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Abstract

Bayesian persuasion studies how an informed
sender should partially disclose information to
influence the behavior of a self-interested receiver.
Classical models make the stringent assumption
that the sender knows the receiver’s utility. This
can be relaxed by considering an online learn-
ing framework in which the sender repeatedly
faces a receiver of an unknown, adversarially se-
lected type. We study, for the first time, an on-
line Bayesian persuasion setting with multiple re-
ceivers. We focus on the case with no externalities
and binary actions, as customary in offline mod-
els. Our goal is to design no-regret algorithms
for the sender with polynomial per-iteration run-
ning time. First, we prove a negative result: for
any 0 < o < 1, there is no polynomial-time
no-a-regret algorithm when the sender’s utility
function is supermodular or anonymous. Then,
we focus on the case of submodular sender’s util-
ity functions and we show that, in this case, it is
possible to design a polynomial-time no- (1 — %)-
regret algorithm. To do so, we introduce a general
online gradient descent scheme to handle online
learning problems with a finite number of possible
loss functions. This requires the existence of an
approximate projection oracle. We show that, in
our setting, there exists one such projection oracle
which can be implemented in polynomial time.

1. Introduction

Bayesian persuasion was originally introduced by Kamenica
& Gentzkow (2011) to model multi-agent settings where
an informed sender tries to influence the behavior of a self-
interested receiver through the strategic provision of payoft-
relevant information. Agents’ payoffs are determined by
the receiver’s action and some exogenous parameters collec-
tively termed the state of nature, whose value is drawn from
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a common prior distribution and observed by the sender
only. Then, the sender decides how much of her/his private
information has to be revealed to the receiver, according to a
public randomized policy known as signaling scheme. From
the sender’s perspective, this begets a decision-making prob-
lem that is essentially about controlling “who gets to know
what”. This kind of problems are ubiquitous in application
domains such as auctions and online advertising (Bro Mil-
tersen & Sheffet, 2012; Emek et al., 2014; Badanidiyuru
et al., 2018), voting (Alonso & Camara, 2016; Cheng et al.,
2015; Castiglioni et al., 2020a; Castiglioni & Gatti, 2021),
traffic routing (Vasserman et al., 2015; Bhaskar et al., 2016;
Castiglioni et al., 2021), recommendation systems (Man-
sour et al., 2016), security (Rabinovich et al., 2015; Xu
et al., 2016), and product marketing (Babichenko & Bar-
man, 2017; Candogan, 2019).!

The classical Bayesian persuasion model by Kamenica &
Gentzkow (2011) makes the stringent assumption that the
sender knows the receiver’s utility exactly. This is unreason-
able in practice. Recently, Castiglioni et al. (2020b) propose
to relax the assumption by framing Bayesian persuasion
into an online learning framework, focusing on the basic
single-receiver problem.2 In their model, the sender re-
peatedly faces a receiver whose type during each iteration—
determining her/his utility function—is unknown and ad-
versarially selected beforehand. In this work, we extend
the model by Castiglioni et al. (2020b) to multi-receiver
settings, where the (unknown) type of each receiver is ad-
versarially selected before each iteration of the repeated
interaction. We consider the case in which the sender has
a private communication channel towards each receiver,
which is commonly studied in multi-receiver models (see,
e.g., (Babichenko & Barman, 2016)). Dealing with multiple
receivers introduces the additional challenge of correlating
information disclosure across them and requires different

"Persuasion was famously attributed to a quarter of the GDP in
the United States by McCloskey & Klamer (1995), with a more
recent estimate placing this figure at 30% (Antioch et al., 2013).

2A recent work by Babichenko et al. (2021) relaxes the assump-
tion in the offline setting. In that work, the goal is minimizing
the sender’s regret over a single iteration, and the authors provide
positive results for the case in which the sender knows the ordinal
preferences of the receiver over states of nature. The authors study
the case of a single receiver with a binary action space, and an
arbitrary (unknown) utility function.
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techniques from those used in the single-receiver setting.

As customary when studying multi-receiver Bayesian per-
suasion problems (Dughmi & Xu, 2017; Xu, 2020), we ad-
dress the case in which there are no inter-agent externalities,
where each receiver’s utility does not depend on the actions
of the other receivers, but only on her/his own action and
the state of nature. Moreover, we focus on the commonly-
studied setting with binary actions (Babichenko & Barman,
2016; Arieli & Babichenko, 2019), and we analyze different
scenarios depending on whether the sender’s utility func-
tion is supermodular, submodular, or anonymous. Despite
its simplicity, this basic model encompasses several real-
world scenarios. For instance, think of a marketing problem
in which a firm (sender) wants to persuade some potential
buyers (receivers) to buy one of its products. Each buyer
has to take a binary decision as to whether to buy a unit of
the product or not, while the firm’s goal is to strategically
disclose information about the product to the buyers, so as
to maximize the number of units sold. In this example, the
sender’s utility is anonymous, since it only depends on the
number of buyers who decide to purchase (and not on their
identities). Moreover, submodular sender’s utilities repre-
sent diminishing returns in the number of items sold, while
supermodular ones encode decreasing production costs.

1.1. Original Contributions

Our goal is to design online algorithms for the sender that
recommend a signaling scheme at each iteration of the re-
peated interaction, guaranteeing a sender’s expected utility
close to that of the best-in-hindsight signaling scheme. In
particular, we look for no-a-regret algorithms, which collect
an overall utility that is close to a fraction a of what can be
obtained by the best-in-hindsight signaling scheme. In this
work, we assume full-information feedback, which means
that, after each iteration, the sender observes each receiver’s
type during that iteration. Moreover, we are interested in
no-a-regret algorithms having a per-iteration running time
polynomial in the size of the problem instance. To this end,
we assume that the number of possible types of each receiver
is fixed, otherwise polynomial-time no-ca-regret algorithms
cannot be obtained even in the degenerate case of only one
receiver (Castiglioni et al., 2020b).

In Section 4, we prove a negative result: for any 0 < o < 1,
there is no polynomial-time no-a-regret algorithm when
the sender’s utility function is supermodular or anonymous.
Thus, in the rest of the work, we focus on the case in which
the sender’s utility function is submodular, where we pro-
vide a polynomial-time no- (1 — %) -regret algorithm.’

30ur result is tight, as there is no poly-time no-a-regret algo-
rithm with e > 1 — % Indeed, it is NP-hard to approximate the
sender’s optimal utility within a factor > 1 — é even in the basic
(offline) multi-receiver model of Babichenko & Barman (2016).

As a first step in building our algorithm, in Section 5 we
introduce a general online gradient descent (OGD) scheme
to handle online learning problems with a finite number
of possible loss functions. This can be applied to our set-
ting, as we have a sender’s utility function (or, equivalently,
negative loss function) for every combination of receivers’
types obtained as feedback. The OGD scheme works in a
modified decision space whose dimensionality is the num-
ber of observed loss functions, and it is not affected by the
dimensionality of the original space. This is crucial in our
setting, as it avoids dealing with the set of sender’s signaling
schemes, whose dimensionality grows exponentially in the
number of receivers. Any OGD algorithm requires a pro-
jection oracle. Since in our setting an exact oracle cannot
be implemented in polynomial time, we build our OGD
scheme so that it works having access to a suitably-defined
approximate projection oracle, which, as we show later, can
be implemented in polynomial time in our model.

In Section 6, we build a polynomial-time approximate pro-
jection oracle. First, we formulate the projection problem
as a convex linearly-constrained quadratic program, which
has exponentially-many variables and polynomially-many
constraints. Next, we show how to compute in polynomial
time an approximate solution to this program by apply-
ing the ellipsoid algorithm to its dual. Since the dual has
polynomially-many variables and exponentially-many con-
straints, the algorithm needs access to a particular (problem-
dependent) polynomial-time separation oracle. Unfortu-
nately, we do not have this in our setting, and, thus, our
algorithm must rely on an approximate separation oracle.
In general, running the ellipsoid method with an approxi-
mate separation oracle does not give any guarantee on the
approximation quality of the returned solution. In order
to make the ellipsoid algorithm return the desired approx-
imate solution by only using an approximate separation
oracle, we employ some ad-hoc technical tools suggested
by a non-trivial primal-dual analysis. As a preparatory step
towards our main result, at the beginning of Section 6, we
use a derivation similar to that described so far to design
a polynomial-time approximation algorithm for the offline
version of our multi-receiver Bayesian persuasion problem,
which may be of independent interest.

In Section 7, we conclude the construction of the no-
(1 — é) -regret algorithm by showing how to implement in
polynomial time an (1 — é)-approximate separation oracle
for settings in which the sender’s utility is submodular.

All the proofs omitted from the paper are in the Appendix.

1.2. Related Works

Most of the computational works on Bayesian persuasion
study (offline) models in which the sender knowns the re-
ceiver’s utility function exactly. Dughmi & Xu (2016) initi-
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ate these studies with the single receiver case, while Arieli &
Babichenko (2019) extend their work to multiple receivers
without inter-agent externalities, with a focus on private
signaling. In particular, they focus on settings with binary
actions for the receivers and a binary space of states of
nature. They provide a characterization of the optimal sig-
naling scheme in the case of supermodular, anonymous
submodular, and super-majority sender’s utility functions.
Babichenko & Barman (2016) extend this latter work by
providing tight (1 — 1)-approximate signaling schemes for
monotone submodular sender’s utilities and showing that
an optimal private signaling scheme for anonymous utility
functions can be found efficiently. Dughmi & Xu (2017)
generalize the previous model to settings with an arbitrary
number of states of nature. There are also some works fo-
cusing on public signaling with no inter-agent externalities,
see, among others, (Dughmi & Xu, 2017) and (Xu, 2020).

The only computational work on Bayesian persuasion in
an online learning framework is that of Castiglioni et al.
(2020b), which, however, is restricted to the single-receiver
case. The results and techniques in Castiglioni et al. (2020b)
are different from those in our paper. In particular, they show
that there are no polynomial-time no-a-regret algorithms
even in settings with a single receiver, when the number
of receiver’s types is arbitrary. In contrast, we focus on
settings in which the number of receivers’ types is fixed.
Moreover, the main goal of Castiglioni et al. (2020b) is
to design a (necessarily exponential-time) no-regret algo-
rithm in the partial-information feedback setting in which
the sender only observes the actions played by the receiver
(and not her/his types). This is accomplished by provid-
ing slightly-biased estimators of the sender’s utilities for
different signaling schemes. In our work, we assume full-
information feedback, and, thus, our main focus is dealing
with multiple receivers. This also introduces the additional
challenge of correlating information disclosure across the re-
ceivers and working with an exponential number of possible
feedbacks (tuples specifying a type for each receiver).

Our work is also related to the research line on online linear
optimization with approximation oracles. In such setting,
Kakade et al. (2009) show how to design a no-a-regret algo-
rithm relying on an a-approximate linear optimization ora-
cle, while Garber (2017) and Hazan et al. (2018) obtain anal-
ogous results with a better query complexity. The approach
of these works to design approximate projection oracles is
fundamentally different from ours, since they have access
to a linear optimization oracle working in the learner’s deci-
sion space. On the other hand, our OGD scheme works on
a modified decision space, and the approximate projection
oracle can only rely on an approximate sepration oracle
dealing with the original sender’s decision space.

2. Preliminaries

There is a finite set R := {r;}}_, of n receivers, and each
receiver € R has a type chosen from a finite set I, :=
{kri}itr of m, different types (let m := max,er m,.). We
introduce K := X . K, as the set of type profiles, which
are tuples k € K defining a type k, € IC,. for each receiver
r € R.* Each receiver r € R has two actions available,
defined by A, := {ag,a1}. Welet A := X, er Ar be the
set of action profiles specifying an action for each receiver.
Sender and receivers’ payoffs depend on a random state of
nature, which is selected from a finite set © := {6, }¢_; of
d states. The payoff of a receiver also depends on the action
played by her/him, while it does not depend on the actions
played by the other receivers, since there are no inter-agent
externalities. Formally, a receiver r € R of type k € K, has
autility u™* : A, x © — [0, 1]. For the ease of notation, we
let ug’k = u""(ay,0)—u"*(ag, §) be the payoff difference
for a receiver r of type k£ when the state of nature is § € ©.
The sender’s utility depends on the actions played by all the
receivers, and it is defined by v°* : A x © — [0, 1]. For the
ease of presentation, for every state § € ©, we introduce
the function fy : 2% — [0, 1] such that fy(R) represents
the sender’s utility when the state of nature is € and all the
receivers in R C R play action a1, while the others play ag.

As it is customary in Bayesian persuasion, we assume that
the state of nature is drawn from a common prior distri-
bution & € int(Ag), which is explicitly known to both
the sender and the receivers.® The sender can commit to a
signaling scheme ¢, which is a randomized mapping from
states of nature to signals for the receivers. In this work, we
focus on private signaling, where each receiver has her/his
own signal that is privately communicated to her/him. For-
mally, there is a finite set S, of possible signals for each
receiver € R. Then, ¢ : © — Ag, where S := X,er S,
is the set of signal profiles, which are tuples s € S defin-
ing a signal s, € S, for each receiver r € R. We denote
with ¢¢ the probability distribution employed by ¢ when
the state of nature is € ©, with ¢g(s) being the prob-
ability of sending a signal profile s € S. The one-shot
interaction between the sender and the receivers goes on
as follows: (i) the sender commits to a publicly known sig-
naling scheme ¢; (ii) she/he observes the realized state of
nature 6 ~ p; (iii) she/he draws a signal profile s ~ ¢y and
communicates to each receiver r € R signal s,.; and (iv)
each receiver r € R rationally updates her/his prior belief
over © according to the Bayes rule and selects an action
maximizing her/his expected utility. We remark that, given
a signaling scheme ¢, a receiver r € R of type k € K,

4 All vectors and tuples are denoted by bold symbols. For any
vector (tuple) @, the value of its i-th component is denoted by ;.

Sint(X) is the interior of a set X, while Ax is the set of all
the probability distributions over a set X.



Multi-Receiver Online Bayesian Persuasion

observing a private signal s € S, experiences an expected
utility D pce 110 D gesis,—s P0(S) u™*(a,6) (up to a nor-
malization constant) when playing action a € A,. As-
suming the receivers’ type profile is k € I, the goal of
the sender is to commit to an optimal signaling scheme ¢,
which is one maximizing her/his expected utility f (¢, k) :=
> oco 1o D ses Po(s) fo(RE), where we let RE C R be
the set of receivers who play a; after observing their private
signal s, in s, under signaling scheme ¢.

Assumptions In the rest of this work, we assume that the
the sender’s utility is monotone non-decreasing in the set of
receivers playing a;. Formally, for each state § € O, we let
fo(R) < fo(R') forevery R C R’ C R, while fy(2&) =0
for the ease of presentation. Moreover, we assume that the
number of types m,. of each receiver r € R is fixed; in other
words, the value of m cannot grow arbitrarily large.®

Direct Signaling Schemes By well-known revelation-
principle-style arguments (Kamenica & Gentzkow, 2011;
Arieli & Babichenko, 2019), we can restrict our attention to
signaling schemes that are direct and persuasive. In words,
a signaling scheme is direct if signals correspond to rec-
ommendations of playing actions, while it is persuasive if
the receivers do not have any incentive to deviate from the
recommendations prescribed by the signals they receive.
In our setting, a direct signal sent to a receiver specifies
an action recommendation for each receiver’s type; thus,
we let S, := 2%+ for every r € R. A signal s € S, for
a receiver r € R is encoded by a subset of her/his types,
namely s C K. Intuitively, s can be interpreted as the
recommendation to play action a; when the receiver has
type k € K, such that k € s, while ag otherwise. Given a
direct and persuasive signaling scheme ¢, for a signal profile
s € S and a type profile k € K, the set R¥ appearing in
the definition of the sender’s expected utility f(¢, k) can be
formally expressed as R* := {r € R | k, € s,.}.

Set Functions and Matroids In Section 7, we show how
to implement our approximate separation oracle by optimiz-
ing functions fy over suitably defined matroids (representing
signals). Next, we introduce the necessary definitions on
set functions and matroids. For the ease of presentation, we
consider a generic function f : 29 — [0, 1] for a finite set G.
We say that f is submodular, respectively supermodular, if
for ,I' CG: f(UNI')+ fIUI') < f(I)+ f(I'), respec-
tively f(INI")+ f(TUI") > f(I)+ f(I'). The function f
is anonymous if f(I) = f(I') forall [,I' C G : |I| = |I'|.
A matroid M := (G,Z) is defined by a finite ground set

The monotonicity assumption is w.l.o.g. for this work, since
our main positive result (Theorem 7) relies on it. Instead, assuming
a fixed number of types is necessary, since, even in single-receiver
settings, designing no-regret algorithms with running time polyno-
mial in m is intractable (Castiglioni et al., 2020b).

G and a collection Z of independent sets, i.e., subsets of
G satisfying some characterizing properties (see (Schrijver,
2003) for a detailed formal definition). We denote by B(M)
the set of the bases of M, which are the maximal sets in Z.

3. Multi-Receiver Online Bayesian Persuasion

We consider a multi-receiver generalization of the online
setting introduced by Castiglioni et al. (2020b). The sender
plays a repeated game in which, at each iteration ¢ € [T,
she/he commits to a signaling scheme ¢?, observes the re-
alized state of nature #* ~ p, and privately sends signals
determined by s’ ~ ¢}, to the receivers.” Then, each re-
ceiver (whose type is unknown to the sender) selects an ac-
tion maximizing her/his expected utility given the observed
signal (in the one-shot interaction at iteration t).

We focus on the problem of computing a sequence { ¢ };¢ (]
of signaling schemes maximizing the sender’s expected util-
ity when the sequence of receivers’ types {kt}tem, with
k! € K, is adversarially selected beforehand. After each
iteration ¢ € [T, the sender gets payoff f(¢f, k') and re-
ceives a full-information feedback on her/his choice at t,
which is represented by the type profile kt. Therefore, after
each iteration, the sender can compute the expected util-
ity f(¢, k') guaranteed by any signaling scheme ¢ she/he
could have chosen during that iteration.

We are interested in an algorithm computing ¢' at each
iteration ¢ € [T']. We measure the performance of one such
algorithm using the a-regret RL. Formally, for 0 < o < 1,

Ry =amax 3 f(o.k)—E |} f(¢' k)],

te(T] te[T]

where the expectation is on the randomness of the algorithm.
The classical notion of regret is obtained for v = 1.

Ideally, we would like an algorithm that returns a sequence
{¢" }1epr) with the following properties:

e the a-regret is sublinear in 7" for some 0 < o < 1;

e the number of computational steps it takes to compute
@' at each iteration ¢ € [T is poly(T,n, d), that is, it
is a polynomial function of the parameters 7', n, and d

An algorithm satisfying the first property is called a no-a-
regret algorithm (it is no-regret if it does so for « = 1). In
this work, we focus on the weaker notion of a-regret since,
as we discuss next, requiring no-regret is oftentimes too
limiting in our setting (from a computational perspective).

"Throughout the paper, the set {1, ..., z} is denoted by [z].
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4. Hardness of Being No-«a-Regret

We start with a negative result. We show that designing no-
a-regret algorithms with polynomial per-iteration running
time is an intractable problem (formally, it is impossible
unless NP C RP) when the sender’s utility is such that
functions fy are supermodular or anonymous. This hard-
ness result is deeply connected with the intractability of the
offline version of our multi-receiver Bayesian persuasion
problem that we formally define in the following Section 4.1.
Then, Section 4.2 collects all the hardness results.

4.1. Offline Multi-Receiver Bayesian Persuasion

We consider an offline setting where the receivers’ type pro-
file k € K is drawn from a known probability distribution
(rather then being selected adversarially at each iteration).
Given a subset of possible type profiles K C K and a dis-
tribution A € int(Ag ), we call BAYESIAN-OPT-SIGNAL
the problem of computing a signaling scheme that maxi-
mizes the sender’s expected utility. This can be achieved by
solving the following LP of exponential size.®

max ST D 1o > dol(s)fo(RE) (1a)

kek [d<C] sES

S.t. Z o Z QSQ(S)Ug’k >0

[SC) SES:s,=s
Vre R,Vs e S, ,Vke K, :kes (Ib)

> do(s) =1 VO e O (lc)

seS

$o(s) >0 Vv €9, Vs € S. (1d)
4.2. Hardness Results

First, we study the computational complexity of finding
an approximate solution to BAYESIAN-OPT-SIGNAL. In
particular, given 0 < a < 1, we look for an a-approximate
solution in the multiplicative sense, i.e., a signaling scheme
providing at least a fraction « of the sender’s optimal ex-
pected utility (the optimal value of LP (1)). Theorem 1
provides our main hardness result, which is based on a re-
duction from the promise-version of LABEL-COVER (see
Appendix A for its definition and the proof of the theorem).

Theorem 1. Forevery0 < o < 1, itis NP-hard to compute
an a-approximate solution to BAYESIAN-OPT-SIGNAL,
even when the sender’s utility is such that, for every 6 € ©,
fo(R) = 1iff |R| > 2, while fo(R) = 0 otherwise.

Notice that Theorem 1 holds for problem instances in which

8Constraints (1b) encode persuasiveness for the signals rec-
ommending to play a1. The analogous constraints for ap can be
omitted. Indeed, by assuming that each fy is non-decreasing in the
set of receivers who play a1, any signaling scheme in which the
sender recommends ap when the state is 6 and the receiver prefers
a1 over ag can be improved by recommending a; instead.

functions fy are anonymous. Moreover, the reduction can
be easily modified so that functions fy are supermodular
and satisfy fo(R) = max{0,|R| — 1} for R C R. Thus:

Corollary 1.1. For 0 < o < 1, it is NP-hard to compute
an a-approximate solution to BAYESIAN-OPT-SIGNAL,
even when the sender’s utility is such that functions fg are
supermodular or anonymous for every 6 € ©.

By using arguments similar to those employed in the proof
of Theorem 6.2 by Roughgarden & Wang (2019), the hard-
ness of computing an c-approximate solution to the offline
problem can be extended to designing no-a-regret algo-
rithms in the online setting. Then:

Theorem 2. For every 0 < oo < 1, there is no polynomial-
time no-a-regret algorithm for the multi-receiver online
Bayesian persuasion problem, unless NP C RP, even when
functions fy are supermodular or anonymous for all 6 € ©.

In the rest of the work, we show how to design a polynomial-
time no-(1 — 1)-regret algorithm for the case in which the
sender’s utility is such that functions fy are submodular.

5. An Online Gradient Descent Scheme with
Approximate Projection Oracles

As a first step in building our polynomial-time algorithm,
we introduce our OGD scheme with an approximate pro-
Jjection oracle. Intuitively, it works by transforming the
multi-receiver online Bayesian persuasion setting into an
equivalent online learning problem whose decision space
does not need to explicitly deal with signaling schemes (thus
avoiding the burden of having an exponential number of pos-
sible signal profiles). The OGD algorithm is then applied
on this new domain. In our setting, we do not have access
to a polynomial-time (exact) projection oracle, and, thus,
we design and analyze the algorithm assuming access to an
approximate one only. As we show later in Sections 6 and 7,
such approximate projection oracle can be implemented in
polynomial time when the functions fy are submodular.

Let us recall that the OGD scheme that we describe in this
section is general and applies to any online learning problem
with a finite number of possible loss functions.

5.1. A General Approach

Consider an online learning problem in which the learner
takes a decision y* € ) at each iteration ¢ € [T']. Then, the
learner observes a feedback e! € &£, where & is a finite set
of p possible feedbacks. The reward (or negative loss) of a
decision y € Y given feedback e € £ is defined by u(y, ¢)
for a given function u : Y x & — [0, 1]. Thus, the learner is
awarded u(y*, et) for decision y? at iteration ¢, while she/he
would have achieved u(y, e!) for any other choice y € ).
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We transform this general online learning problem to a new
one in which the learner’s decision set is X C [0, 1]” with:

X = U {we [0,1) | x. < u(y,e) VeGE}. (2)
yeY

Intuitively, the set &’ contains all the vectors whose com-
ponents z. (one for each feedback e € &) are the learner’s
rewards u(y, e) for some decision y € ) in the original
problem. Moreover, the inequality “<” in the definition of
X also includes all the reward vectors that are dominated
by those corresponding to some decision in ). At each
iteration ¢ € [T, the learner takes a decision ' € X and
observes a feedback ¢! € £. The reward of decision € X
at iteration ¢ is the e-th component of x, namely z:. It is
sometimes useful to write it as l;r,a:, where 1.: € {0,1}?
is a vector whose e?-th component is 1, while all the others
are 0. Thus, the learner’s reward at iteration ¢ is mzt. Notice
that the size of the decision set X of the new online learning
setting does not depend on the dimensionality of the original
decision set ) (which, in our setting, would be exponential),
but only on the number of feedbacks p.

If Y and u are such that X" is compact and convex, then we
can minimize the a-regret R. in the original problem by
doing that in the new setting. Let us introduce the set aX :=
{ax | x € X} for any 0 < a < 1. Given a sequence of
feedbacks {e'},c(7) and a sequence of decisions {x"},c (7).
with e! € € and &' € X, we have that:

RT := max 1; (m — act)
rcaX
(7]
> £ _ t ot
>amax } uly,e’) = Y uly'se!),
te(T] te[T]

where {y'},c[7] is a sequence of decisions y* € Y for the
original problem such that z! < u(y’, e) fore € £.

We assume to have access to an approximate projection
oracle for a X', which we define in the following. By letting
E C & be asubset of feedbacks, we define 7 : X — [0, 1]P
as the function mapping any vector x € X to another one
that is equal to x in all the components corresponding to
feedbacks e € E, while it is 0 everywhere else. Moreover,
we let Xg := {7g(x) | © € X'} be the image of X" through
75, while aXg = {azx |z € Xg} for0 < a < 1.

Definition 1 (Approximate projection oracle). Consider a
subset of feedbacks E C &, a vector y € |0, 2]P such that
ye = 0forall e ¢ E, and an approximation error € € R.
Then, for any 0 < o < 1, an approximate projection oracle
va(E,y,€) is an algorithm returning a vector x € Xg and
a decisiony € Y with x. < u(y,e) forall e € £, such that:

|’ —z|? < |2’ —y|*+¢ Vo' €aXg.

Intuitively, ¢, returns a vector € X that is an approx-
imate projection of y onto the subspace aX’r. The vector

x can be outside of aXg. However, it is “better” than a
projection onto aXg, since, ignoring the € error, x is closer
than y to any vector in aX’r. Moreover, ¢, also gives a
decision y € ) that corresponds to the returned vector x.
Notice that, if o = 1 and € = 0, this is equivalent to find an
exact projection onto the subspace Xr.

5.2. A Particular Setting: Multi-Receiver Online
Bayesian Persuasion

Our setting can be easily cast into the general learning frame-
work described so far. The possible feedbacks are type
profiles, namely £ := IC, while the receivers’ type profile
k' € K is the feedback observed at iteration ¢ € [T'], namely
e := k'. Notice that the number of possible feedbacks is
p is m”™, which is exponential in the number of receivers.
The decision set of the learner (sender) ) is the set of all the
possible signaling schemes ¢, with i := ¢ being the one
chosen at iteration ¢. The rewards observed by the sender are
the utilities f(¢, k); formally, for every signaling scheme ¢
and type profile k € K, which define apairy € YVande € £
using the generic notation, we let u(y, ¢) := f(¢, k). Then,
the new decision set X C [0, 1]/*I is defined as in Equa-
tion (2). Notice that X is a compact and convex set, since it
can be defined by a set of linear inequalities. In the follow-
ing, we overload the notation and, for any subset K C /C of
types profiles, we let X == Xgfor EC E: F = K.

5.3. OGD with Approximate Projection Oracle

Algorithm 1 is an OGD scheme that operates in the X do-
main by having access to an approximate projection oracle
o (we call the algorithm OGD-APO).

The procedure in Algorithm 1 keeps track of the set B! C &
of different feedbacks observed up to each iteration ¢ € [T7].
Moreover, it works on the subspace A'zt, whose vectors
are zero in all the components corresponding to feedbacks
e ¢ E'. Since it is the case that |E*| < ¢, the procedure
in Algorithm 1 attains a per-iteration running time that is
independent of the number of possible feedbacks p.

Algorithm 1 OGD-APO
Input:

e approximate projection oracle ¢,
e learning rate n) € (0, 1]
e approximation error € € [0, 1]

Initialize y' € Y, E° + @, and &' < 0 € X1
fort=1,...,Tdo
Take decision y°
Observe feedback ¢! € £ and reward u(y’, e*) = «f,
E! + E=1u{e'}
yt+l — ZEt +7’]16t
(1, Y1) o (B ytH1 6
end for
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Next, we bound the a-regret incurred by Algorithm 1.

Theorem 3. Given an oracle ¢, (as in Definition 1) for
some 0 < a < 1, a learning rate n) € (0, 1], and an approx-
imation error € € [0, 1], Algorithm 1 has a-regret

ET| nT €T
RT < [E7] T, el
>~ 2 + 2 + 2n’

with a per-iteration running time poly(t).

By setting n = e:%,wegethgx/T(1+‘E2ﬂ).

1
\/T s
Notice that the bound only depends on the number of ob-
served feedbacks | ET'|, while it is independent of the over-
all number of possible feedbacks p. This is crucial for the
multi-receiver online Bayesian persuasion case, where p is
exponential in the the number of receivers n. On the other
hand, as T goes to infinity, we have |ET'| < p, so that the
regret bound is sublinear in 7.

6. Constructing a Poly-Time Approximate
Projection Oracle

The crux of the OGD-APO algorithm (Algorithm 1) is be-
ing able to perform the approximate projection step. In this
section, we show that, in the multi-receiver Bayesian persua-
sion setting, the approximate projection oracle ¢, required
by OGD-APO can be implemented in polynomial time by
an appropriately-engineered ellipsoid algorithm. This calls
for an approximate separation oracle O, (see Definition 2).

We proceed as follows. In Section 6.1, we define an appro-
priate notion of approximate separation oracle, and show
how to find, in polynomial time, an a-approximate solution
to the offline problem BAYESIAN-OPT-SIGNAL. This is
a preparatory step towards the understanding of our main
result in this section, and it may be of independent interest.
Then, in Section 6.2, we exploit some of the techniques in-
troduced for the offline setting in order to build ¢, starting
from an approximate separation oracle O,,.

6.1. Warming Up: The Offline Setting

An approximate separation oracle O,, finds a signal profile
s € S that approximately maximizes a weighted sum of the
fo functions, plus a weight for each receiver which depends
on the signal s, sent to that receiver. Formally:

Definition 2 (Approximate separation oracle). Consider a
state 0 € ©, a subset K C K, a vector A € R‘Kl, weights
W = (Wys)rer.ses, With wy s € R and wy & = 0 for all
r € R, and an approximation error € € R. Then, for any
0 < a < 1, an approximation oracle O, (0, K, A\, w,€) is

an algorithm returning an s € S such that:

Z Aka(Rg) + Z Wy s,.

keK reR
k
> max {a Y Aefo(RE)+ ) wr,s¢} —e (3
keK reR

in time poly (n, | K|, max, s |wy ¢|, maxg Ak, %)

As a preliminary result, we show how to use an oracle O,
to find in polynomial time an a-approximate solution to
BAYESIAN-OPT-SIGNAL (see Section 4). This problem
is interesting in its own right, and allows us to develop a
line of reasoning that will be essential to prove Theorem 5.

Theorem 4. Given € € R and an approximate separation
oracle Oy, with 0 < a < 1, there exists a polynomial-time
approximation algorithm for BAYESIAN-OPT-SIGNAL
returning a signaling scheme with sender’s utility at least
aOPT — ¢, where OPT is the value of an optimal signaling
scheme. Moreover, the algorithm works in time poly(%).

Proof Overview. The dual of LP (1) has a polynomial num-
ber of variables and an exponential number of constraints,
and a natural way to prove polynomial-time solvability
would be via the ellipsoid method (see, e.g., (Khachiyan,
1980; Grotschel et al., 1981)). However, in our setting,
we can only rely on an approximate separation oracle,
which renders the traditional ellipsoid method unsuitable
for our problem. We show that it is possible to exploit a
binary search scheme on the dual problem to find a value
~* € [0, 1] such that the dual problem with objective v* is
feasible, while the dual with objective v* — 3, 5 > 0, is
infeasible. That algorithm runs in log(3) steps. At each
iteration of the algorithm, we solve a feasibility problem
through the ellipsoid method equipped with an appropriate
approximate separation oracle which we design. In order to
build a poly-time separation oracle we have to carefully man-
age all the settings in which O,, would not run in polynomial
time, according to Definition 2. Specifically, we need to
properly manage large values of the weights w, since O,
is polynomial in max,. s |w, s|. Once we do that, the ap-
proximate separation oracle is guaranteed to find a violated
constraint, or to certify that all constraints are approximately
satisfied. Finally, we show that the approximately feasible
solution computed via bisection allows one to recover an
approximate solution to the original problem O

6.2. From an Approximate Separation Oracle to an
Approximate Projection Oracle

Now, we show how to design a polynomial-time approxi-
mate projection oracle ¢, using an approximate separation
oracle O,,. The proof employs a convex linearly-constrained
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quadratic program that computes the optimal projection on
X, the ellipsoid method, and a careful primal-dual analysis.

Theorem 5. Given a subset K C K, a vector y € |0, 2]|’C|
such that yi, = 0 for all k ¢ K, and an approximation error
e € Ry, forany 0 < a < 1, the approximate projection
oracle ¢, (K,y,€) can be computed in polynomial time by
querying the approximate separation oracle Q..

Proof Overview. We start by defining a convex minimiza-
tion problem, which we denote by (p), for computing the
projection of y on X'x. Then, we work on the dual of (),
which we suitably simplify by reasoning over the KKT con-
ditions of the problem. As in the proof of Theorem 4, we
proceed by repeatedly applying the ellipsoid method on a
feasibility problem obtained from the dual, decreasing the
required objective v* by a small additive factor /5. The el-
lipsoid method is equipped with the approximate separation
oracle that employs the oracle in Definition 2 and carefully
manages the cases in which O, would not run in polyno-
mial time. In this case, the problem is complicated by the
fact that we have to determine an approximate projection
over a X, rather than an approximate solution to (). We
found two dual problems such that one dual problem with
objective v* is feasible, while the second one with objective
v* + [ is infeasible. From these problems, we define a
new convex optimization problem that is a modified ver-
sion of (P) and has value at least 4v*. Then, we show that
a solution to this problem is close to a projection on a set
which includes aXk. Finally, we restrict (P) to the primal
variables corresponding to the set of (polynomially-many)
violated dual constraints determined during the last appli-
cation of the ellipsoid method that returns unfeasible, i.e.,
where the ellipsoid method for feasibility problem is run
with objective v* + . We conclude the proof by show-
ing that a solution to this restricted problem is precisely an
approximate projection on a superset of a X' . O

7. A Poly-Time No-a-Regret Algorithm for
Submodular Sender’s Utilities

In this section, we conclude the construction of our
polynomial-time no-(1 — %)-regret algorithm for settings in
which sender’s utilities are submodular. The last component
that we need to design is an approximate separation oracle
O, (see Definition 2) running in polynomial time. Next, we
show how to obtain this by exploiting the fact that functions
fo are submodular in the set of receivers playing action a;.

First, we establish a relation between direct signals S and
matroids. We define a matroid Ms := (Gs, Zs) such that:
e the ground setis Gs := {(r,s) | r € R,s € S, };

e asubset I C Gg belongs to Zs if and only if I contains
at most one pair for each receiver r € R.

The elements of the ground set Gs represent receiver, signal
pairs. However, sets I € Zs do not characterize signal
profiles, as they may not define a signal for each receiver.
Indeed, direct signal profiles are captured by the basis set
B(Ms) of the matroid M. Let us recall that B(M.s)
contains all the maximal sets in Zg, and, thus, a subset
I C Ts belongs to B(M ) if and only if I contains exactly
one pair for each receiver 7 € R. Intuitively, a basis I €
B(M ) defines a direct signal profile s € S in which, for
each receiver r € R, all the receiver’s types in s € S, such
that (r,s) € I are recommended to play action a;, while
the others are told to play ag.

The following Theorem 6 provides a polynomial-time ap-
proximation oracle O, _1 for instances in which fj is sub-
modular for each state of nature § € ©. The core idea of
its proof is that ),  ;c Ak fo (RF) (see Equation (3)) can be
seen as a submodular function defined for the ground set Gs
and optimizing over direct signal profiles s € S is equiv-
alent to doing that over the bases B(Mg) of the matroid
Ms. Then, the result is readily proved by exploiting some
results concerning the optimization over matroids.’

Theorem 6. If the sender’s utility is such that function fy is
submodular for each 6 € O, then there exists a polynomial-
time separation oracle O _1.

In conclusion, by letting 7 C K be the set of receivers’
type profiles observed by the sender up to iteration 7', the fol-
lowing Theorem 7 provides our polynomial-time no-(1—1)-
regret algorithm working with submodular sender’s utilities.

Theorem 7. If the sender’s utility is such that function fy is
submodular for each 6 € ©, then there exists a no-(1 — é)—
regret algorithm having (1 — 1)-regret

R , <0 (\/T|ICT|) :
with a per-iteration running time poly(T,n, d).

Proof. We can run Algorithm 1 on an instance of our multi-
receiver online Bayesian persuasion problem. By Theo-

rem3,ifweset77:ﬁ,e:%,andazl—%,weget

the desired regret bound (notice that the set of observed
feedbacks is £ = K in our setting). Algorithm 1 employs
an approximate projection oracle ¢, 1 that we can imple-
ment in polynomial time by using theealgorithm provided
in Theorem 5. This requires access to a polynomial-time
approximate separation oracle O; _1, which can be imple-
mented by using Theorem 6, under the assumption that the
sender’s utility is such that functions fy are submodular. [J

The separation oracle provided in Theorem 6 guarantees the
desired approximation factor with arbitrary high probability. It
is easy to see that, since the algorithm fails with arbitrary small
probability, this does not modify our regret bound except for an
(arbitrary small) negligible term.
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Notice that the regret bound only depends on the number
|KCT'| of receivers’ type profiles observed up to iteration 7,
while it is independent of the overall number of possible
type profiles |[KC| = m™, which is exponential in the number
of receivers. Thus, the (1 — 1)-regret is polynomial in the
size of the problem instance provided that the type profiles
received as feedbacks by the sender are polynomially many
(though the sender does not have to know which are these
type profiles in advance). This is reasonable in many practi-
cal applications, where not all the type profiles can occur,
since, e.g., receivers’ types are highly correlated. On the
other hand, let us remark that, as 7" goes to infinity, we have
IKT| < m™, so that the regret is sublinear in T".
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