
Marginal Contribution Feature Importance - an Axiomatic Approach for
Explaining Data

Amnon Catav 1 Boyang Fu 2 Yazeed Zoabi 3 Ahuva Weiss-Meilik 4 Noam Shomron 3 Jason Ernst 2 5 6

Sriram Sankararaman 2 5 7 Ran Gilad-Bachrach 8

Abstract

In recent years, methods were proposed for as-
signing feature importance scores to measure the
contribution of individual features. While in some
cases the goal is to understand a specific model,
in many cases the goal is to understand the con-
tribution of certain properties (features) to a real-
world phenomenon. Thus, a distinction has been
made between feature importance scores that ex-
plain a model and scores that explain the data.
When explaining the data, machine learning mod-
els are used as proxies in settings where conduct-
ing many real-world experiments is expensive or
prohibited. While existing feature importance
scores show great success in explaining models,
we demonstrate their limitations when explaining
the data, especially in the presence of correlations
between features. Therefore, we develop a set of
axioms to capture properties expected from a fea-
ture importance score when explaining data and
prove that there exists only one score that satisfies
all of them, the Marginal Contribution Feature
Importance (MCI). We analyze the theoretical
properties of this score function and demonstrate
its merits empirically.
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1. Introduction
The increase usage of machine learning has profound in-
fluence on many aspects of our lives. Therefore, it is of
paramount importance to lessen the black box nature of
many machine learning methods (Lipton, 2018). This aware-
ness has led to extensive work on interpretability (Molnar,
2018), explainability (Holzinger et al., 2019), and more
specifically regarding feature importance scores (Ribeiro
et al., 2016; Lundberg & Lee, 2017; Shrikumar et al., 2017;
Sundararajan et al., 2017; Plumb et al., 2018). Many of the
previous studies on feature importance focused on assigning
importance scores for predictions of a specific trained model.
Methods for assigning feature importance scores are often
divided into local and global, where the goal of local scores
is to explain how much each feature impacts a specific pre-
diction, while the goal of global scores is to explain how
much each feature is impacting the model predictions across
the entire data distribution. However, in many scenarios
models are used as tools for studying relations in the real
world such as the impact of gender on salary or to identify
cancer related genes (Jagsi et al., 2012; Danaee et al., 2017;
Kothari et al., 2020). In these cases, we care more about the
true underlying relations between each feature and the label,
rather than the mechanism of a specific trained model. Thus,
one can differentiate between feature importance scores
that explain the model from feature importance scores that
explain the data (Chen et al., 2020).

To understand the differences between explaining a trained
model and explaining the data, consider the case of predict-
ing the existence of a certain health condition using a linear
regression model trained over gene expression data. A sci-
entist may be interested in gene importance as a tool for pri-
oritizing the experiments to be done in the lab. Since corre-
lations are common in gene expression data, a phenomenon
frequently referred as collinearity is likely to emerge (Ma-
son & Perreault Jr, 1991; Zuber & Strimmer, 2009). In
the collinearity setting the coefficients of the model are not
uniquely determined and therefore they cannot serve as mea-
sures for the significance of features (Dormann et al., 2013).
Thus, a scientist trying to understand which genes are most
associated with the investigated health condition might get
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arbitrary results when using feature importance methods that
explain the model. Previous studies have shown that this
phenomenon is not restricted only to linear relations. In fact,
it may appear whenever the features are correlated (Hooker
et al., 2019).

More generally, in the presence of redundant information
among features, a model can arbitrary choose to utilize
only one or some of the features over the others. However,
this arbitrary choice does not necessarily reflect the true
relations between these features and the label in the real
world. For example, imagine a scientist trying to understand
what are the important attributes that contribute to workers’
salaries. Assume that these attributes or features include age,
education, experience and gender, along with worker’s last
salary. A common practice today would be to train a model
using these features, and to use a feature importance method
that describes the model as a measure for the significance
of each feature in determining salary. However, it is likely
to assume that the last salary feature already encapsulates
relevant predictive information from the other features. In
this case, the model might arbitrary choose to count almost
solely on the last salary feature. Thus, the expectation from
a feature importance that explains the model would be to
mark only this feature as important. While the scientist is
using the model only as a tool for understanding the data,
she would expect also the other features to be considered as
important if they individually contribute to salary in some
sense. Therefore, in this case there is a difference between
the expectation from an explanation of the model and the
explanation of the true relations between the features and
the label in the real world.

Popular methods, such as the ones based on Shapley-Value,
are successful as tools for explaining models and their pre-
dictions (Shapley, 1953; Lundberg & Lee, 2017; Lundberg
et al., 2020; Covert et al., 2020). However, when used for
explaining data that contains correlated features, they tend
to under-estimate the importance of these features (Kumar
et al., 2020). In other words, the addition of features to the
system might make similar features to be considered less im-
portant. To understand the implications of this phenomenon,
consider a biologist suspecting that a certain biochemical
pathway may be involved in the development of a certain
disease (Alonso et al., 2015). Over sampling metabolites
from the suspected pathway might creates a risk that they
will be overlooked due to low scores.

As a simple example, consider a system with a single feature
that fully describes the label, and a set of K features that are
correlated with it. Formally, let Y = X1, andXi = 0.5X1+√

0.75εi for i = 2, . . .K, when X1, ε2, . . . , εK ∼ N (0, 1)
(which yields Cov(X1, Xi) = 0.5, VAR(Xi) = 1). It can
be shown that for all features, including X1, Shapley-Value1

1In this example we consider the evalutation function ν =

will assign a score that is decreasing with K, approaching
zero forK →∞ to all features. Therefore, evenX1 that can
predict the outcome perfectly will be marked as having small
importance in the presence of many correlated features. In
contrast, the MCI method we present in this study is agnostic
to K in this setting: it will assigns X1 an importance score
of 1, and a score of 0.25 for all other features. Note that for
a large enough K, the average of Xi’s for i > 1 is similar
to X1 and therefore it is possible to predict Y from these
features even in the absence ofX1. Therefore, these features
are not considered unimportant.

Unlike previous methods which applied a layer of correc-
tion to Shapley-Value, (Chen et al., 2020; Frye et al., 2020b;
Wang et al., 2020), we revisit its underlying axioms to pro-
pose a new set of axioms that challenges the use of Shapley-
Value as a building block. Further, we prove that there is
only one function that satisfies these axioms, which we refer
to as the Marginal Contribution Feature Importance (MCI)2.
We compare this score to other feature importance scores,
both from a theoretical standpoint and from an empirical
one, and show that MCI is preferable in explaining the data.

The contributions of this paper are the following: (1) We
present three simple properties (axioms) that are necessary
for feature importance score in order to explain the data;
(2) We prove that these axioms uniquely identify the MCI
score; (3) We analyse the theoretical properties of MCI and
show empirically that it is more accurate and robust than
other available solutions for explaining the data.

2. Problem Formulation
Before continuing the exposition we introduce several no-
tations and conventions. We define a feature as a random
variable fi : X 7→ R. When it is clear from the context, we
use fi as the value assigned to a point in X . We also denote
F = {f1, . . . , fn} as the set of features used for predicting a
certain target label Y . Given the above notations, we define
a feature importance as a function I : F 7→ R+ assigning
each feature a score that represents its significance.

“Feature Importance” is an ill-posed term that has many
interpretations (Steppe & Bauer Jr, 1997; Breiman, 2001;
Ribeiro et al., 2016; Lundberg et al., 2020). In this work
we follow Covert et al. (2020), and define the importance
of a feature as the amount of universal predictive power
it contributes. Since this concept is defined in the context
of a specific set of features S ⊆ F , then the question of
evaluating the overall importance of a feature remains.

The universal predictive power of S quantifies the amount of
information that can be extracted from S on a target variable

1− MSE where MSE stands for the Mean Squared Error.
2https://github.com/TAU-MLwell/Marginal-Contribution-

Feature-Importance
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Y . Formally, let G(S) be a set of predictors restricted to
use only the features in S. Given a loss function `, the
universal predictive power is a function ν : P(F ) 7→ R+,
where P(F ) is the power set of F . This function measures
the expected loss reduction between the optimal predictor
g ∈ G(S) and the optimal constant predictor ŷ ∈ G(∅):

ν(S) = min
ŷ

(E[`(ŷ, Y )])− min
g∈G(S)

(E[`(g(X), Y )])

In importance scores that are designed to explain a model,
the classG(S) is defined by projections of the model trained
on F to the subset of the features S. However, when trying
to explain the data, G(S) can be any class of models that
use only the features in S (Covert et al., 2020).

Making the natural assumption that S1 ⊆ S2 implies that
G(S1) ⊆ G(S2), the evaluation function ν is guaranteed to
be monotonically increasing with respect to S in the sense
that S1 ⊆ S2 implies ν(S1) ≤ ν(S2). This property reflects
the intuition that giving more features to the model can only
increase the amount of information on the label and thus
allows more accurate predictions. We note that it may be
challenging to guarantee monotonicity when ν is estimated
from data. Therefore, in Theorem 3 we show that in these
cases ν is “almost” monotone and this is sufficient to get a
good approximation of the feature importance scores.

For simplicity, and to generalize this idea for the terminol-
ogy used by Shapley-Value, we only require ν : P(F ) 7→
R+ to be monotonically increasing and refer to it as an
evaluation function. To simplify notation we also assume
ν(∅) = 0. Given an evaluation function ν, the task of as-
signing feature importance scores that are corresponding to
the contribution of each feature is not trivial. In the follow-
ing we review existing feature importance scores using the
above notations and discuss their limitations in explaining
the data.

3. Previous Studies
We start our discussion with Shapley-Value (Shapley, 1953),
a fundamental concept in game theory that was recently
adopted to the realm of feature importance. Shapley-Value
was originally designed for problems of cost allocation
where n participants cooperate to achieve a certain good.
By treating features as players cooperating to make accu-
rate predictions, this idea was adopted for feature selection
(Cohen et al., 2007) and then was extended to local model
feature importance by the SHAP method (Lundberg & Lee,
2017), and recently also extended to global model feature
importance by the SAGE method (Covert et al., 2020).

Shapley presented four axioms that a fair allocation of cost
should have and showed that there is only one fair cost
allocation function (Shapley, 1953). According to this func-
tion, the importance of each feature f given an evaluation

function ν is defined as follows (Covert et al., 2020):

Iν (f) =
1

|F |!
∑

σ∈π(F )

∆
(
f, Sσf , ν

)
. (1)

where F is the set of all features, π(F ) is the set of all
permutations of F , Sσf is the set of all features preceding f
in permutation σ, and ∆ (f, S, ν) = ν (S ∪ {f})− ν (S).

Other aspects of using Shapley-Value as a feature impor-
tance score are being studied. Many aim at improving the
estimation of the Shapley-Value (Aas et al., 2019; Frye
et al., 2020a; Williamson & Feng, 2020; Sundararajan &
Najmi, 2020). Other studies use Shapley-Value to specif-
ically explain trees (Lundberg et al., 2020), or to derive
causal reasoning using additional prior knowledge (Frye
et al., 2020b; Wang et al., 2020).

While Shapley-Value axioms make sense in the realm of al-
locating costs to beneficiaries, several recent works showed
how the existence of correlations between the features can
harm its adequacy to the data, even when approximated per-
fectly (Kumar et al., 2020; Frye et al., 2020b). To demon-
strate the problem, consider a system with the binary fea-
tures f1, f2, f3 which are Rademacher random variables
such that the target variable is Y = f1 ∧ (f2 ∨ f3) and
the mutual information is the evaluation function. In this
case, Shapley-Value assigns feature importance scores of
0.65, 0.15, and 0.15 to f1, f2, and f3 respectively. However,
if f1 is duplicated 3 more times, then the feature importance
scores become 0.15, 0.18, and 0.18 for f1, f2, and f3. Note
that the importance score of f1 drops when it is duplicated
while the importance score of f2 and f3 increases to the
point that they become the most important features. This
means that if these features were indicators for the presence
of a certain protein in a blood sample, then their impor-
tance scores may drop when more indicators are measured.
As a consequence, if the scientist suspected that a certain
mechanism is responsible for a disease, and therefore sam-
pled many proteins that are related to this mechanism, then
Shapley-based feature importance scores will suggest that
these proteins are of lesser importance.

Ablation studies are commonly used for assigning impor-
tance scores to features (Casagrande & Diamond, 1974;
Bengtson & Roth, 2008; Hessel et al., 2018). In this
method, the importance of a feature is the reduction in per-
formance due to removing this feature. Using the notation
above, in Ablation studies the importance of a feature f is
Iν(f) = ν(F )− ν(F \ {f}).

Bivariate association is the complement to Ablation stud-
ies. In this method, feature importance is its contribution in
isolation, that is, Iν(f) = ν({f})− ν(∅). These methods
are commonly used in Genome-Wide Association Studies
(GWAS) (Liu et al., 2009; Haljas et al., 2018), in feature
ranking methods (Zien et al., 2009), feature selection meth-
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ods (Guyon & Elisseeff, 2003), or in feature screening meth-
ods (Fan & Lv, 2008).

As mentioned in Covert et al. (2020), both Ablation and
Bivariate association methods deal imperfectly with specific
types of feature interactions. As an example, consider an
XOR task where the target variable is the exclusive-or of
two Rademacher random variables: Y = f1 ⊕ f2. Bivariate
methods would fail to find the association between these
features and the target variable. Moreover, if we add an
exact duplication of f1 to the system, an Ablation test would
fail to identify f1 as important, since Y can be predicted
perfectly using the other features.

So far, we have discussed importance scores that are model
agnostic. However, it is important to mention that there
are also importance scores that are specific to a certain
type of model. These methods are designed to explain the
model, while the goal of this work is to study methods
to explain the data. For example, in linear models, it is
common to derive importance scores from the coefficient
assigned to each feature, while in trees-based models, it
is common to look at the sum of the gains from decision
nodes (Breiman et al., 1984). In addition, many recent
studies focus on explaining neural networks. This includes
Integrated Gradients (Sundararajan et al., 2017), DeepLift
(Shrikumar et al., 2017), and additional methods (Samek
et al., 2017).

In computer vision, feature importance are usually used as a
tool to highlight parts of an image on which a model focuses
when making a prediction. For example, when making a
prediction on the age of a person in an image it is expected
that the model will focus on focal points such as the hair
or the wrinkles on the side of the eye. In most cases these
are feature importances of the local setting since in different
images the position of the hair or the wrinkles may be on a
different pixel.

We now move forward to introducing Marginal Contribution
Feature Importance Method (MCI), which aims to overcome
the difficulties of existing methods.

4. Marginal Contribution Feature Importance
In previous sections, we discussed the different scenarios
in which feature importance can be used and presented the
limitations of current methods in explaining the data. To
find a proper score for this scenario, we begin by introducing
a small set of properties expected of a feature importance
scoring function in this setting. We refer to these properties
as axioms. We show that Marginal Contribution Feature
Importance (MCI) is the only function that satisfies these
axioms, and we study its properties. To introduce these
axioms, we define the Elimination operation as follows:

Definition 1 Let F be a set of features and ν be an evalu-
ation function. Eliminating the set T ⊂ F creates a new
set of features F ′ = F \ T and a new evaluation function
ν′ : P(F )′ 7→ R+ such that ∀S ⊆ F ′, ν′ (S) = ν (S).

4.1. The Axioms

In the following we introduce a set of axioms that are prop-
erties we expect a feature importance score to satisfy:

Definition 2 A valid feature importance function Iν for
explaining the data is a function Iν : F 7→ R+ that has the
following properties:

1. Marginal contribution: The importance of a feature
is equal or higher than the increase in the evaluation
function when adding it to all the other features:

Iν(f) ≥ (ν(F )− ν(F \ {f})) .

2. Elimination: Eliminating features from F can only
decrease the importance of each feature. i.e., if T ⊆ F
and ν′ is the evaluation function which is obtained by
eliminating T from F then

∀f ∈ F \ T, Iν(f) ≥ Iν′(f) .

3. Minimalism: If Iν is the feature importance function,
then for every function I : F 7→ R+ for which axioms 1
and 2 hold, and for every f ∈ F : Iν(f) ≤ I(f) .

The Marginal contribution axiom requires that if a feature
generates an increase of performance even when all other
features are present, then its importance is at least as large
as the additional gain it creates. This is to say that if the
Ablation study (see section 3) shows a certain gain, then the
feature importance is at least this gain.

The rationale for the Elimination axiom is that the impor-
tance of a feature may be apparent only when some context
is present. For example, if the target variable is the XOR of
two features, then their significance is apparent only when
both are observed. Therefore, eliminating features can cause
the estimated importance of the remaining features to drop.
On the other hand, if a feature shown to be important, that
is, it provides high predictive power given the current set of
features, then its predictive power does not decrease when
additional features are introduced. Note that it still may
be the case that the relative importance of features changes
when adding or eliminating features. In other words, the im-
portance score of a feature should not decrease when adding
more features to the system. Nevertheless, the size of the
increment does not have to be the same for all features and
therefore their relative order may change.

Finally, note that if Iν satisfies the marginal contribution and
the elimination axioms, then for every λ > 1 the function
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λIν also satisfies these properties. The Minimalism axiom
provides disambiguation by requiring the selection of the
smallest function.

These axioms allow us to present the main theorem which
shows the existence and uniqueness of the feature impor-
tance function.

Theorem 1 Let ν be an evaluation function such that ν is
non-decreasing. The function

Iν (f) = max
S⊆F

∆ (f, S, ν) = max
S⊆F

(ν (S ∪ {f})− ν (S)) .

satisfies the three axioms: (1) marginal contribution, (2)
elimination, and (3) minimalism. Furthermore, this function
is the only function that satisfies the three axioms.

Theorem 1 shows that there is only one way to define a fea-
ture importance function that satisfies the axioms presented
above. We call this function the Marginal Contribution
feature Importance (MCI) score function. Due to space
limitations, the proofs of all theorems are provided in the
supplementary material in Section A.

4.2. Properties of the Marginal Contribution Feature
Importance Function

MCI has many advantageous properties as shown in the
following theorem.

Theorem 2 Let F be a set of features, let ν be an evalua-
tion function and let Iν be the feature importance function
Iν (f) = max

S⊆F
∆ (f, S, ν). The following holds:

• Dummy: if f is a dummy variable, that is ∀S ⊆
F, ∆ (f, S, ν) = 0, then Iν (f) = 0.

• Symmetry: if fi and fj are symmetric, that is if for ev-
ery S ⊆ F we have that ν (S ∪ {fi}) = ν (S ∪ {fj}),
then Iν (fi) = Iν (fj).

• Super-efficiency: ∀S ⊆ F, ν (S) ≤
∑
f∈S Iν (f).

• Sub-additivity: if ν and ω are evaluation functions
defined on F then ∀f ∈ F, Iν+ω (f) ≤ Iν (f) +
Iω (f).

• Upper bound the self contribution: for every feature
f ∈ F , Iν(f) ≥ ν({f}).

• Duplication invariance: let F be a set of features and
ν be an evaluation function. Assume that fi is a dupli-
cation of fj in the sense that for every S ⊆ F \{fi, fj}
we have that ν (S ∪ {fi, fj}) = ν (S ∪ {fi}) =
ν (S ∪ {fj}). If F ′ and ν′ are the results of elimi-
nating fi then ∀f ∈ F ′, Iν′ (f) = Iν (f).

Recall that the Shapley-Value is defined by four axioms: ef-
ficiency, symmetry, dummy, and additivity (Shapley, 1953).
Theorem 2 shows that MCI has the symmetry and dummy
properties, but the efficiency property is replaced by a super-
efficiency property, while the additivity property is replaced
by a sub-additivity property. The upper bound on self contri-
bution shows that MCI always dominates the Bivariate asso-
ciation scores. It is also easy to verify that it upper bounds
Shapley-Value and the Ablation scores. Finally, duplication
invariance shows that when features are duplicated, feature
importance scores do not change. This demonstrates one of
the differences between explaining a model and explaining
the data. When features are duplicated, a model may use one
of the two duplicates, and the explanation should reflect that.
However, when explaining the data, since the two features
are identical, they must receive equal importance. Note that
the same logic may also apply to demonstrate why a feature
importance method that explains the data should not be used
for feature selection. While the expectation from a feature
selection method is to choose only one of the duplicated
features, when explaining the data the two features should
be considered as equal.

Another interesting property of MCI is the contexts it can
provide for the importance of a feature. From the definition
of MCI it follows that for every f there is at least one S ⊆ F
such that Iν(f) = ∆ (f, S, ν). Every such S is a context
with which f provides its biggest gain. In some cases, these
contexts can give additional insight to the scientist.

4.3. Computation and Approximation

The complexity of computing the MCI function in a naı̈ve
way is exponential in the number of features. Since comput-
ing the Shapley-Value is NP-complete (Deng & Papadim-
itriou, 1994), there is no reason to believe that MCI is easier
to compute. In Section C.I of the supplementary material
we provide examples for cases where MCI can be computed
in polynomial time, for example, when ν is sub-modular.
Moreover, like Shapley-Value, MCI can be approximated
by sampling techniques (Castro et al., 2009). One interest-
ing property of MCI is that any sampling-based technique
provides a lower-bound on the scores. In Section C.II of the
supplementary material we also present some upper-bounds
that allow saving computations using a branch and bound
technique.

Another challenge in computing MCI is obtaining the values
of ν for various sets, when only a finite dataset is available.
The following theorem shows that the estimates of ν from
data uniformly converge as the sample size increases.

Theorem 3 Let µ be a probability measure over X × Y .
Let F be a set of random variables (features) over X . For
any S ⊆ F letHS be a hypothesis class defined using only
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the features in S and let d = log2 max
S⊆F

(|HS |). For any

ε, δ > 0 and m ≥ ( 2
ε2 )
(
d+ |F |+ log2

(
2
δ

))
it holds that:

PD∼µm

[
max
f∈F
|IνD (f)− Iν(f)| > ε

]
≤ δ

where the evaluation function ν(S) is the minimal
0-1 test loss achieved by any hypotheses h ∈
HS: ν(S) = minh∈H∅

(
E(x,y)∼µ(` (h(x), y)

)
−

minh∈HS

(
E(x,y)∼µ(` (h(x), y)

)
and νD(S) uses the em-

pirical loss on the set D instead of the test-loss.

Simply put, the above theorem states that with high proba-
bility, ν can be estimated to within an additive factor using
a finite sample and this estimate can be used to approximate
MCI to within a similar additive factor. Further details are
provided in the supplementary material in Section A.III.

5. Experiments
In this section we analyze the performance of MCI empiri-
cally and compare it to other methods. First, we provide two
synthetic experiments designed to test the effect that linear
and non-linear feature dependencies have on the different
methods. Next, two experiments with real world data are
presented: one uses gene expression data from the BRCA
gene microarray dataset (Tomczak et al., 2015) and the other
one uses Electronic Health Records (EHRs) dataset of pa-
tients hospitalized with a Bloodstream Infection (BSI) for
the task of predicting mortality (Zoabi et al., 2021). In
Section E of the supplementary material we present six ad-
ditional experiments with different datasets from the UCI
repository, testing the effect of feature duplication using
various model types (Asuncion & Newman, 2007). In the
experiments presented in this section MCI is applied with
different underlying model types such as Gradient Boosting
Trees (Friedman, 2001), Random Forest (Liaw et al., 2002),
Support Vector Regression (SVR) (Drucker et al., 1997) and
Multi-Layer Perceptron (MLP) (Rumelhart et al., 1985).

To compare MCI to Shapley-Value we follow the proposal
of Covert et al. (2020), and apply the Shapley-Value method
to the evaluation function ν(S), where for every S a model
is trained using only the features in S. We refer to this
method as Shapley-Value. Note that the SAGE method was
designed to explain models and therefore it uses the same
model to evaluate ν(S) by marginalizing the effect of the
features not in S. For computing the SAGE values we use
the public SAGE repository.3

5.1. Collinearity Synthetic Experiment

In the following we describe a synthetic experiment de-
signed to compare the different methods when linear corre-

3https://github.com/icc2115/sage downloaded 11/2020

Table 1. Results of the collinearity experiment. The Kendall’s
tau-b correlation coefficient between the ground truth ranking
and the scores assigned by the different methods, along with the
coefficients of a model trained using the full set of features in each
setting (F 1, F 2). Correlation of 1.00 indicates perfect agreement
with the ground truth, while −1.00 indicates full disagreement.

Setting MCI SV SAGE Coefficients
Uncorrelated 1.00 1.00 1.00 1.00
Correlated 0.68 -0.68 -0.68 -0.68

lations exist between the the features. Three I.I.D. random
variables are sampled A,B,C ∼ N (0, 1) and define Y =
3A+ 2B+C. We then create NA, NB , NC ∈ N correlated
features for A, B and C accordingly. Given NA, the features
{fAi }

NA
i=1 are defined such that fAi = A+N (0, 0.2), and the

same for fBi and fCi . We generate two sets of features of the
form: F = {fA1 , . . . , fANA

, fB1 , . . . , f
B
NB
, fC1 , . . . , f

C
NC
}.

(1) uncorrelated set F 1, using (NA, NB , NC) = (1, 1, 1);
(2) correlated set F 2, using (NA, NB , NC) = (12, 4, 1).

For S ⊆ F the evaluation function is defined to be ν(S) =
VAR(Y )−MSE(S) where MSE(S) is the Mean Squared Er-
ror (MSE) over 3-fold cross validation of an Elastic-Net
model, trained using only the features in S (Wang et al.,
2006). We use regularization coefficient of α = 0.1 which
yield the lowest MSE among α ∈ {0.01, 0.1, 1.0}. We ran
MCI, SV and SAGE, and compare them to the ground truth
using the Kendall’s tau-b correlation coefficient (Kendall
& Gibbons, 1990). The Elastic-Net achieves average MSE
score of 0.59 and 0.12 when trained using F 1 and F 2 respec-
tively, over 3-fold cross validation. We note that Bivariate
obtains the same results as MCI in this experiment while
Ablation performs poorly.

As shown in Table 1, all the methods introduce perfect
agreement with the ground truth for the uncorrelated set
F 1. However, for the correlated set F 2, only MCI handles
the data correctly. In fact, as shown in the supplementary
material in Section D.I, SV and SAGE completely reverse
the expected order and find the feature correlated with C as
most important, followed by the features correlated with B,
and last by the features correlated with A, despite the fact
that Y = 3A + 2B + C. In addition, note that the model
also reverse its coefficients when trained on F 2 as captured
by SAGE.

5.2. Non-Linear Interactions

As a complement to the collinearity experiment presented
in Section 5.1, we design an XOR task in which the depen-
dency between the label and the features are not linear. We
sample 6 variables f1, . . . , f6, from the uniform distribution
on [−1, 1], and set a label Y = sign(f1 × f2 × f3). To
test the effect of correlations, we create two settings: (1) a
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set of uncorrelated features: F 1 = {f1 + ε1, f2, . . . , f6};
(2) a set of features that contains correlations to f1: F 2 =
F 1 ∪ {f1 + ε2, f1 + ε3}. We sample ε1, ε2 and ε3 indepen-
dently from N (0, 0.05).

To estimate ν(S) for S ⊆ F we use the test accuracy of an
MLP consisting of 3 fully connected layers with 8 nodes and
tanh activations, followed by a softmax head. Models are
trained with a batch size of 512 for 1,000 epochs using early
stopping when validation accuracy did not improve for 50
consecutive epochs. The dataset consists of 100K examples
with a split of 70%/10%/20% for train, validation and test.
The network achieves test accuracy of 97.2% when trained
using F 1 and 98.5% when trained using F 2.

The feature importance scores are presented in Figure 1.
The results for the Bivariate method were omitted since it
assigned zero score to all features in this experiment. As
seen, in the uncorrelated setting the methods are able to
identify f1, f2 and f3 as equally important features. How-
ever, MCI is the only method that does not diminish the
importance of the variables correlated with f1 in the second
setup, when there are 3 features correlated with f1. It is
interesting to note that MCI provides additional insight here
when the context for each of the features is observed (con-
text is defined as argmaxS⊆F∆(fi, S, ν)). The context for
all the features correlated with f1 is {f2, f3} which reflects
the structure of this task.

To test the robustness of the methods for the type of under-
lying model used, we repeat this experiment with Random
Forest. MCI and SV provide similar scores to the ones re-
ported in Figure 1, however, for SAGE the scores does vary
due to the change in the underlying model. The details for
this experiment are provided in the supplementary material
in Section D.II.

5.3. BRCA Experiments

To test the quality of the importance scores in a real world
setting, we use a gene analysis task for which scientific
knowledge exists about the importance of the features.
Specifically, we use the breast cancer sub-type classifica-
tion task from a gene microarray dataset (BRCA) (Tomczak
et al., 2015). This dataset is provided with a set of genes
known to be related to breast cancer and therefore expected
to be considered as most important. We conduct two ex-
periments: (1) a quality experiment which compares the
rankings provided by different methods to the ground truth;
(2) an experiment which tests the methods’ robustness for
changes in the set of genes used in the genomics study.

The BRCA dataset consists of 17,814 genes from 571 pa-
tients that have been diagnosed for one of 4 breast cancer
sub-types (Tomczak et al., 2015). In each experiment we
use a set of 10 genes that were identified as associated with

Table 2. Quantitative results for the BRCA experiments. Up-
per table presents the NDCG scores for the 1st experimental setup
in which quality of scores is measured (higher is better, the perfect
score is 1.00). NDCG scores for different top-@k rankings are
provided. Bottom table shows results for Experiment II, measuring
the robustness of the scores to the addition of random samples
of features. The results are the mean ± SD of the Kendall-tau
distance between each pair of rankings when considering only the
BRCA related genes. Here lower is better, the perfect score is 0.00.

Experiment I: Quality (NDCG ↑)
Method @3 @5 @10 @20 @50
MCI 1.00 0.85 0.77 0.88 0.92
SV 0.77 0.70 0.73 0.88 0.88
SAGE 0.77 0.70 0.67 0.73 0.85
Bivariate 1.00 0.85 0.77 0.82 0.92
Ablation 0.30 0.21 0.28 0.44 0.61

Experiment II: Robustness
Method Mean Kendall Distance ↓
MCI 0.03 ± 0.03
SV 0.23 ± 0.09
SAGE 0.28 ± 0.08
Ablation 0.34 ± 0.11

breast cancer as a ground truth (Covert et al., 2020). We
denote this set of related genes as R.

We define ν(S) for S ⊆ F to be the average negative log-
loss over 3-fold cross validation of a logistic regression
model trained using only the features in S. We train each
model using the Scikit-learn package, with its default hyper-
parameters (Pedregosa et al., 2011). This model achieves
average log-loss of 0.77 and average accuracy of 0.74 over
3-folds cross validation, using the genes set defined in the
quality experiment.

Since the complexity of computing SV or MCI is exponen-
tial, we use the sampling technique proposed by Covert et al.
(2020). According to this algorithm, a random set of per-
mutations Pd of the features is sampled. For each σ ∈ Pd
we denote by Sσi = {fj : σ(j) < σ(i)} and estimate the
feature importance for SV and MCI to be:

ISV
ν (fi) =

1

|Pd|
∑
σ∈Pd

∆(fi, S
σ
i , ν) and

IMCI
ν (fi) = max

σ∈Pd

∆(fi, S
σ
i , ν)

Recall that this method provides an unbiased estimator for
the SV and a lower bound for MCI. In our experiments
with BRCA, Pd was of the size 215 as we observed that the
rankings of both methods stabilizes at this point.
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Figure 1. Results of the non-linear interactions experiment. The feature importance assigned by the different methods for the 1st and
2nd setups of the experiments are presented in rows 1 and 2. MCI is the only method that does not consider f1 to be less important when
correlated features are added (2nd setup).

(a) MCI (b) SV

(c) SAGE (d) Bivariate Association

(e) Ablation

Figure 2. The top-10 genes ranked by each method in the
BRCA quality experiment. The known BRCA related genes
are highlighted in blue. As seen, MCI ranks relevant features
higher than most methods.

5.3.1. BRCA EXPERIMENT I: QUALITY

The goal of this experiment is to evaluate the quality of the
different methods. For this experiment we use the same
subset of 50 genes used by Covert et al. (2020). This subset
consists of the set of 10 known BRCA related genes (R)
and additional 40 randomly sampled genes. Utilizing the
prior scientific knowledge, we consider a score to be better
if it ranks the features in R at higher positions. We evaluate
the rankings using the Normalized Discounted Cumulative
Gain (NDCG) metric (Järvelin & Kekäläinen, 2002).

The results of the experiment are presented in Table 2 and
the top-10 ranked genes by each method are shown in Fig-
ure 2. The results show that MCI and Bivariate outperform
SV and SAGE while Ablation performs poorly. The success
of the Bivariate method in this experiment suggests that
there are no significant synergies between the features in
this dataset which can be detected by logistic regression.
MCI handles this situation and even outperforms Bivari-
ate slightly in the top 20 list. However, due to the strong
correlations between some of the features, Ablation fails
to generate a meaningful ranking and this is a probable
explanation also to the low performance of SV and SAGE.

5.3.2. BRCA EXPERIMENT II: ROBUSTNESS

The goal of the second experiment is to evaluate the robust-
ness of the different methods to the list of genes selected to
participate in the assessment. To the 10 genes in R we add a
sample of additional 40 genes. The 40 genes are sampled at
random from the set G = {g : maxr∈R |corr(g, r)| ≤ 0.2}
(|G| = 4, 596). We repeat this process 5 times to compute
the mean and SD of the Kendall-tau distance (Kendall &
Gibbons, 1990) between all pairs of the rankings over R.
In this setting, high distances between the rankings suggest
high sensitivity to the features sampled, while low distances
indicate robustness. In Section D.III of the supplementary
material we show that MCI and SV identify all the features
in R as the most important for all the samples. This indi-
cates that the randomly added genes have little contribution
to the prediction task.

The results of this experiment are presented in Table 2. As
seen, MCI produces a consistent ranking for R over the
different samples while, SV, SAGE and Ablation produce
rankings with higher variance. These results show that
the latter methods are sensitive to the inclusion/exclusion of
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features, even if they have low correlation with the important
features.

5.4. Bloodstream Infection Mortality Experiment

We use another real world dataset to measure the robustness
of the different scores (Zoabi et al., 2021). The dataset is
extracted from Electronic Health Records (EHRs) of 7,889
patients hospitalized with a Bloodstream Infection (BSI), a
condition that directly leads to over 70,000 death cases in the
USA annually (Goto & Al-Hasan, 2013). The classification
task defined on this data is to predict BSI patients mortality.

Twenty features were extracted from the EHRs by medical
experts together with the label that marks mortality. Due to
space limitation more details about this dataset are provided
in the supplementary materials in Section D.IV.

For this task ν(S) is defined as the Area Under Curve (AUC)
of the Receiver Operator Curve of a gradient boosting trees
model trained with LightGBM (version 2.3.0), along with its
default parameters (Ke et al., 2017). Since the complexity of
SV or MCI is exponential, we use the same sampling tech-
nique described in Section 5.3 for 214 random permutations,
for which we observed convergence of the rankings.

We compare the importance scores in two settings: (1) the
full set of features which empirically contains correlations;
(2) a subset of the features, where the features that are
highly correlated with Red Blood Cells Count (RBC) are
removed. The removed features are Hemoglobin, Hema-
tocrit (HCT), Red Cell Distribution Width (RDW), Mean
Cell Hemoglobin (MCH) and Mean Corpuscular Volume
(MCV). Note that these features are both statistically corre-
lated (with absolute Pearson correlation in [0.22, 0.92]), and
also participate in similar biological pathways. The model
achieves test AUC score of 0.80 when trained using all the
features, and 0.78 without the RBC correlated features.

Both MCI, SV and SAGE rank the RBC feature in the 5-6
position when the correlated features are not present. How-
ever, when we add the correlated features, MCI increases
the importance of RBC by a factor of 1.32,4 and promotes
its rank by one position, while SV and SAGE decrease the
importance of RBC by a factor of 0.54 and 0.53, and demote
its rank by one and two positions respectively. Moreover,
MCI ranks all of the correlated features both closer and
higher (with mean ± SD rank of 7.3 ± 4.1, 9.8 ± 6 and
10.3± 5.8 for MCI, SV and SAGE respectively). We also
note that SAGE gives approximately zero importance for
Hemoglobin, and a negative score for MCH. This may be
explained by the fact that these values can be computed
from the other features however, from a clinical point of
view these results are troubling.

4We apply min-max scaling on each score.

6. Discussion
In this study we investigated feature importance scores
as a tool for explaining data (as opposed to explaining a
specific model). Such scores may be used by biologists,
economists, and sociologist to prioritize their research in-
vestments. Since the problem of assigning such scores is
ill-posed, we defined a set of properties (axioms) that a fea-
ture importance score in this setting is expected to have. We
further proved that there is only one score that satisfies all
these properties, and we name it the Marginal Contribution
feature Importance (MCI). Defining this score using a set of
axioms concentrates all the assumptions and expectations
from it into a well defined set of properties, and by that
allows a way to conduct a healthy debate about its merits
and pitfalls. To empirically test this score, we compared
MCI to other feature importance scores. We showed that
Shapley-Value based methods consider features to be less
important if there are other features correlated with them.
Therefore, if a scientist samples several features from a path-
way she suspects to be important to the studied problem,
then Shapley-Value based scores will penalize correlated
features, thus contradicting the hypothesis of the scientist.
We have conducted an empirical study on synthetic and real-
world datasets with different underlying models (GBT, MLP,
RF, and logistic regression). The experiments demonstrate
that MCI is more robust to changes in the set of features
chosen for examination. In the experiments when ground
truth was available, we were able to show that MCI is more
accurate in ranking higher features that were known to be
important. Therefore, we propose the use of MCI as a tool
for explaining data.
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