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Abstract

This document contains the supplementary materials for the paper “Marginal
Contribution Feature Importance - an Axiomatic Approach for Explaining Data”.

A Proofs

In this section we group together all the proofs for the theorems we presented in the main paper.

A.I Existence and Uniqueness of the Feature Importance Score

Here we prove Theorem 1 states that there is a function for which all the axioms defined in Definition 2
hold and that this function is unique. This proof is a constructive proof in the sense that we are able
to show that the only feature importance function for which the axioms hold is the function Iν that
assigns to the feature f ∈ F the score

Iv(f) = max
S⊆F

(v(S ∪ {f})− v(S)) = max
S⊆F

∆ (f, S, ν) .

Meaning, the importance of a feature is the maximum contribution to the evaluation function ν over
any subset of features.
Lemma 1. Let Iν be a feature importance function for which axioms (1), (2) hold (marginal
contribution, and elimination axiom). Then:

Iν (f) ≥ max
S⊆F

∆ (f, S, ν) .

Proof. We prove the statement using induction on the size of the feature set F . Let n = |F |. If n = 1
(i.e F = {f}) then from the marginal contribution axiom we have that

Iν (f) ≥ ν ({f})− ν (∅) = max
S⊆F

∆ (f, S, ν) .

Assume that the statement holds for any set of features of size < n for n > 1. Let |F | = n and let
f ∈ F . Let S∗ = arg max

S⊆F
∆ (f, S, ν). If there exists f ′ ∈ F \{S∗ ∪ {f}} then from the elimination

axiom, if {f ′} is eliminated we will obtain F ′ and ν′ such that |F ′| = n− 1 and Iν′ (f) ≤ Iν (f).
However, since S∗ ⊆ F ′ we have that from the assumption of the induction:

Iν (f) ≥ Iν′ (f) ≥ ∆ (f, S∗, ν′) = ∆ (f, S∗, ν) = max
S⊆F

∆ (f, S, ν) .

Otherwise, assume that S∗ = arg max
S⊆F\

∆ (f, S, ν) is such that S∗ ∪ {f} = F . Therefore,

max
S⊆F

∆ (f, S, ν) = ∆ (f, F \ {f}, ν). From the marginal contribution axiom we have that

Iν (f) ≥ ∆ (f, F \ {f}, ν) = max
S⊆F

∆ (f, S, ν).



Lemma 1 shows that any importance function that has the marginal contribution property and the
elimination property must assign an importance score of at least max

S⊆F
∆ (f, S, ν) to every feature.

Therefore, by adding the minimalism axiom we obtain the uniqueness and existence of the feature
importance function as shown in Theorem 1.

Here we prove Theorem 1

Proof. Adding the minimalism axiom to Lemma 1 shows that if the marginal contribution and
the elimination axioms hold for Iν (f) = max

S⊆F
∆ (f, S, ν) then it is the unique feature importance

function. Proving that the marginal contribution axiom hold is straight-forward: for a feature f ∈ F

Iν (f) = max
S⊆F

∆ (f, S, ν) ≥ ∆ (f, F \ {f}, ν) = ν (F )− ν (F \ {f}) .

To see that the elimination axiom holds too, let T ⊂ F and let f ∈ F \ T . If T is eliminated from F
to create F ′ and ν′ then

Iν (f) = max
S⊆F

∆ (f, S, ν) ≥ max
S⊆F ′

∆ (f, S, ν) = max
S⊆F ′

∆ (f, S, ν′) = Iν′ (f) .

A.II Properties of the MCI Function

Here, we prove the MCI function properties presented in Theorem 2.

Proof. Dummy: Let f be a dummy variable such that ∀S ⊆ F, ∆ (f, S, ν) = 0 then Iν (f) =
max
S⊆F

∆ (f, S, ν) = 0.

Symmetry: Let fi and fj be such that for every S ⊆ F we have that ν (S ∪ {fi}) = ν (S ∪ {fj}).
Consider any set S ⊆ F . We consider three cases, (1) fi, fj ∈ S, (2) fi, fj /∈ S, and (3) exactly one
of fi, fj is in S. In case (1) we have that ∆ (fi, S, ν) = ∆ (fj , S, ν) = 0. In case (2) we have:

∆ (fi, S, ν) = ν (S ∪ {fi})− ν (S) = ν (S ∪ {fj})− ν (S) = ∆ (fj , S, ν) .

In case (3) assume, w.l.o.g. that fi ∈ S and fj /∈ S. Let S′ denote the set S where fi is replaced by
fj and therefore, due to the symmetry between fi and fj it holds that ν (S) = ν (S′). Note also that
S ∪ {fj} = S′ ∪ {fi} and therefore ∆ (fj , S, ν) = ∆ (fi, S

′, ν). From analyzing these 3 cases it
follows that for every S ⊆ F there exists S′ ⊆ F such that ∆ (fi, S, ν) = ∆ (fj , S

′, ν). Therefore,
Iν(fi) ≤ Iν(fj). However, by replacing the roles of fi and fj it also holds that Iν(fi) ≥ Iν(fj) and
therefore Iν(fi) = Iν(fj).

Super-efficiency: Let S ⊆ F . w.l.o.g. let S = {f1, f2, . . . , fk}. Define ∀i≤kSi = {fj}j≤i.
Therefore, S0 = ∅ and Sk = S. Since by definition ν(∅) = 0,

ν (S) = ν (Sk)− ν (S0) =

k−1∑
i=0

(ν (Si+1)− ν (Si))

=

k−1∑
i=0

∆ (fi+1, Si, ν) ≤
k−1∑
i=0

Iν (fi+1) =
∑
f∈S

Iν (f) .

Sub-additivity: if ν and ω are evaluation functions defined on F then for all f ∈ F

Iν+ω (f) = max
S⊆F

∆ (f, S, v + ω)

= max
S⊆F

(∆ (f, S, ν) + ∆ (f, S, ω))

≤ max
S⊆F

∆ (f, S, ν) + max
S⊆F

∆ (f, S, ω)

= Iν (f) + Iω (f) .
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Upper bound the self contribution: For f ∈ F We have that Iν (f) = max
S⊆F

∆ (f, S, ν) ≥

∆ (f, ∅, ν) = ν ({f})− ν (∅) = ν ({f}).

Duplication invariant: Assume that fi ∈ F is a duplication of fj ∈ F in the sense that for
every S ⊆ F \ {fi, fj} we have that ν (S ∪ {fi, fj}) = ν (S ∪ {fi}) = ν (S ∪ {fj}). Let F ′
and ν′ be the results of eliminating {fi} and let f ∈ F ′. From the elimination axiom we have
that Iν (f) ≥ Iν′ (f). Assume that S∗ ⊆ F is such that Iν(f) = ∆(f, S∗, ν). If fi /∈ S∗ then
S∗ ⊆ F ′ and Iν′ (f) ≥ ∆(f, S∗, ν′) = ∆(f, S∗, ν) = Iν (f). Otherwise fi ∈ S∗ and it holds
for S′ = S∗ ∪ {fj} \ {fi} that ∆(f, S∗, ν) = ∆(f, S′, ν) = ∆(f, S′, ν′) ≤ Iν′(f). Therefore, in
all possible cases we have that Iν (f) ≤ Iν′ (f). When combined with the elimination axiom we
conclude that Iν (f) = Iν′ (f).

A.III MCI Function Uniform Convergence of Empirical Means

In the following we prove Theorem 3 presented in the main paper. Recall that this theorem uses the
uniform convergence of empirical means [9] to show that with high probability, ν can be estimated to
within an additive factor using a finite sample and this estimate can be used to approximate MCI to
within a similar additive factor.

Proof. Let µ be a probability measure over X × Y . Let F be a set of random variables (features)
over X . For any S ⊆ F let HS be a hypothesis class defined using only the features in S and
let d = log2 max

S⊆F
(|HS |). Let ` : Y × Y 7→ {0, 1} be a 0-1 loss function, ε, δ > 0 and m ≥

( 2
ε2 )
(
d+ |F |+ log2

(
2
δ

))
.

For any hypothesis class h we denote the test loss expectation by eP (h) = E(x,y)∼µ(`(h(x), y)),
and the empirical loss expectation for a sample D ∼ µm by eD(h) = E(x,y)∼µm(`(h(x), y)).

Given the above notations, we define the true evaluation function ν : P(F ) 7→ R+ for any S ⊆ F to
be ν(S) = minh∈H∅ eP (h)−minh∈HS eP (h), and the empirical evaluation function νD : P(F ) 7→
R+ for any S ⊆ F to be νD(S) = minh∈H∅ eD(h)−minh∈HS eD(h).

First, we show that for all S ⊆ F :

|νD(S)− ν(S)| ≤ max
h∈HS

|(eD(h)− eP (h))|

Let S ⊆ F . Denote h∗D = arg minh∈HS eD(h) and h∗ = arg minh∈HS eP (h). On one hand we
have that:

νD(S)− ν(S) = min
h∈HS

eD(h)− min
h∈HS

eP (h)

= eD(h∗D)− eP (h∗)

≤ eD(h∗)− eP (h∗)

≤ max
h∈HS

|eD(h)− eP (h)|

And on the other hand:

ν(S)− νD(S) = min
h∈HS

eP (h)− min
h∈HS

eD(h)

= eP (h∗)− eD(h∗D)

≤ eP (h∗D)− eD(h∗D)

≤ max
h∈HS

|eD(h)− eP (h)|

Next we would like to show that for any f ∈ F it holds that |IνD (f)− Iν( f)| ≤
2 maxS⊆F |νD(S)− ν(S)|.
Let f ∈ F and let S∗ = arg maxS⊆F (∆ (f, S, ν)), S∗D = arg maxS⊆F (∆ (f, S, νD)).
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Notice that:

IνD (f)− Iν(f) = ∆ (f, S∗D, νD)−∆ (f, S∗, ν)

≤ ∆ (f, S∗D, νD)−∆ (f, S∗D, ν)

≤ max
S⊆F
|∆ (f, S, νD)−∆ (f, S, ν)|

and also:

Iν(f)− IνD (f) = ∆ (f, S∗, ν)−∆ (f, S∗D, νD)

≤ ∆ (f, S∗, ν)−∆ (f, S∗, νD)

≤ max
S⊆F
|∆ (f, S, νD)−∆ (f, S, ν)|

and therefore we get that:

|IνD (f)− Iν( f)| ≤ max
S⊆F
|∆ (f, S, νD)−∆ (f, S, ν)|

= max
S⊆F
| (νD(S ∪ {f})− νD(S))− (ν(S ∪ {f})− ν(S)) |

≤ max
S⊆F
|νD(S ∪ {f})− ν(S ∪ {f})|+ max

S⊆F
|νD(S)− ν(S)|

≤ 2 max
S⊆F
|νD(S)− ν(S)|

Hence, using union bound and Hoeffding inequality, for any f ⊆ F it holds that:

P [|IνD (f)− Iν( f)| > ε] ≤ P

[
2 max
S⊆F,h∈HS

|νD(S)− ν(S)| > ε

]
≤ P

[
2 max
S⊆F,h∈HS

|eD(h)− eP (h)| > ε

]

= P

 ⋃
S⊆F,h∈HS

{2|eD(h)− eP (h)| > ε}


≤

∑
S⊆F,h∈HS

P [2|eD(h)− eP (h)| > ε]

≤ 2(|F |+d+1)e
−mε2

2 ≤ δ .

Where the last inequality follows by using the bound on m in the statement of this theorem.

B Additional Properties of the MCI Function

In the following theorem we present and prove additional relevant properties of the MCI function,
that were not discussed in the main paper.
Theorem 1. Let F be a set of features, let ν be an evaluation function and let Iν be the MCI function.
The following holds:

• Scaling: ∀f ∈ F, ∀λ > 0, Iλν (f) = λIν (f).

• Monotonicity: If ∀S ⊆ F \ {fi, fj}, v (S ∪ {fi}) ≤ v (S ∪ {fj}) then Iv (fi) ≤ Iv (fj).

Where λν denotes for multiplying each value of ν by λ.

In the following we prove theorem 1

Proof. :

Scaling: This property follows since for every f and every S it holds that λ∆(f, S, ν) = ∆(f, S, λν).
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Monotonicity: Let fi, fj ∈ F for which ∀S ⊆ F \ {fi, fj}, v (S ∪ {fi}) ≤ v (S ∪ {fj}). Let S∗
be such that Iν (fi) = ∆(fi, S

∗, ν). Then, if fj /∈ S∗ it holds that
Iν (fi) = ∆(fi, S

∗, ν) ≤ ∆(fj , S
∗, ν) ≤ Iν (fj) .

Otherwise, if fj ∈ S∗ then
Iν (fi) = ∆(fi, S

∗, ν) ≤ ∆(fj , S
∗ ∪ {fi} \ {fj}, ν) ≤ Iν (fj) .

C Computation Optimizations

We now turn our attention to the computational challenge of computing or approximating the MCI
function. Straight-forward computation is exponential in the size of the feature set. Therefore we
study cases in which the computation can be made efficient and also study approximation techniques.

C.I Submodularity

In the following we show that if the evaluation function ν is submodular [7] then the MCI feature
importance score is equal to the self contribution of each feature.
Lemma 2. If ν is sub-modular then Iν (f) = ν ({f}).

Proof. Recall that in that case there is a diminishing return and therefore for every S ⊆ F \ {f}:
ν (S ∪ {f}) ≤ ν (S) + ν ({f}). Therefore,

∆(f, S, ν) = ν(S ∪ {f})− ν(S) ≤ ν({f}) = ∆(f, ∅, ν)

The submodularity assumption might be too stringent in some cases. For example, if the target
variable is an XOR of some features then the submodularity assumption does not hold. However,
if we assume that submodularity holds for large sets then we obtain a polynomial algorithm for
computing the feature importance. This may make sense in the genomics setting where genes may
have synergies but we may assume that only small interactions of 2, 3, or 4 genes are significant. We
begin by defining k-size submodularity:
Definition 2. A function ν : P(F ) 7→ R is k-size submodular if for every S, T ⊆ F such that
|S|, |T | ≥ k

ν(S) + ν(T ) ≥ ν(S ∪ T ) + ν(S ∩ T )

A function ν : P(F ) 7→ R is soft k-size submodular if it holds that for every T ⊆ F , |T | > k, f ∈ F
there exists S ⊆ T , |S| ≥ k for which:

ν(S ∪ {f}) + ν(T ) ≥ ν((S ∪ {f}) ∪ T ) + ν((S ∪ {f}) ∩ T )

Lemma 3. If ν is k-size-submodular or soft k-size-submodular then
Iν(f) = max

S⊆F : |S|≤k
∆(f, S, ν)

Proof. First, we show that if ν is k-size-submodular it is also soft k-size-submodular. Let ν be a
k-size-submodular evaluation function. Let T ⊆ F , |T | > k and let S ⊆ T , |S| ≥ k, f ∈ F . From
the k-size-submodular property we get that:

ν(S ∪ {f}) + ν(T ) ≥ ν((S ∪ {f}) ∪ T ) + ν((S ∪ {f}) ∩ T )

And therefore ν is also soft k-size-submodular. Hence, it is enough to prove the theorem for soft
k-size-submodular functions.
Let ν be a soft k-size-submodular evaluation function. Let T ⊆ F be such that T =
arg min {|T | : Iν(f) = ∆(f, T, ν)}. Assume, in contradiction, that |T | > k. Note that f /∈ T
since if f ∈ T then Iν(f) = ∆(f, T, ν) = 0, and in this case we have that Iν(f) = ∆(f, ∅, ν) in
contradiction. Due to the soft k-size submodular and monotone properties of ν it follows that there
exists S ⊆ T , |S| ≤ k such that:

ν(S ∪ {f}) + ν(T ) ≥ ν(T ∪ {f}) + ν(S)

Therefore, ∆(f, S, ν) = ν(S ∪ {f}) − ν(S) ≥ ν(T ∪ {f}) − ν(T ) = ∆(f, T, ν). This is a
contradiction since |S| < |T |.
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Lemma 3 shows that if ν is soft k-size-submodular then the entire function Iν can be computed in
time O

(
|F |k+1

)
.

C.II Branch and Bound Optimization

Here we show how we can discard computation for some of the subsets using a branch and bound
like technique.
Lemma 4. For every S0 ⊆ S1 ⊆ S2 ⊆ F and f ∈ F :

∆ (f, S1, ν) ≤ ν (S2 ∪ {f})− ν (S0)

Proof. This lemma follows from the monotone property of ν.

∆ (f, S1, ν) = ν (S1 ∪ {f})− ν (S1) ≤ ν (S2 ∪ {f})− ν (S0) .

The ability to upper bound Iν provided by this Lemma allows cutting back the computation sig-
nificantly. For example, if we computed ∆(f, S, ν) for every set S of size k and we have that
max
S:|S|≤k

∆(f, S, ν) ≥ max
S:|S|=k

ν(F ) − ν(S) then Iν(f) = max
S:|S|≤k

∆(f, S, ν). The following lemma

proves this property in a more general setting.
Lemma 5. Let S = {S ⊆ F s.t. |S| = K} and T = {T ⊆ F s.t. |T | = k} for 0 ≤ k ≤ K ≤ |F |.
Let S̄ = {S ⊆ F : ∃S′ ∈ S s.t. S′ ⊆ S} and T = {T ⊆ F : ∃T ′ ∈ T s.t. T ⊆ T ′}. Let
sf = max

S∈S̄
∆(f, S, ν) and tf = max

T∈T
∆(f, T, ν) and stf = max

S∈S,T∈T
ν(S ∪ f)− ν(T ) then

max(sf , tf ) ≤ Iν(f) ≤ max(sf , tf , stf ) .

Proof. The lower bound on Iν(f) follows from the simple fact that for every S ⊆ 2F

max
S∈S

∆(f, S, ν) ≤ Iν(f) .

Let S∗ be such that Iν(f) = ∆(f, S∗, ν). If S∗ ∈ S̄∪T then Iν(f) = max(st, tf ). Otherwise, there
exists S ∈ S and T ∈ T such that T ⊂ S∗ ⊂ S and from Lemma 5 it holds that

Iν(f) = ∆(f, S∗, ν) ≤ ν(S ∪ f)− ν(T )

which completes the proof.

C.III Heuristics

Recall that for any S ⊆ 2F it holds that max
S∈S

∆(f, S, ν) ≤ Iν(f). Therefore, any method can be

used to select S and obtain a lower bound on the feature importance. In the experiments in this paper
we used random permutations to generate the set S following the proposal of [3]. This method is
described in Section 5. Our experiments show that this method is effective. however, in some cases it
may be too demanding since for every subset of features a model has to be trained. The computational
cost can be further reduced by using a method such as SAGE [3] to estimate ∆(f, S, ν) from a model
that was trained on the entire dataset and therefore trained only once. Only for sets S such that SAGE
estimates that ∆(f, S, ν) is large, the real value can be computed via training models. Therefore, the
estimator SAGE (or any other proposed method) is used to eliminate testing sets S for which the
marginal contribution of f is predicted to be small.

D Experiments Supplementary Material

In the following we provide additional information about the experiments presented in Section 5 in
the main paper.

Table 1 summarizes the models and the datasets used in each experiment, along with computation
times. We note that unless stated else in Section 5, we used the default hyper-parameters provided by
the framework of each model we trained. For the collinearity and BRCA experiments we used the
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Table 1: Experiments Summary. This table summarizes the experiments presented in Section 5.
Note that in cases when there is more than one setting, the table provides the results of the setting
that contains the greatest number of features.

Experiment #Features #Examples Model #Evaluations Loss Run Time (Hours)

Collinearity 17 10K Elastic-Net 217 MSE 2:12
Non-linearity 8 100K MLP 28 Cross Entropy 1:17
BRCA 50 512 Logistic Regression 215 × 50 Cross Entropy 34:10
BSI 20 7,436 LightGBM 214 × 20 Cross Entropy 8:20

Figure 1: Detailed results of the collinearity experiment. The importance assigned to the features
correlated with A are shown in purple, with B in blue and with C in orange.

Scikit-learn package version 0.23.1 [8]. For the non-linearity XOR experiment we used Keras version
2.4.3 [2]. For the BSI experiment we used LightGBM version 2.3.0 [6]. For all the experiments but
the BSI experiment we used a machine with 2 Intel Xeon Silver 4114 @ 2.20GHz CPUs. The BSI
experiment was performed using a VM on a shared computer.

D.I Additional Results for the Collinearity Synthetic Experiment

Figure 1 provides the scores assigned by the different methods in the collinearity experiment described
in Section 5.1 in the main paper. As seen, MCI is the only method that is not effected by the addition
of correlated features. SV and SAGE completely reverse the expected order and find the feature
correlated with C as most important, followed by the features correlated with B, and last by the
features correlated with A, despite the fact that Y = 3A+ 2B + C.

D.II Model Agnostic for Non-Linear Interactions Synthetic Experiment

In the following we describe an additional experiment designed to test the robustness of MCI and the
other methods to changes in the underlying model used. We repeat the experiment presented in the
main paper in Section 5.2 and use a Random Forest classifier instead of MLPs. Specifically, we define
ν(S) for each subset of features S to be the test accuracy of a Random Forest Classifier trained with
10 decision trees and the other default parameters provided by the Scikit-learn [8] package version
0.23.1.

As shown in Figure 2, MCI and SV provide similar scores when using MLPs and Random Forests,
while SAGE provides slightly different scores. These results suggest that SAGE is less agnostic to
the type of model used to evaluate ν. This can be explained by the fact that SAGE is a method for
explaining models and therefore is more sensitive to the type of model in use.

D.III Additional Details about the BRCA Experiments

Here we provide additional details about the BRCA experiments described in Section 5.3 in the main
paper. We note that we followed the same processing steps as in [3] and provide the processed dataset
we used for the quality test1.

1https://github.com/TAU-MLwell/Marginal-Contribution-Feature-Importance
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Figure 2: Results of the model agnostic non-linear interactions synthetic experiment. The scores
assigned by each method using MLPs are shown in green, and the scores assigned by each method
using Random Forest models are shown in orange. In the top row (1), we show for each method the
feature importance assigned to the uncorrelated set of features (F 1). In the bottom row (2) we show
the importance assigned for the correlated set of features (F 2). Note that MCI and SV are agnostic to
the type of model used, while SAGE provides slightly different scores for each model.

Table 2: Quality scores for the BRCA robustness experiment. This table shows the NDCG scores
for the top-10 rankings provided by each of the methods, for each sample of genes used. Higher
is better, perfect score is 1.00. As seen, MCI and SV perfectly identify the genes in R, for all the
samples. This suggests that the added genes in each sample are not likely to be BRCA related.

Method / Sample no. 1 2 3 4 5

MCI 1.00 1.00 1.00 1.00 1.00
SV 1.00 1.00 1.00 1.00 1.00
SAGE 0.93 0.94 0.87 1.00 0.94
Ablation 0.70 0.83 0.79 0.87 0.87

Figure 3 provides the full scores assigned by the different methods in the BRCA quality experiment.

Figure 4 shows the convergence of the rankings induced by MCI and SV methods, for the BRCA
quality experiment. As seen, both methods did not change their rankings for more than 5,000
consecutive sampled permutations, and therefore we consider them as converged.

Table 2 shows the quality of the rankings produced in the BRCA robustness experiment for each of
the 5 samples used. The quality is measured by the top-10 NDCG score following Section 5.3. As
seen, MCI and SV perfectly identify all the BRCA related genes (R) as most important, while SAGE
and Ablation identify most of them in the top-10. This suggests that indeed the set of genes added to
R in each of the samples are not likely to be BRCA related by themselves.

D.IV Bloodstream Infection Mortality Experiment

In the following we provide more details about the BSI experiment described in Section 5.4 in the
main paper. This experiment uses data from medical records collected and was conducted with IRB
approval. However, this approval does not allow the release of the data due to privacy concerns. We
note that except for this experiment, all the data used in the paper is publicly available.

The BSI dataset contains 20 features extracted from Electronic Health Records (EHRs) of 7,436
patients, hospitalized with a positive blood culture (bacterial only). For each patient, a binary variable
is provided that indicates in-hospital or 30-day mortality. The dataset is further split into a training
set contains 6,135 patients admitted to the hospital during 2014-2018, and a future test set contains
1,301 patients admitted during 2019-2020. We further split the training set into 80%/20% for train
and validation sets. Table 3 provides a description for each feature in the BSI dataset. Figure 5 shows
the absolute Pearson correlation coefficient matrix between the features in the BSI dataset. Figure 6
shows in detail the importance scores assigned by each method in this experiment.
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(a) MCI (b) SV

(c) SAGE (d) Bivariate Association

(e) Ablation

Figure 3: Detailed results of the BRCA quality experiment. The BRCA related genes are shown
in blue, and the other genes in grey.

E Robustness Experiments on UCI Datasets

In this section we present additional experiments comparing the robustness of different feature
importance methods. We use six datasets from the UCI repository [4] (see description of the datasets
in Table 4). For each dataset, we first computed feature importance using different methods. Then,
to test robustness, for each method we duplicated three times the feature that was ranked first and
re-compute the feature importance. For these experiments we define ν(S) for each subset of features
S as the average performance of a gradient boosting model (GBM) [5], over 3-fold cross validations.
For regression tasks we used MSE loss and for classification tasks we used cross entropy loss. We
used the GBM provided by the Scikit-learn package, along with its default parameters (except for
setting the number of estimators to be 10).

The results of these experiments are shown in the following Figures: 7 (Heart Disease ), 8 (Wine
Quality), 9 (German Credit), 10 (Bike Rental), 11 (Online Shopping), 12 (Bank Marketing). For all
datasets, the scores assigned by MCI were practically identical with or without the duplicated features.
However, the score assigned by SV to the feature that was duplicated was reduced significantly once
duplicated. On the Heart Disease dataset and on the Wine Quality dataset, this was sufficient to
change the ranking of the top feature to the 2nd or even the 3rd position. On the German Credit
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Figure 4: Convergence of MCI and SV for the BRCA quality experiment. This graph shows the
number of rankings changes for each window of 50 sampled permutations. The number of changes is
shown in blue for MCI and in red for SV. As seen, there are no rank changes for more then 5,000
consecutive sampled permutations, and therefore we consider both scores as converged in the point
when 215 permutations are already sampled.

Table 3: BSI dataset features description.
Name Description

RBC Red Blood Cells count in (10e6/µL )
Hemoglobin Hemoglobin count
HCT Hematocrit or the volume percentage of RBCs in blood (%)
MCH Mean Corpuscular Hemoglobin, the average mass of hemoglobin per RBC
MCV Mean Corpuscular Volume, the average volume of a red blood corpuscle (fL)
RDW Red Cell Distribution Width, the range of variation of RBC volume (%)
Creatinine Creatinine concentration in blood (mg/dL)
Age Age of patient upon admission in (years)
Sex Patient sex (male/female)
CCI Charlson Comorbidity Index [1]
AST Aspartate Aminotransferase concentration in blood (U/L)
PAC Platelet Automated Count in blood (10e3/µL)
Alkaline Alkaline Phosphatase concentration in blood (U/L)
MPV Mean platelet volume, average size of platelets found in blood (fL)
Neutrophils Neutrophils count in blood (10e3/µL)
Direct Bilirubin Direct Bilirubin concentration in blood (mg/dL)
Indirect Bilirubin Indirect Bilirubin concentration in blood (mg/dL)
WBC White Blood Cells Count in blood
Albumin Albumin concentration in blood (g/L)
ALT Alanine Transaminase (U/L)

Default and the Bike Rental datasets the top feature, which had a big margin over the 2nd most
important feature, maintained its position but with small margin. On the Online Shopping dataset and
the Bank Marketing datasets, the original margin of the top feature was so big that even though the
score was reduced after duplicating the top feature, it remained in top position with a large margin.
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Figure 5: Absolute Pearson correlation matrix of the BSI features. The names of the RBC related
features are highlighted in red.
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Figure 6: Detailed results of the BSI experiment. The top row (1) shows the importance scores
assigned by each method for the subset of features when the RBC correlated features are removed.
The bottom row (2) shows the importance scores assigned by each method for the full set of features,
when RBC correlated are present. We show in RED the scores assigned to RBC, in orange the scores
assigned to RBC correlated features, and in blue the scores assigned to the other features.

(a) SV - before duplication (b) MCI - before duplication

(c) SV - after duplication (d) MCI - after duplication

Figure 7: Robustness experiment on the Heart Disease dataset. The top row shows the feature
importance according to SV (a) and MCI (b) for the original set of features in this dataset. Note that
that each method suggesting a different ranking within the top three list. The bottom row shows
the estimations of both methods, when the top ranked feature of each method is duplicated three
times. As seen, the importance assignment of SV (c) is affected drastically form the introduction of
duplicates, while MCI (d) succeeds to remain stable.
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(a) SV - before duplication (b) MCI - before duplication

(c) SV - after duplication (d) MCI - after duplication

Figure 8: Robustness experiment on the Wine Quality dataset. The top row shows the feature
importance according to SV (a) and MCI (b) for the original set of features in this dataset. The bottom
row shows the estimations of both methods, when the top ranked feature of each method is duplicated
three times. As seen, the importance assigned by SV (c) is affected drastically form the introduction
of duplicates, while MCI (d) succeeds to remain stable.

(a) SV - before duplication (b) MCI - before duplication

(c) SV - after duplication (d) MCI - after duplication

Figure 9: Robustness experiment on the German Credit Default dataset. The top row shows the
feature importance according to SV (a) and MCI (b) for the original set of features in this dataset.
The bottom row shows the estimations of both methods, when the top ranked feature of each method
is duplicated three times. As seen, the relative differences in the importance scores given by SV (c) is
affected form the introduction of duplicates, while MCI (d) succeeds to remain stable.

13



(a) SV - before duplication (b) MCI - before duplication

(c) SV - after duplication (d) MCI - after duplication

Figure 10: Robustness experiment on the Bike Rental dataset. The top row shows the feature
importance according to SV (a) and MCI (b) for the original set of features in this dataset. The bottom
row shows the estimations of both methods, when the top ranked feature of each method is duplicated
three times. As seen, the relative differences in the importance scores given by SV (c) is affected
form the introduction of duplicates, while MCI (d) succeeds to remain stable.

(a) SV - before duplication (b) MCI - before duplication

(c) SV - after duplication (d) MCI - after duplication

Figure 11: Robustness experiment on the Online Shopping dataset. The top row shows the feature
importance according to SV (a) and MCI (b) for the original set of features in this dataset. The bottom
row shows the estimations of both methods, when the top ranked feature of each method is duplicated
three times. As seen, the relative differences in the importance scores given by SV (c) is affected
form the introduction of duplicates, while MCI (d) succeeds to remain stable.
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(a) SV - before duplication (b) MCI - before duplication

(c) SV - after duplication (d) MCI - after duplication

Figure 12: Robustness experiment on the Bank Marketing dataset. The top row shows the feature
importance according to SV (a) and MCI (b) for the original set of features in this dataset. The bottom
row shows the estimations of both methods, when the top ranked feature of each method is duplicated
three times. As seen, the relative differences in the importance scores given by SV (c) is affected
form the introduction of duplicates, while MCI (d) succeeds to remain stable.
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