k∈K

(
νkyk − ν2

k/4
)
−
∑
θ∈Θ

dθ ≥ γ?

dθ ≥
∑
k∈K

νkµθfθ(R
k
s )−

∑
r∈R,k∈sr

zr,sr,k µθu
r,k
θ ∀(θ, s) ∈ HUNF

dθ ≥
∑
k∈K

ανkµθfθ(R
k
s )−

∑
r∈R,k∈sr

zr,sr,k µθu
r,k
θ − δ ∀(θ, s) /∈ HUNF.

By strong duality, the following convex optimization problem has value at least γ?

Pf



min
φ,x

∑
k∈K

(xk − yk)2 + δ
∑

(θ,s)/∈HUNF

φθ(s)

s.t.
∑
θ∈Θ

µθ

 ∑
s′:s′r=s

φθ(s
′)ur,kθ

 ≥ 0 ∀r ∈ R,∀s ∈ Sr,∀k ∈ Kr : k ∈ s

∑
s∈S

φθ(s) = 1 ∀θ ∈ Θ

φθ(s) ≥ 0 ∀θ ∈ Θ,∀s ∈ S

xk ≤
∑
θ∈Θ

 ∑
s:(θ,s)∈HUNF

µθ φθ(s)fθ(R
k
s ) + α

∑
s:(θ,s)/∈HUNF

µθ φθ(s)fθ(R
k
s )

 ∀k ∈ K.

Moreover, since the algorithm did not terminate at value γ?+β, problem D with value γ?+β is unfeasible when restricting
the set of constraints to HUNF. The primal problem P restricted to primal variables corresponding to dual constraints in
HUNF reads as follows

min
φ,x

∑
k∈K

(xk − yk)2

s.t.
∑
θ∈Θ

µθ

 ∑
s:(θ,s)∈HUNF,

sr=s′

φθ(s)u
r,k
θ

 ≥ 0 ∀r ∈ R, s′ ∈ Sr,∀k ∈ Kr : k ∈ s′

∑
s:(θ,s)∈HUNF

φθ(s) = 1 ∀θ ∈ Θ

φθ(s) ≥ 0 ∀(θ, s) ∈ HUNF

xk ≤
∑
θ∈Θ

∑
s:(θ,s)∈HUNF

µθ φθ(s)fθ(R
k
s ) ∀k ∈ K.

10In the following, we will refer to the proof of Theorem 4 when the steps of the two proofs are analogous.
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By strong duality, the above problem has value at most γ? + β. Moreover, it has a polynomial number of variables and
constraints because the ellipsoid method returns a set of constraintsHUNF of polynomial size. Therefore, the above problem
can be solved in polynomial time.

A solution to the above problem is a feasible signaling scheme. Let (xε, φ) be its solution. We have that xε ∈ X̄K , with

X̄K =

x : xk ≤
∑
θ∈Θ

 ∑
s:(θ,s)∈HUNF

µθ φθ(s)fθ(R
k
s ) + α

∑
s:(θ,s)/∈HUNF

µθ φθ(s)fθ(R
k
s )

 ∀k ∈ K,φ ∈ Φ

.
It holds αXK ⊆ X̄K . Now, we show that xε is close to x?, where x? is the projection of y on X̄K (that is the solution of Pf

with δ = 0). Since x? is a feasible solution of Pf and the minimum of Pf is at least γ?, it holds ||x? − y||2 + δ|Θ| ≥ γ?.
Then,

||x? − y||2 + δ|Θ|+ β ≥ γ? + β

≥ ||xε − y||2

= ||xε − x? + x? − y||2

= ||xε − x?||2 + ||x? − y||2 + 2〈xε − x?,x? − y〉
≥ ||xε − x?||2 + ||x? − y||2,

where the last inequality follows from 〈xε − x?,x? − y〉 ≥ 0, because x? is the projection of y on X̄K and xε ∈ X̄K .
Hence, ||xε − x?||2 ≤ δ|Θ|+ β. Finally, let x be a point in αXK . Then,

||xε − x||2 ≤ ||xε − x?||2 + ||x? − x||2

≤ ||xε − x?||2 + ||y − x||2

≤ ||y − x||2 + δ|Θ|+ β,

where the second inequality follow from the fact that x? is the projection of y on a superset of αXK . Setting δ = ε
2|Θ| and

β = ε
2 concludes the proof.

E. Proofs Omitted from Section 7
In this section, we provide the complete proof of Theorem 11.

Firs, we introduce some preliminary, known results concerning the optimization over matroids. Given a non-decreasing
submodular set function f : 2G → R+ and a linear set function ` : 2G 3 I 7→

∑
i∈I wi defined for finite ground set G and

weights w = (wi)i∈G with wi ∈ R for each i ∈ G, let us consider the problem of maximizing the sum f(I) + `(I) over the
bases I ∈ B(M) of a given matroidM := (G, I). We make use of a theorem due to Sviridenko et al. (2017), which, by
letting vf := maxI∈2G f(I), v` := maxI∈2G |`(I)|, and v := max{vf , v`}, reads as follows:

Theorem 11 (Essentially Theorem 3.1 by Sviridenko et al. (2017)). For every ε > 0, there exists an algorithm running
in time poly

(
|G|, 1

ε

)
that produces a basis I ∈ B(M) satisfying f(I) + `(I) ≥

(
1− 1

e

)
f(I ′) + `(I ′)−O(ε)v for every

I ′ ∈ B(M) with high probability.

Next, we provide the complete proof of Theorem 11.

Theorem 6. If the sender’s utility is such that function fθ is submodular for each θ ∈ Θ, then there exists a polynomial-time
separation oracle O1− 1

e
.

Proof. We show how to implement an approximation oracle Oα(θ,K,λ,w, ε) (see Definition 2) running in time
poly

(
n, |K|,maxr,s |wr,s|,maxk λk,

1
ε

)
for α = 1 − 1

e . Let MS := (GS , IS) be a matroid defined as in Section 7
for direct signal profiles S. Let us recall that, given the relation between the bases ofMS and direct signals, each direct
signal profiles s ∈ S corresponds to a basis I ∈ B(MS), which is defined as I := {(r, sr) | r ∈ R}. In the following,
given a subset I ⊆ GS and a type profile k ∈ K, we let RkI ⊆ R be the set of receivers r ∈ R such that there exits a pair
(r, s) ∈ I (for some signal s ∈ Sr) with the receiver’s type kr being recommended to play a1 under signal s; formally,

RkI := {r ∈ R | ∃(r, s) ∈ I : kr ∈ s} .
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First, we show that, when using matroid notation, the left-hand side of Equation (3) can be expressed as the sum of
a non-decreasing submodular set function and a linear set function. To this end, let fλθ : 2GS → R+ be defined as
fλθ (I) =

∑
k∈K λkfθ(R

k
I ) for every subset I ⊆ GS . We prove that fλθ is submodular. Since fλθ is a suitably defined

weighted sum of the functions fθ, it is sufficient to prove that, for each type profile k ∈ K, the function fθ : 2R → [0, 1] is
submodular in the sets RkI . For every pair of subsets I ⊆ I ′ ⊆ GS , and for every receiver r ∈ R and signal s ∈ Sr, the
marginal contribution to the value of function fθ due to the addition of element (r, s) to the set I is:

fθ(R
k
I∪(r,s))− fθ(R

k
I ) = I {kr ∈ s ∧ @(r, s′) ∈ I : kr ∈ s′}

(
fθ(R

k
I ∪ {r})− fθ(RkI )

)
≥

≥ I {kr ∈ s ∧ @(r, s′) ∈ I ′ : kr ∈ s′}
(
fθ(R

k
I ∪ {r})− fθ(RkI )

)
≥

≥ I {kr ∈ s ∧ @(r, s′) ∈ I ′ : kr ∈ s′}
(
fθ(R

k
I′ ∪ {r})− fθ(RkI′)

)
=

= fθ(R
k
I′∪(r,s))− fθ(R

k
I′),

where the last inequality holds since the functions fθ are submodular by assumption. Since the last expression is the marginal
contribution to the value of function fθ due to the addition of element (r, s) to the set I ′, the relations above prove that
the function fλθ is submodular. Let `w : 2GS → R+ be a linear function such that `w(I) =

∑
r∈R wr,sr for every basis

I ⊆ B(MS), with each sr ∈ Sr being the signal of receiver r ∈ R specified by the signal profile corresponding to the basis,
namely (r, sr) ∈ I . Then, we have that finding a signal profile s ∈ S satisfying Equation (3) is equivalent to finding a basis
I ∈ B(MS) of the matroidMS (representing a direct signal profile) such that:

fλθ (I) + `w(I) ≥ max
I?∈B(MS)

{
α
∑
k∈K

fλθ (I?) + `w(I?)

}
− ε.

Notice that, for ε′ > 0, the algorithm of Theorem 11 by Sviridenko et al. (2017) can be employed to find a basis I ∈ B(MS)
such that fλθ (I) + `w(I) ≥

(
1− 1

e

)
fλθ (I ′) + `w(I ′)−O(ε′)v for every I ′ ∈ B(M) with high probability, employing time

polynomial in |GS | and 1
ε . Since |GS | is polynomial in n and v is polynomial in |K|,maxr,s |wr,s| and maxk λk, by setting

ε′ = O( εv ) and α = 1− 1
e , we get the result.


