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Abstract ξ0 := (f=1). Then, given a performance function, fairness 

We present an optimization framework for learn-
ing a fair classifier in the presence of noisy per-
turbations in the protected attributes. Compared 
to prior work, our framework can be employed 
with a very general class of linear and linear-
fractional fairness constraints, can handle mul-
tiple, non-binary protected attributes, and outputs 
a classifier that comes with provable guarantees 
on both accuracy and fairness. Empirically, we 
show that our framework can be used to attain 
either statistical rate or false positive rate fairness 
guarantees with a minimal loss in accuracy, even 
when the noise is large, in two real-world datasets. 

1. Introduction 
Fair classification has been a topic of intense study due to 
the growing importance of addressing social biases in auto-
mated prediction. Consequently, a host of fair classification 
algorithms have been proposed that learn from data (Bel-
lamy et al., 2018a; Zafar et al., 2017b; Zhang et al., 2018; 
Menon & Williamson, 2018b; Goel et al., 2018; Celis et al., 
2019; Hardt et al., 2016; Fish et al., 2016; Pleiss et al., 2017; 
Woodworth et al., 2017; Dwork et al., 2018). 

Fair classifiers need metrics that capture the extent of similar-
ity in performance for different groups. The performance of 
a classifier f for group z can be defined in many ways and a 
general definition that captures the most common group per-
formance metrics in literature is the following: given events 
ξ and ξ0 (that depend on classifier and/or class label Y ), the 
performance for group z can be quantified as Pr[ξ | ξ0, z] 
(Defn 2.1). For instance, we get group-specific statistical 
rate (a linear metric) by setting ξ := (f=1) and ξ0 := ∅ 
and group-specific false discovery rate (a “linear-fractional 
metric” (Celis et al., 2019)) by setting ξ := (Y =0) and 
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constraints in classification impose a feasible classifier to 
have similar performance for all groups, by constraining the 
performance difference to be within τ of each other either 
multiplicatively or additively. For any fixed group perfor-
mance function, multiplicative constraints imply additive 
constraints and, hence, are traditionally studied (Calders & 
Verwer, 2010; Zafar et al., 2017a;b; Menon & Williamson, 
2018a; Celis et al., 2019) (see also Remark 2.2). 

The choice of fairness metric depends on the context and 
application. For instance, in a lending setting, statistical rate 
metric can capture the disparity in loan approval rate across 
gender/race (Comptroller, 2010). In a recidivism assess-
ment setting, false positive rate metric is more relevant as it 
captures the disparity in proportion to defendants falsely as-
signed high-risk across racial groups (Angwin et al., 2016a). 
In other settings, e.g., healthcare, where the costs associated 
with positive classification are large, false discovery rate is 
alternately employed to assess the disparity in proportion 
to the treated patients who didn’t require treatment across 
protected attribute types (Srivastava et al., 2019). 

Most of the aforementioned fair classification algorithms 
crucially assume that one has access to the protected at-
tributes (e.g., race, gender) for training and/or deployment. 
Data collection, however, is a complex process and may 
contain recording and reporting errors, unintentional or oth-
erwise (Saez et al., 2013). Cleaning the data also requires 
making difficult and political decisions along the way, yet 
is often necessary especially when it comes to questions of 
race, gender, or identity (Nobles, 2000). Further, informa-
tion about protected attributes may be missing entirely (Data 
et al., 2004), or legally prohibited from being used directly, 
as in the case of lending applications for non-mortgage prod-
ucts in US (Federal Reserve Bank, 1993). In such cases, 
protected attributes can be predicted from other data, how-
ever, we know that this process is itself contains errors and 
biases (Muthukumar et al., 2018; Buolamwini & Gebru, 
2018). The above scenarios raise a challenge for existing 
fair classifiers as they may not achieve the same fairness as 
they would if the data were perfect. This raises the question 
of learning fair classifiers in the presence of noisy protected 
attributes, and has attracted recent attention (Awasthi et al., 
2020; Lamy et al., 2019; Wang et al., 2020). 
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Our contributions. We study the setting of “flipping noises” 
where a protected type Z = i may be flipped to Ẑ = j 
with some known fixed probability Hij (Definition 2.3). 
We present an optimization framework for learning a fair 
classifier that can handle: 1) flipping noises in the train, 
test, and future samples, 2) multiple, non-binary protected 
attributes, and 3) multiple fairness metrics, including the 
general class of linear-fractional metrics (e.g., statistical 
parity, false discovery rate) in a multiplicative sense. Our 
framework can learn a near-optimal fair classifier on the 
underlying dataset with high probability and comes with 
provable guarantees on both accuracy and fairness. 

We implement our framework using the logistic loss func-
tion (Freedman, 2009) and examine it on Adult and COM-
PAS datasets (Section 4). We consider sex and race as 
the protected attribute and generate noisy datasets varying 
flipping noise parameters. For COMPAS dataset, the race 
protected attribute is non-binary. We use statistical rate, 
false positive rate, and false discovery rate fairness met-
rics, and compare against natural baselines and existing 
noise-tolerant fair classification algorithms (Lamy et al., 
2019; Awasthi et al., 2020; Wang et al., 2020). The em-
pirical results show that, for most combinations of dataset 
and protected attribute (both binary and non-binary), our 
framework attains better fairness than an unconstrained clas-
sifier, with a minimal loss in accuracy. Further, in most 
cases, the fairness-accuracy tradeoff of our framework, for 
statistical and false positive rate, is also better than the base-
lines and other noise-tolerant fair classification algorithms, 
which either do not always achieve high fairness levels or 
suffer a larger loss in accuracy for achieving high fairness 
levels compared to our framework (Table 1). For false 
discovery rate (linear-fractional metric), our approach has 
better fairness-accuracy tradeoff than baselines for Adult 
dataset and similar tradeoff as the best-performing baseline 
for COMPAS dataset (Table 2). 

Techniques. Our framework starts by designing denoised 
constraints to achieve the desired fairness guarantees which 
take into account the noise in the protected attribute (Pro-
gram DFair). The desired fairness is governed using an in-
put parameter τ ∈ [0, 1]. The key is to estimate each group-
specific performance on the underlying dataset, which en-
ables us to handle non-binary protected attributes. Con-
cretely, we represent a group-specific performance as a ra-
tio and estimate its numerator and denominator separately, 
which enables us to handle linear-fractional constraints. Sub-
sequently, we show that an optimizer fΔ of our program is 
provably both approximately optimal and fair on the under-
lying dataset (Theorem 3.3) with high probability under a 
mild assumption that an optimizer f? of the underlying pro-
gram (Program TargetFair) has a non-trivial lower bound 
on the group-specific prediction rate (Assumption 1). The 
constraints in our program enable us to capture the range 

of alteration in the probability of any classifier prediction 
for different protected attribute types due to flipping noises 
and, consequently, allow us to provide guarantees on fΔ 

(Theorem 3.3). The guarantee on accuracy uses the fact 
that an optimal fair classifier f? for the underlying uncor-
rupted dataset is likely to be feasible for Program DFair 
as well, which ensures that the empirical risk of fΔ is less 
than f? (Lemma 3.6). The guarantee on the fairness of 
fΔ is attained by arguing that classifiers that considerably 
violate the desired fairness guarantee are infeasible for Pro-
gram DFair with high probability (Lemma 3.8). The key 
technical idea is to discretize the space of unfair classifiers 
by carefully chosen multiple ε-nets with different violation 
degrees to our denoised program, and upper bound the ca-
pacity of the union of all nets via a VC-dimension bound. 

Related work. (Lamy et al., 2019) consider binary pro-
tected attributes, linear fairness metrics including statisti-
cal rate (SR) and equalized odds constraints (Donini et al., 
2018). They give a provable algorithm that achieves an ap-
proximate optimal fair classifier by down-scaling the “fair-
ness tolerance” parameter in the constraints to adjust for the 
noise. In contrast, our approach estimates the altered form 
of fairness metrics in the noisy setting, and hence, can also 
handle linear-fractional metrics and non-binary attributes. 
Awasthi et al. (2020) study the performance of the equal-
ized odds post-processing method of Hardt et al. (2016) for 
a single noisy binary protected attribute. However, their 
analysis assumes that the protected attributes of test/future 
samples are uncorrupted. Our framework, instead, can han-
dle multiple, non-binary attributes and noise in test/future 
samples. Wang et al. (2020) propose two robust optimiza-
tion approaches to solve the noisy fair classification problem. 
The first one is to solve a min-max distributionally robust 
optimization (DRO) problem, which guarantees to find a 
classifier that satisfies fairness constraints on the underlying 
dataset. However, there is no provable guarantee on the 
accuracy of the learned classifier. For the second one, by 
proposing an iterative procedure to solve the arising min-
max problem, they can only guarantee a stochastic classifier 
that is near-optimal w.r.t. accuracy and near-feasible w.r.t. 
fairness constraints on the underlying dataset in expectation, 
but not with high probability. However, their iterative pro-
cedure relies on a minimization oracle, which is not always 
computationally tractable and their practical algorithm does 
not share the guarantees of their theoretical algorithm for the 
output classifier. In contrast, our denoised fairness program 
ensures that the optimal classifier is deterministic, near-
optimal w.r.t. both accuracy and near-feasible w.r.t. fairness 
constraints on the underlying dataset, with high probabil-
ity. Additionally, we define performance disparity across 
protected attribute values as the ratio of the “performance” 
for worst and best-performing groups (multiplicative con-
straints), while existing works (Lamy et al., 2019; Awasthi 
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et al., 2020; Wang et al., 2020) define the disparity using 
the additive difference across the protected attribute values 
(additive constraints); see Remark D.1. See Section A for 
other related work omitted here due to space constraints. 

2. The Model 
Let D = X × [p] × {0, 1} denote the underlying domain 
(p ≥ 2 is an integer). Each sample (X, Z, Y ) drawn from D 
contains a protected attributes Z, a class label Y ∈ {0, 1}, 
and non-protected features X ∈ X . Here, we discuss a 
single protected attribute, Z = [p], and generalize our model 
and results to multiple protected attributes in Section D. 1 

We assume that X is a d-dimensional vector, for a given d ∈ 
N, i.e., X ⊆ Rd . Let S = {sa = (xa, za, ya) ∈ D}a∈[N ] 

Xbe the (underlying, uncorrupted) dataset. Let F ⊆ {0, 1}
denote a family of all possible allowed classifiers. Given a 
loss function L : F ×D → R≥0, the goal of unconstrained 
classification is to find a classifier f ∈ F that minimizes the 

1 P 
empirical risk L(f, sa).N a∈[N ] 

Fair classification and fairness metrics. We consider the 
problem of classification for a general class of fairness met-
rics. Let D denote the empirical distribution over S, i.e., 
selecting each sample sa with probability 1/N . 

Definition 2.1 (Linear/linear-fractional group perfor-
mance functions (Celis et al., 2019)) Given a classifier 
f ∈ F and i ∈ [p], we call qi(f) the group performance of 
Z = i if qi(f) = PrD [ξ(f) | ξ0(f), Z = i] for some events 
ξ(f), ξ0(f) that might depend on the choice of f . If ξ0 does 
not depend on the choice of f , q is said to be linear; other-
wise, q is said to be linear-fractional. 

At a high level, a classifier f is considered to be fair w.r.t. q if 
q1(f) ≈ · · · ≈ qp(f). Definition 2.1 is general and contains 
many fairness metrics. For instance, if ξ := (f = 1) and 
ξ0 := ∅, we have qi(f) = PrD [f = 1 | Z = i] which is lin-
ear and called the statistical rate. If ξ := (Y = 0) and ξ0 := 
(f = 1), we have qi(f) = PrD [Y = 0 | f = 1, Z = i] 
which is linear-fractional and called the false discovery 
rate. See Table 1 in (Celis et al., 2019) for a compre-
hensive set of special cases. Given a group performance 
function q, we define Ωq : F × D? → [0, 1] to be 
Ωq (f, S) := mini∈[p] qi(f)/ maxi∈[p] qi(f) as a specific 
fairness metric, where D? is the collection of all datasets S 
on the domain D. Then we define the following fair classifi-
cation problem: Given a group performance functions q and 
a threshold τ ∈ [0, 1], the goal is to learn an (approximate) 

1One can also consider combinations of demographic groups by 
treating the intersections (e.g., of race and sex) as disjoint groups 
and using our program accordingly. 

optimal fair classifier f ∈ F of the following program: X1 
min L(f, sa) s.t. 
f ∈F N 

a∈[N ] (TargetFair) 
Ωq (f, S) ≥ τ. 

For instance, we can set q to be the statistical rate and 
τ = 0.8 to encode the 80% disparate impact rule (Biddle, 
2006). Note that Ωq (f, S) ≥ 0.8 is usually non-convex 
for certain q. Often, one considers a convex function as an 
estimate of Ωq(f, S), for instance Ωq(f, S) is formulated 
as a covariance-type function in (Zafar et al., 2017b), and 
as the weighted sum of the logs of the empirical estimate of 
favorable bias in (Goel et al., 2018). 

Remark 2.2 (Multiplicative v.s. additive fairness con-
straints) We note that the fairness constraints mentioned 
above (Ωq) are multiplicative and appear in (Calders & 
Verwer, 2010; Zafar et al., 2017a;b; Menon & Williamson, 
2018a; Celis et al., 2019). Multiplicative fairness con-
straints control disparity across protected attribute val-
ues by ensuring that the ratio of the “performance” for 
the worst and best-performing groups are close. In con-
trast, related prior work for noisy fair classification (Lamy 
et al., 2019; Awasthi et al., 2020; Wang et al., 2020) usu-
ally consider additive fairness constraints, i.e., of the form 
Ω0 (f, S) := maxi∈[p] qi(f)−mini∈[p] qi(f) ≤ τ 0 for some q 
τ 0 ∈ [0, 1] (difference instead of ratio). Specifically, let-
ting τ 0 = 0 in the additive constraint is equivalent to let-
ting τ = 1 in the multiplicative constraint with respect to 
the same group performance function q. Note that multi-
plicative implies additive, i.e., given τ ∈ [0, 1], we have 
that Ω(f, S) ≥ τ implies that Ω0(f, S) ≤ 1 − τ . How-
ever, the converse is not true: for instance, given arbi-
trary small τ 0 > 0, we may learn a classifier f? under 
additive constraints such that mini∈[p] qi(f?) = 0 and 
maxi∈[p] qi(f

?) = τ 0; however, such f? violates the 80% 
rule (Biddle, 2006) that is equivalent to Ωq (f, S) ≥ 0.8. 

Noise model. If S is observed, we can directly use Pro-
gram TargetFair. However, as discussed earlier, the pro-
tected attributes in S may be imperfect and we may only 
observe a noisy dataset Sb instead of S. We consider the 
following noise model on the protected attributes (Lamy 
et al., 2019; Awasthi et al., 2020; Wang et al., 2020). 

Definition 2.3 (Flipping noises) Let H ∈ [0, 1]p×p be aP 
stochastic matrix with = 1 and Hii > 0.5 forj∈[p] Hij 

any i ∈ [p]. Assume each protected attribute Z = i (i ∈ [p]) 
is observed as Zb = j with probability Hij , for any j ∈ [p]. 

Note that H can be non-symmetric. The assumption that 
Hii > 0.5 ensures that the total flipping probability of each 
protected attribute is strictly less than a half. Consequently, 
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H is a diagonally-dominant matrix, which is always non-
singular (Horn & Johnson, 2012). We will use the entries of 
H to design our fairness constraints; this case of when H 
is known and the flipping noise is i.i.d. arises in important 
real-world applications, such as the randomized response 
model (including local differential privacy (Duchi et al., 
2013)). Additionally, we also discuss extensions to other 
noise models in Section 3.2. 

Due to noise, directly applying the same fairness constraints 
on Sb may introduce bias on S and, hence, modifications to 
the constraints are necessary; see Section F for a discussion. 

Remark 2.4 (Limitation of Definition 2.3) In certain ap-
plications, we may not know H explicitly, and can only 
estimate them by, say, finding a small appropriate sample 
of the data for which ground truth is known (or can be 
found), and computing estimates for H accordingly (Kallus 
et al., 2020). For instance, H could be inferred from prior 
data that contains both true and noisy (or proxy) protected 
attribute values; e.g., existing methods, such as Bayesian 
Improved Surname Geocoding method (Elliott et al., 2009), 
employ census data to construct conditional race member-
ship probability models given surname and location. In 
the following sections, we assume H is given. For settings 
in which the estimates of H may not be accurate, we an-
alyze the influences of the estimation errors at the end of 
Section 3.2 and empirically in Appendix E. 

Problem 1 (Fair classification with noisy protected at-
tributes) Given a group performance functions q, a thresh-
old τ ∈ [0, 1], and a noisy dataset Sb with noise matrix H , 
the goal is to learn an (approximate) optimal fair classifier 
f ∈ F of Program TargetFair. 

3. Framework and Theoretical Results 
We show how to learn an approximately fair classifier w.h.p. 
for Problem 1 (Theorem 3.3). This result is generalized to 
multiple protected attributes/fairness metrics in Section D. 
The approach is to design denoised fairness constraints 
over Sb (Definition 3.1) that estimate the underlying con-
straints of Program TargetFair, and solve the constrained 
optimization problem (Program DFair). Let f? ∈ F denote 
an optimal classifier of Program (TargetFair). Our result 
relies on a natural assumption on f? . 

Assumption 1 There exists a constant λ ∈ (0, 0.5) such 
that mini∈[p] PrD [ξ(f

?), ξ0(f?), Z = i] ≥ λ. 

Note that λ is a lower bound for mini∈[p] qi(f?). In many 
applications we expect this assumption to hold. For instance, 
λ ≥ 0.1 if there are at least 20% of samples with Z = i 
and PrD [ξ(f

?), ξ0(f?) | Z = i] ≥ 0.5 for each i ∈ [p]. In 
practice, exact λ is unknown but we can set λ according 

to the context. This assumption is not strictly necessary, 
i.e., we can simply set λ = 0, but the scale of λ decides 
certain capacity of classifiers that we do not want to learn, 
which affects the performance (success probability) of our 
approaches; see Remark 3.4. 

3.1. Our Optimization Framework b bLet D denote the empirical distribution over S.� h i� 
Let ub(f ) := Pr ξ(f), ξ0(f), Zb = i and wb(f) := 

i∈[p]� h i� 
Pr ξ0(f), Zb = i . If D and Db are clear from 

i∈[p] 
the context, we denote Pr [·] by Pr [·]. Let M :=D,Db 

maxi∈[p] k(H>)−1k1 where (H>)−1 means first invert HT 
i i 

and then take the i-th row. Define the denoised fairness con-
straints and the induced program as follows. 

Definition 3.1 (Denoised fairness constraints) Given a 
(H>)−1 ub(f )iclassifier f ∈ F , for i ∈ [p] let Γi(f) := . Let 
(H>)−1 wb(f)i 

δ ∈ (0, 1) be a fixed constant and τ ∈ [0, 1] be a threshold. 
We define our denoised fairness program to be X 

min 
1 

L(f, sba) s.t. 
f ∈F N 

a∈[N ] 
(DFair) 

(H>)−1 ub(f) ≥ (λ − Mδ)1, 

min Γi(f) ≥ (τ − δ) · max Γi(f). 
i∈[p] i∈[p] 

δ is used as a relaxation parameter depending on the con-
text where a larger value of δ increases the probability of 
learning an (approximate) fair classifier by Program (DFair) 
(Remark 3.4). By definition, we can regard M as a metric 
that measures how noisy H is. Note that the term (λ−Mδ) 
does not need to be nonnegative. Intuitively, as diagonal el-
ements Hii increases, eigenvalues of H increase, and hence, 
M decreases. Also note that M ≥ 1 since M is at least the 
largest eigenvalue of H−1 and H is a non-singular stochas-
tic matrix whose largest eigenvalue is 1. Intuitively, Γi(f) is 
designed to estimate Pr [ξ(f) | ξ0(f), Z = i]: its numerator 
approximates Pr [ξ(f), ξ0(f) | Z = i] and its denominator 
approximates Pr [ξ0(f), Z = i]. For the denominator, since h i bDefinition 2.3 implies Pr Z = j | ξ0(f), Z = i ≈ Hij , 
we can estimate Pr [ξ0(f), Z = i] by a linear combination h i 
of Pr ξ0(f), Zb = j , i.e., (H>)−1 wb(f). Similar intuition i 

is behind the estimate of the numerator (H>)−1 ub(f). Duei 
to how Γis are chosen, the first constraint is designed to 
estimate Assumption 1, and the last constraint is designed 
to estimate Ωq(f, S) ≥ τ . Recall that the λ parameter in 
Assumption 1 crucially affects the success probability of 
learning an approximate optimal classifier (Theorem 3.3). 
Thus, by incorporating Assumption 1 as a constraint in 
Program (DFair), we ensure that the classifier returned by 
Program (DFair) satisfies it. 
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This design ensures that an optimal fair classifier f? satisfies 
our denoised constraints w.h.p. (Lemma 3.6), and hence, 
is a feasible solution to Program DFair. Consequently, the 
empirical risk of an optimal classifier fΔ of Program Tar-
getFair is at most that of f? . The main difficulty is to prove 
that fΔ achieves fairness on the underlying dataset S, since 
an unfair classifier may also satisfy our denoised constraints 
and is output as a feasible solution of Program (DFair). To 
handle this, we show all unfair classifiers that are infeasi-
ble for Program TargetFair should violate our denoised 
constraints (Lemma 3.8). For this, we verify that the proba-
bility of each unfair classifier being feasible is exponentially 
small, and bound certain “capacity” of unfair classifiers 
(Definition B.5) using Assumption 1. 

3.2. Main theorem: Performance of Program DFair 

Our main theorem shows that solving Program DFair leads 
to a classifier that does not increase the empirical risk (com-
pared to the optimal fair classifier) and only slightly violates 
the fairness constraint. Before we state our result, we need 
the following definition that measures the complexity of F . 

Definition 3.2 (VC-dimension of (S, F) (Har-peled, 
2011)) Given a subset A ⊆ [N ], we define FA := 
{{a ∈ A : f(sa) = 1} | f ∈ F} to be the collection of sub-
sets of A that may be shattered by some f ∈ F . The VC-
dimension of (S, F) is the largest integer t such that there 
exists a subset A ⊆ [N ] with |A| = t and |FA| = 2t . 

XSuppose X ⊆ Rd for some integer d ≥ 1. If F = {0, 1} , 
we observe that the VC-dimension is t = N . Several com-
monly used families F have VC-dimension O(d), including 
linear threshold functions (Har-peled, 2011), kernel SVM 
and gap tolerant classifiers (Burges, 1998). Using this defi-
nition, the main theorem in this paper is as follows. 

Theorem 3.3 (Performance of Program DFair) Suppose 
the VC-dimension of (S, F) is t ≥ 1. Given any flipping 
noise matrix H ∈ [0, 1]p×p, λ ∈ (0, 0.5) and δ ∈ (0, 1), let 
fΔ ∈ F denote an optimal fair classifier of Program DFair. 

λ2 δ2 − +t ln(50M/λδ)
60000M 2With probability at least 1 − O(pe 

n 

), 
we have X X1 

L(fΔ , sa) ≤ 
1 

L(f? , sa) and 
N N 

a∈[N ] a∈[N ] 

Ωq (f
Δ, S) ≥ τ − 3δ. 

Theorem 3.3 indicates that fΔ is an approximate fair clas-
sifier for Problem 1 with an exponentially small failure 
probability to the data size n. A few remarks are in order. 

Remark 3.4 Observe that the success probability depends 
on 1/M , δ, λ and the VC-dimension t of (S, F). If 1/M or 

δ is close to 0, i.e., the protected attributes are very noisy 
or there is no relaxation for Ωq(f, S) ≥ τ respectively, the 
success probability guarantee naturally tends to be 0. Next, 
we discuss the remaining parameters λ and t. 

Discussion on λ. Intuitively, the success probability guar-
antee tends to 0 when λ is close to 0. For instance, consider 
q to be the statistical rate (Eq. (1)). Suppose there is only 
one sample s1 with Z = 1 for which f?(s1) = 1, i.e., 
PrD [f

? = 1, Z = 1] = 1/N and, therefore, λ ≤ 1/N . To 
approximate f? , we may need to label f(s1) = 1. However, 
due to the flipping noises, it is likely that we can not find out 
the specific sample s1 to label f(s1) = 1, unless we let the 
classifier prediction be f = 1 for all samples, which leads 
to a large empirical risk (see discussion in Section F.1). In 
other words, the task is tougher for smaller values of λ. 

Discussion on t. The success probability also depends on 
t which captures the complexity of F . Suppose X ⊆ Rd 

Xfor some integer d ≥ 1. The worst case is F = {0, 1}
with t = N , which takes the success probability guarantee 
to 0. On the other hand, if the VC-dimension does not 
depend on N , e.g., only depends on d � N , the failure 
probability is exponentially small on N . For instance, if F 
is the collection of all linear threshold functions, i.e., each 
classifier f ∈ F has the form f(sa) = I [hxa, θi ≥ r] for 
some vector θ ∈ Rd and threshold r ∈ R. We have t ≤ d+1 
for an arbitrary dataset S (Har-peled, 2011). 

Remark 3.5 The learned classifier fΔ guaranteed by our 
theorem is both approximately fair and optimal w.h.p. This 
is in contrast to learning a stochastic classifier f̃  ∼ Λ over 
F , that is in expectation near-optimal for both accuracy 
and fairness, e.g., h iP P

1 f, sa 
1E ̃  L( ˜ ) ≤ L(f?, sa), andf∼Λ N a∈[N ] N a∈[N ] h i 

( ˜Ef ∼Λ Ωq f, S) ≥ τ − 3δ. 

For instance, suppose f1, f2 ∈ F such that the empirical 
3 P 

risk of f1 is L(f?, sa) and Ω(f1, S) = τ/2,2N a∈[N ] 
1 P 

while the empirical risk of f2 is L(f?, sa) and2N a∈[N ] 

Ω(f2, S) = 3τ/2. If Λ is uniform over f1 and f2, it satis-
fies the above two inequalities, But, neither of fis is near-
optimal for accuracy and fairness. 

Estimation errors. In practice, we can use prior work 
on noise parameter estimation (Menon et al., 2015; Liu & 
Tao, 2015; Northcutt et al., 2017) to obtain estimates of 
H , say H 0 . The scale of estimation errors also affects the 
performance of our denoised program. In Section C in the 
Supplementary Material, we provide a technical discussion 
on the effect of the estimation errors on the performance. 
Concretely, we consider a specific setting that p = 2 and q 
is the statistical rate. Define ζ := maxi,j∈[p] |Hij − Hij 

0 | 
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to be the additive estimation error. We show there exists 
constant α > 0 such that Ωq(f

Δ, S) ≥ τ − 3δ − ζα holds. 
Compared to Theorem 3.3, the estimation errors introduce 
an additive ζα error term for the fairness guarantee of our 
denoised program. 

Extension to other noise models. Our framework can also 
be extended to other non-independent noise models; e.g. 
settings for which concentration bounds in Inequalities (4) 
and (5) in Section B.1 hold. These include negative asso-
ciated or negative dependent noise. We could also extend 
to some non-identical noise settings, e.g., if the noise is 
identical across (large) subgroups of a group (as opposed 
to across the entire group) by treating each subgroup dis-
jointly. Extensions to other noise models, however, seems 
non-trivial and an interesting future direction. 

3.3. Proof of Theorem 3.3 for p = 2 and Statistical Rate 

For ease of understanding, we consider a specific case in 
the main body: a binary sensitive attribute Z ∈ {0, 1} and 
statistical rate constraints, i.e., 

mini∈{0,1} PrD [f = 1 | Z = i]
γ(f, S) := ≥ τ. (1) 

maxi∈{0,1} PrD [f = 1 | Z = i] 

Consequently, we would like to prove γ(fΔ, S) ≥ τ −3δ to 
obtain Theorem 3.3. The proof for the general Theorem 3.3 
can be found in Section D. We denote η0 = H01 to be the 
probability that Zb = 1 conditioned on Z = 0, and η1 = 
H10 to be the probability that Zb = 0 conditioned on Z = 
1. By Assumption 1, we have η0, η1 < 0.5. Combining� � 

1 − η0 η0with Definition 2.3, we have H = , which η1 1 − η1 

1implies that M = . Consequently, Assumption 1 is1−η0−η1 

equivalent to mini∈{0,1} PrD [f
? = 1, Z = i] ≥ λ, and for 

i ∈ {0, 1}, 
h i h i b b(1 − η1−i ) Pr f = 1, Z = i − η1−i Pr f = 1, Z = 1 − i 

Γi(f) := . 
(1 − η1−i)µbi − η1−iµb1−i 

We define the denoised statistical rate to be γΔ(f, Sb) :=n o 
Γ0(f ) Γ1(f )min , , and our denoised constraints become Γ1(f ) Γ0(f ) ⎧ h i h i ⎪ b b⎨ (1−η1−i) Pr f=1, Z=i −η1−i Pr f=1, Z=1−i 

≥ (1 − η0 − η1)λ − δ, i ∈ {0, 1} (2)⎪⎩ 
γΔ(f, Sb) ≥ τ − δ, 

Proof overview. The proof of Theorem 3.3 relies on two 
lemmas: 1) The first shows that f? is a feasible solution for 
Constraints (2) (Lemma 3.6). The feasibility of f? for the 
first constraint of (2) is guaranteed by Assumption 1 and for 
the second constraint of (2) follows from the fact that Γi(f) 
(i ∈ {0, 1}) is a good estimation of Pr [ξ(f), ξ0(f) | Z = i] 
by the Chernoff bound. 2) The second lemma shows that 

w.h.p. (1 − F for small F ), all unfair classifiers f ∈ F that 
are either not feasible for Program ConFair or violate As-
sumption 1, violate Constraint (2) (Lemma 3.8). Since the 
space of unfair classifiers is continuous, the main difficulty 
is to upper bound the (violating) probability F . Towards 
this, we first divide the collection of all unfair classifiers 
into multiple groups depending on how much they violate 
Constraint (2) (Definition 3.7). Then, for each group Gi, we 
construct an εi-net Gi (Definition B.3); ensuring no classi-
fier f ∈ Gi violate Constraint (2) is sufficient to guarantee 
that no classifier in group Gi violate Constraint (2). Here, 
εi is chosen to depend on the degree of violation of Gi. 
Using Chernoff bounds, we show that the probability each 
unfair classifier on the net Gi is feasible to Constraint (2) 
is exp(−O(1 − η0 − η1)2λ2n)). Hence, as λ decreases, it 
is more likely that an unfair classifier is feasible for Con-
straint (2). To bound the total violating probability, it re-
mains to bound the number of classifiers in the union of 
these nets (Definition B.5). The idea is to apply the relation 
between VC-dimension and ε-nets (Theorem B.4). Overall, 
constant 60000 in the success probability comes by setting 
the appropriate ε1 to capture the capacity of unfair classifiers 
in Lemma 3.6. 

The two lemmas imply that the empirical risk of fΔ is 
guaranteed to be at most that of f? and fΔ must be fair over 
S (Theorem 3.3). Overall, the main technical contribution 
is to discretize the space of unfair classifiers by carefully 
chosen multiple ε-nets with different violation degrees to 
our denoised program, and upper bound the capacity of the 
union of all nets via a VC-dimension bound. 

We now present the formal statements of the two main lem-
mas: Lemmas 3.6 and 3.8, and defer all proofs to Section B. 

Lemma 3.6 (Relation between Program TargetFair 
and DFair) Let f ∈ F be an arbitrary classifier and 
ε ∈ (0, 0.5). With probability at least 1 − 2e−ε2 n/6 , h i h i b b(1 − η1−i) Pr f = 1, Z = i − η1−i Pr f = 1, Z = 1 − i 

∈(1 − η0 − η1) Pr [f = 1, Z = i] ± ε, 

for i ∈ {0, 1}. Moreover, if mini∈{0,1} Pr [f = 1, Z = i] ≥ 
λ ε2(1−η0−η1)2λ2 n− 2400, then with probability at least 1 − 4e ,2 

γΔ(f, Sb) ∈ (1 ± ε)γ(f, S). 

The first part of this lemma shows how to esti-
mate Pr [f = 1, Z = i] (i ∈ {0, 1}) in terms ofh i h i b bPr f = 1, Z = 0 and Pr f = 1, Z = 1 , which moti-
vates the first constraint of (2). The second part of the 
lemma motivates the second constraint of (2). Then by As-
sumption 1, f? is likely to be feasible for Program DFair. 
Consequently, fΔ has empirical loss at most that of f? . 
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For our second main lemma, we first define the collection 
of classifiers that are expected to violate. Constraint (2). 

Definition 3.7 (Bad classifiers) Given a family F ⊆ 
{0, 1} , we call f ∈ F a bad classifier if f belongs to 
at least one of the following sub-families: � 
• G0 := f ∈ F : 

λmin {Pr [f = 1, Z = 0] , Pr [f = 1, Z = 1]} < ;2 

2(τ−3δ)• Let T = d232 log log e. For i ∈ [T ], define λ n h �o 
τ−3δ τ−3δGi:= f∈F \ G0 : γ(f, S) ∈ , . 

1.012i+1−1 1.012i −1 

Intuitively, classifier f ∈ G0 is likely to violate the first of 
Constraint (2); and for f ∈ Gi for some i ∈ [T ] it is likely 
that γΔ(f, Sb) < τ − δ. Thus, any bad classifier is likely to 
violate Constraint (2) (Lemma 3.6). Then we lower bound 
the total violating probability for all bad classifiers by the 
following lemma. 

Lemma 3.8 (Bad classifiers are not feasible for Con-
straint (2)) Suppose the VC-dimension of (S, F) is t; then 
with probability at least � � 

(1−η0−η1)2λ2δ2 n 50− +t ln( )5000 (1−η0−η1)λδ1 − O e , 

any bad classifier violates Constraint (2). 

Theorem 3.3 for p = 2 and statistical rate is almost a direct 
corollary of Lemmas 3.6 and 3.8 (see Section B) except 
that we need to verify that any classifier violating Program 
(DFair) is a bad classifier in the sense of Definition 3.7. 

4. Empirical Results 
We implement our denoised program, for binary and non-
binary protected attributes, and compare the performance 
with baseline algorithms on real-world datasets. 

Datasets. We perform simulations on the Adult (Asun-
cion & Newman, 2007) and COMPAS (Angwin et al., 
2016b) benchmark datasets, as pre-processed in AIF360 
toolkit (Bellamy et al., 2018b). The Adult dataset consists 
of rows corresponding to 48,842 individuals, with 18 bi-
nary features and a label indicating whether the income is 
greater than 50k USD or not. We use binary protected at-
tributes sex (“male” (Z=1) vs “female” (Z=0)) and race 
(“White” (Z=1) vs “non-White” (Z=0)) for this dataset. 
The COMPAS dataset consists of rows corresponding to 
6172 individuals, with 10 binary features and a label that 
takes value 1 if the individual does not reoffend and 0 oth-
erwise. We take sex (coded as binary) and race (coded 
as non-binary - “African-American” (Z=1), “Caucasian” 
(Z=2), “Other” (Z=3)) to be the protected attributes. 

Metrics and baselines. We implement our program us-
ing logistic loss with denoised constraints with respect to 
the statistical rate and false positive rate metrics; we refer 
to our algorithm with statistical rate constraints as DLR-
SR and with false positive rate constraints as DLR-FPR. 
2 To obtain computationally feasible formulations of our 
optimization problem (2), we expand the constraint on the 
fairness metrics by forming constraints on relevant (empiri-
cal) rates of all groups, and solve the nonconvex program 
using SLSQP; the details of the constraints are presented 
in Section E. We compare against state-of-the-art noise-
tolerant fair classification algorithms: LZMV (Lamy et al., 
2019), AKM (Awasthi et al., 2020), and WGN+ (Wang 
et al., 2020). LZMV takes as input a parameter, εL, to 
control the fairness of the final classifier; for statistical rate, 
this parameter represents the desired absolute difference 
between the likelihood of positive class label across the 
two protected groups and LZMV is, therefore, the primary 
baseline for comparison with respect to statistical rate. We 
present the results of (Lamy et al., 2019) for different εL 

values.3 AKM4 and WGN+5 are the primary baseline for 
comparison with respect to false positive rate metric. As 
discussed earlier, the algorithm AKM is the post-processing 

6algorithm of Hardt et al. (2016). For WGN+, we use 
the algorithm that employs soft-group assignments (Kallus 
et al., 2020) to form false positive rate constraints; it is the 
only prior algorithm that can handle non-binary noisy pro-
tected attributes and, hence, it is also the main baseline for 
the COMPAS dataset with race protected attribute. 

Note that we test all methods in the setting of flipping noises 
in protected attribute. While the LZMV and AKM methods 
also address the flipping noise setting, they require less in-
formation about the noise model than our algorithm. LZMV 
only needs access to the sum of η0+η1 to construct their 
modified constraints (in case of binary protected attribute), 
and AKM do not require access to the noise parameters 
(they directly use the algorithm of (Hardt et al., 2016)). Our 
approach DLR, on the other hand, uses the entire noise 
matrix to design appropriate denoised constraints. 

Additionally, we implement the baseline which minimizes 
the logistic loss with fairness constraints (τ = 0.9) over the 
noisy protected attribute as described in Section F.2. When 
the fairness metric is the statistical rate, we will refer to this 
program as LR-SR, and when the fairness metric is the false 

2We use the (noisy) protected attribute to construct the con-
straints, but not for classification. However, if necessary, the 
protected attribute can also be used as a feature for classification. 

3github.com/AIasd/noise_fairlearn. 
4github.com/matthklein/equalized_odds_under_perturbation. 
5github.com/wenshuoguo/robust-fairness-code. 
6Equalized odds fairness metric aims for parity w.r.t false posi-

tive and true positive rates. For clarity of presentation, we present 
the empirical analysis with respect to false positive rate only. 

https://5github.com/wenshuoguo/robust-fairness-code
https://4github.com/matthklein/equalized_odds_under_perturbation
https://3github.com/AIasd/noise_fairlearn
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Table 1. The performance on accuracy and fairness metrics of all algorithms over the test datasets; we report the average and standard error 
(in parenthesis). When the protected attribute is binary, the fairness metrics (SR, FPR) are mini∈{0,1} qi(f)/ maxi∈{0,1} qi(f). For the 
non-binary protected attribute (COMPAS-race), we report the performance for all groups; i.e., SRj , FPRj denote qj (f)/ maxi∈[p] qi(f), 
for all j∈[p]. By definition, SR= min {SRj } and FPR= min {FPRj }. The full accuracy-fairness tradeoffs when varying τ can be found 
in Section E in the supplementary material. For each dataset and protected attribute, the metrics of the method that achieves the largest 
sum of mean accuracy and mean statistical rate (one way to measure fairness-accuracy tradeoff) has also been colored in green, and 
the method that achieves the largest sum of mean accuracy and mean false positive rate has been colored in yellow. Our method DLR 
achieves the best tradeoff or is within one standard deviation of the best tradeoff, as measured in this manner, in 6 out of 8 settings. 

Adult COMPAS 
sex (binary) race (binary) sex (binary) race (non-binary) 

acc SR FPR acc SR FPR acc SR FPR acc SR0 SR1 SR2 FPR0 FPR1 FPR2 

Unconstrained .80 (0) .31 (.01) .45 (.03) 
LR-SR .76 (.01) .68 (.24) .68 (.21) 
LR-FPR .76 (.01) .82 (.21) .78 (.25) 
LZMV εL=.01 .35 (.01) .99 (0) .99 (0) 
LZMV εL =.04 .67 (.04) .85 (.06) .99 (.01) 
LZMV εL=.10 .78 (.02) .69 (.09) .79 (.11) 
AKM .77 (0) .66 (.05) .89 (.04) 
WGN+ .70 (.05) .73 (.12) .76 (.05) 

.80 (0) .68 (.02) .81 (.09) 
.76 (.01) .69 (.27) .71 (.26) 
.76 (0) .83 (.29) .84 (.29) 

.37 (.05) .98 (0) .99 (0) 

.77 (.03) .79 (.10) .85 (.09) 
.80 (0) .70 (.01) .82 (.08) 
.80 (0) .72 (.02) .90 (.08) 

.76 (.01) .84 (.05) .92 (.05) 

.67 (.01) .78 (.04) .70 (.08) 

.67 (.01) .79 (.04) .72 (.08) 

.67 (.02) .80 (.04) .72 (.08) 

.55 (.01) .98 (.04) .98 (.09) 

.58 (.01) .94 (.02) .94 (.03) 

.64 (.02) .85 (.05) .81 (.07) 

.66 (.01) .83 (.04) .77 (.09) 

.59 (.01) .90 (.02) .84 (.01) 

.67 (0) .66 (.02) .96 (.01) 1.0 (.0) .57 (.02) 1.0 (0) .94 (.01) 
.58 (.06) .86 (.09) .98 (.03) .98 (.02) .85 (.11) .98 (.04) .96 (.04) 
.56 (.05) .87 (.08) .97 (.06) .97 (.03) .86 (.09) .96 (.07) .95 (.09) 

- - - - - - -
- - - - - - -
- - - - - - -
- - - - - - -

.56 (.02) .89 (.14) .91 (.18) .96 (.13) .85 (.16) .87 (.23) .94 (.16) 

DLR-SR τ =.7 .77 (.01) .74 (.14) .87 (.17) 
DLR-SR τ =.9 .76 (.01) .85 (.15) .80 (.12) 
DLR-FPR τ =.7 .77 (.02) .73 (.14) .85 (.17) 
DLR-FPR τ =.9 .77 (.02) .77 (.12) .91 (.11) 

.79 (.01) .80 (.12) .90 (.10) 

.76 (.01) .88 (.18) .90 (.19) 

.78 (.02) .77 (.11) .88 (.11) 

.77 (.02) .80 (.15) .88 (.14) 

.67 (.01) .79 (.04) .72 (.08) 

.63 (.04) .86 (.05) .83 (.08) 

.66 (.01) .80 (.04) .73 (.08) 

.60 (.06) .86 (.07) .82 (.10) 

.66 (.01) .73 (.04) .99 (.01) 1.0 (0) .66 (.05) 1.0 (.0) .92 (.03) 

.55 (.04) .91 (.06) .97 (.04) .97 (.03) .89 (.09) .97 (.04) .93 (.1) 

.64 (.02) .76 (.05) .99 (.01) .98 (.02) .72 (.06) 1.0 (.0) .89 (.06) 

.53 (.04) .92 (.06) .97 (.06) .95 (.06) .93 (.08) .94 (.09) .93 (.07) 

positive rate, we will refer to it as LR-FPR. Finally, we also 
learn an unconstrained optimal classifier as a baseline. 

Implementation details. We first shuffle and partition the 
dataset into a train and test partition (70-30 split). Given 
the training dataset S, we generate a noisy dataset Sb. For 
binary protected attributes, we use η0 = 0.3 and η1 = 0.1. 
For non-binary protected attributes, we use the noise matrix " # 

0.70 0.15 0.15 
H = 0.05 0.90 0.05 (i.e., the minority group is more 

0.05 0.05 0.90 
likely to contain errors, as would be expected in various 
applications (Nobles, 2000)). Our algorithms, as well as 
the baselines, have access to the known η and H values. 
We consider other choices of noise parameters, impact of 
error in estimates of noise parameter, and performance when 
protected attribute is partially predicted using non-protected 
features in Section E in the Supplementary Material. We 
train each algorithm on Sb and vary the fairness constraints 
(e.g., the choice of τ ∈ [0.5, 0.95] in DLR) to learn the cor-
responding fair classifier and record its accuracy (acc) over 
the test dataset. We also record the fairness metric (statisti-
cal rate or false positive rate) γ of the classifier with respect 
to the true (non-noisy) version of the protected attributes in 
the test dataset. We perform 50 repetitions and report the 
mean and standard error of fairness and accuracy metrics 
across the repetitions. For COMPAS, we use λ=0.1 as a 
large fraction (47%) of training samples have class label 1, 
while for Adult, we use λ=0 as the fraction of positive class 
labels is small (24%). 7 

7Alternately, one could use a range of values for λ to construct 
multiple classifiers, and choose the one which satisfies the program 
constraints and has the best accuracy over a separate validation 
partition. We find that these λ are sufficient to obtain fair classifiers 

Results. Table 1 summarizes the fairness and accuracy 
achieved by our methods and baseline algorithms over the 
Adult and COMPAS test datasets. The first observation is 
that our approach, DLR-SR and DLR-FPR, achieve higher 
fairness than the unconstrained classifier, showing its effec-
tiveness in noise-tolerant fair classification. The extent of 
this improvement varies with the strength of the constraint 
τ , but comes with a natural tradeoff with accuracy. 

For each dataset and protected attribute, we also highlight 
the method that achieves the largest sum of mean accuracy 
and mean fairness in Table 1. Note that this is just one way 
to measure the fairness-accuracy tradeoff and this measure 
can highlight approaches that achieve high fairness but low 
accuracy (or vice versa). The full results of all metrics in 
Table 1 should be taken into account to develop a more 
nuanced understanding of the performance of different algo-
rithms and their fairness-accuracy tradeoffs. Nevertheless, 
when fairness-accuracy tradeoff is measured in this manner, 
our method DLR achieves the best tradeoff or is within one 
standard deviation of the best tradeoff in 6 out of 8 settings. 

For Adult dataset, DLR-SR and DLR-FPR (with τ =0.9) 
can attain a higher fairness metric value than LR-SR and 
LR-FPR respectively, and perform similarly with respect to 
accuracy. The statistical rate-accuracy tradeoff of DLR-
SR, for this dataset, is also better than LZMV, AKM, 
and WGN+; in particular, high statistical rate for Adult 
dataset using LZMV (i.e., ≥0.8) is achieved only with a rel-
atively larger loss in accuracy (for example, with εL=0.01), 
whereas for DLR-SR, the loss in accuracy when using 
τ =0.9 is relatively small (∼0.03) while the statistical rate 

for the considered datasets. 
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is still high (∼0.85). With respect to false positive rate, 
AKM can achieve a high false positive rate for the Adult 
dataset (∼0.90), while WGN+ does not achieve high false 
positive rate when sex is the protected attribute. In compar-
ison, DLR-FPR with τ =0.9 can also achieve a high false 
positive rate at a small loss of accuracy for both protected 
attributes, and the best false positive rate and accuracy of 
DLR-FPR and AKM are within a standard deviation of 
each other. Baseline LZMV attains a high false positive 
rate too for the Adult dataset, but the loss in accuracy is 
larger compared to DLR-FPR. 

For the COMPAS dataset, with sex as protected attribute, 
LZMV (εL=0.01, 0.04) achieves high statistical rate and 
false positive rate, but at a large cost to accuracy. Meanwhile 
DLR-SR (τ=0.9) returns a classifier with SR ∼ 0.86 and 
FPR ∼ 0.83 and significantly better accuracy (0.63) than 
LZMV(εL=0.01, 0.04). Further, our algorithm can achieve 
higher fairness as well, at the cost of accuracy, using a larger 
input τ (e.g., τ =1; see Section E in the Supplementary 
Material). Note that in this case, the unconstrained classifier 
already has high fairness values. Hence, despite the noise in 
protected attribute, the task of fair classification is relatively 
easy and all baselines, as well as, our methods perform well 
for this dataset and protected attribute. 

For the COMPAS dataset with non-binary race protected at-
tribute, we also present the complete breakdown of relative 
performance for each protected attribute value in Table 1. 
Both DLR-SR and DLR-FPR (with τ = 0.9) reduce the 
disparity between group-performances qj (f) and maxi∈[p] 
∀j ∈ [p], for SR and FPR metrics, to a larger extent com-
pared to the unconstrained classifier, baselines and WGN+. 

The tradeoff between the fairness metric and accuracy for 
all methods is also graphically presented in Section E in 
the Supplementary Material. Evaluation with respect to 
both metrics shows that our framework can handle binary 
and non-binary protected attributes, and attain close to the 
user-desired fairness metric values (as defined using τ ). For 
τ = 0.9, DLR can achieve high fairness (> 0.8), albeit at 
a cost to accuracy, in all considered settings. Comparison 
with baselines further shows that, unlike AKM and WGN+, 
our approach always returns classifiers with high fairness 
metrics values, and unlike LZMV, the loss in accuracy to 
achieve high fairness values is relatively small. 

We also present the performance of our approach using 
false discovery rate (linear-fractional metric) constraints in 
Section E; in that setting, our approach has better fairness-
accuracy tradeoff than baselines for Adult and similar trade-
off as the best-performing baseline for COMPAS. 

5. Conclusion, Limitations & Future Work 
In this paper, we study fair classification with noisy pro-
tected attributes. We consider flipping noises and propose a 
unified framework that constructs an approximate optimal 
fair classifier over the underlying dataset for multiple, non-
binary protected attributes and multiple linear-fractional 
fairness constraints. Our framework outputs a classifier that 
is guaranteed to be both fair and accurate. Empirically, our 
denoised algorithm can achieve the high fairness values at a 
small cost to accuracy. Thus this work broadens the class 
of settings where fair classification techniques can be ap-
plied by working even when the information about protected 
attributes is noisy. 8 

Our framework can be applied to a wide class of fairness 
metrics, and hence may be suitable in many domains. How-
ever, it is not apriori clear which fairness metrics should 
be used in any given setting, and the answers will be very 
context-dependent; the effectiveness of our framework to-
wards mitigating bias will depend crucially on whether the 
appropriate choice of features and parameters are selected. 
An ideal implementation of our framework would involve 
an active dialogue between the users and designers, a careful 
assessment of impact both pre and post-deployment. This 
would in particular benefit from regular public audits of fair-
ness constraints, as well as ways to obtain and incorporate 
community feedback from stakeholders (Sassaman et al., 
2020; Chancellor et al., 2019). 

Our work leaves several interesting future directions. One is 
to theoretically consider other noise models for non-binary 
attributes that are not independent, e.g., settings where the 
noise follows a general mutually contaminated model (Scott 
et al., 2013) or when the noise on the protected type also 
depends on other features, such as, when imputing the pro-
tected attributes. Our framework can still be employed in 
these settings (e.g., given group prediction error rates); how-
ever, methods that take into account the protected attribute 
prediction model could potentially further improve the per-
formance. There exist several works that also design fair 
classifiers with noisy labels (Blum & Stangl, 2020; Biswas 
& Mukherjee, 2021) and another direction is to consider 
joint noises over both protected attributes and labels. Our 
model is also related to the setting in which each protected 
attribute follows a known distribution; whether our methods 
can be adapted to this setting can be investigated as part of 
future work. 
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