
Learning Routines for Effective Off-Policy Reinforcement Learning

A. Routine TD-Loss Pseudocode
As mentioned in Section 4.3, we can learn the routine Q-
function by performing efficient TD-updates for routines
of all lengths, making use of matrix multiplication. Partic-
ularly, starting with a sampled action sequence from the
replay buffer a1:L, we calculate the TD-loss for all routines
na1 , na1,a2 , ..., na1:L as described by the following pseu-
docode based on the TensorFlow syntax:

D, E: Routine decoder and encoder network
Q, Q_tar: Q and target Q networks
Pi: Policy
gamma: discount factor
L: maximum routine length

dim: L x L
#[[1, 1, 1, ..., 1, 1],
[0, gamma, gamma, ..., gamma, gamma],
[0, 0, gamma**2, ..., gamma**2, gamma**2],
[...],
[0, 0, 0, ...,gamma**(L-2), gamma**(L-2)],
[0, 0, 0, ..., 0, gamma**(L-1)]]
r_discounts = (band_part(ones((L, L)), 0, -1)

*constant([[gamma**i] for i in range(L)])

dim: L
#[gamma, gamma**2, ..., gamma**L]
next_q_discounts = constant(

[gamma**i for i in range(1, L+1)])

input dim: N x |s|, N x |a|, N x L x |s|,
N x L, N x L
def routine_TD_loss(s, a, next_s, r, t):

on-policy routine from next states
dim: N x L x |a|
next_n = Pi(next_s)

autoencoded on-policy routine
dim: N x L x |a|
ae_next_n = D.get_routine(

E.sample_actions(next_n))

targets
dim: N x L
y = (matmul(r, r_discounts) +

t*next_q_discounts*Q_tar(next_s, ae_next_n))

routines from actions subsequences in a
dim N x |n|
n = D.get_routine_subsequences(a)

tiled Q predictions
dim N x L
q = Q(tile(reshape(s, [N, |s|, 1]), [1, 1, L]), n)

return average TD-loss and encoded routines
return mean(square(q - y)), n

For further details, please refer to our shared implementa-
tion.

B. Integration Details
In Algorithm 1 we show the common optimization structure
of our routine framework. Below, we further provide more
details regarding the integration of our framework with TD3
(Fujimoto et al., 2018) and SAC (Haarnoja et al., 2018a),
including few conceptual dissimilarities with the original
algorithms.

Algorithm 1 Routine off-policy framework
1: Initialize πθ, Qπθφ1

, Qπθφ2
, Dω1 , Eω2 .

2: Initialize Bπ ← ∅, count← 0
3: for i = 1, 2, ..., do
4: Observe s from the environment
5: Query policy to obtain n ∼ πθ(s)
6: Sample a1, a2, ..., al ∼ Dω1

(n)
7: for a = a1, a2, ..., al do
8: Execute a in the environment, collect (s′, r, t)
9: Store B = B ∪ (s, a, s′, r, t)

10: Sample b = {(s, a1:L, s′1:L, r1:L, t1:L)|b|} ∈ B
11: for m = 1, 2 do
12: Approximate JQ and Jlc with b
13: Update Qπθφm with∇φmJQ
14: Update Dω1

, Eω2
with∇ω(JQ + Jlc)

15: end for
16: Update count← count+ 1
17: if count mod delay = 0 then
18: Approximate Jπ and Jmto with b
19: Update πθ with∇θJπ
20: Update Dω1

with∇ω1
(Jπ − Jmto)

21: end if
22: end for
23: end for

The Routine TD3 algorithm explores the environment by
making use of independent Gaussian noise injected both at
the routine and action levels. Moreover, when calculating
the TD-loss for learning the routine Q-function, we chose
to utilize the actual policy to obtain the next state target
routine and avoid parameterizing a target policy as in the
original algorithm. This choice did not appear to influence
particularly the performance and was done with the purpose
of simplification.

The Routine SAC algorithm bases its implementation on the
automatic temperature adjustment version of SAC (Haarnoja
et al., 2018b). Particularly, we keep the same original heuris-
tic for the environment-specific action-selection entropy
target of −|a|. However, when updating the temperature
parameter α, we still utilize this target against the decoder’s
‘per-action entropy’, rather than the overall entropy of cho-
sen routines. Practically, the decoder’s ‘per-action entropy’
is simply calculated dividing the overall entropy from the
decoded action sequence distribution by its recovered length.
Additionally, we make use of delayed policy training, as in
TD3, updating our policy and target networks less frequently
than the routine Q-function.

C. Algorithms Parameters
In this section, we describe the hyper-parameters choices
made for all the evaluated algorithms in Section 6.

Learning Routines for Effective Off-Policy Reinforcement Learning

For the TD3 and SAC algorithms we utilized the parameters
provided in the original implementations. We share most
of the TD3 and SAC parameters with our routine-based ver-
sions of these algorithms with only minor differences. For
example, in TD3 we utilize a smaller target routine smooth-
ing value of 0.1 to regularize the auto-encoded version of
the predicted next state routine. Additionally, in both routine
versions of TD3 and SAC we use 2-layer fully-connected net-
works with 256 hidden units for both policy and Q function
models.

We utilized simple rules to select the dimensionality of
the routine representations and keep the structure of the
additional routine decoder and encoder models light and
efficient, comprising only a few hundred additional parame-
ters. Particularly, using the notation from Figure 1, we let
the routine space representation dimensionality be based
on the original environment’s action space dimensionality:
|n| = L×|a|. Additionally, we respectively set the first layer
embeddings dimensionality to |h| = 2dlog2(|a|)e and the ag-
gregated representation dimensionalities to |g| = L×|h|. As
we wanted to evaluate the general applicability of our frame-
work, we did not substantially tune the hyper-parameters
of these models. Thus, we did not explore using any infor-
mation bottleneck between the action sequences space SA

and the routine space, but hypothesize this could yield even
further efficiency improvements.

We list all the hyper-parameter choices in Table 2.

D. Implementation of Prior Algorithms
To compare the routine framework with prior methods rea-
soning with action repetitions, we implemented the off-
policy version of the FiGAR algorithm by Sharma et al.
(2017), named FiGAR DDPG. This algorithm works by pa-
rameterizing a policy outputting both an action and a prob-
ability distribution over a set of possible action repetitions.
However, strictly following the implementations details and
hyper-parameters described in the original paper yielded
an algorithm which failed to learn meaningful behavior for
the DeepMind Control Suite tasks. Thus, we implemented
FiGAR TD3, a new algorithm that extends FiGAR DDPG
by incorporating advances from TD3, together with several
additional practices to stabilize its optimization procedures.

Particularly, FiGAR TD3 makes use of double Q-learning,
target policy smoothing, and delayed policy updates, as
outlined in the paper by Fujimoto et al. (2018). Addition-
ally, we found two additional changes that played an even
more significant role on performance. These consist in
greatly reducing the range of possible action repetitions and
augmenting the original experience collection procedure.
Specifically, FiGAR DDPG only records transitions in the
replay buffer corresponding to the executed actions and rep-

Table 2. Hyper-parameters used for the experimental evaluation.

Shared parameters

buffer size |B| 100000
batch size |b| 256
minimum data to train 1000
optimizer Adam
learning rate 0.001
optimizer β1 0.9
policy delay 2
discount γ 0.99
polyak coefficient ρ 0.995
policy/Q network hidden layers 2
policy/Q network hidden dimensionality 256
routine space dimensionality |n| L× |a|
decoder/encoder hidden dimensionality |h| 2dlog2(|a|)e
encoder aggregated dimensionality |g| L× |h|
Jmto coefficient 1
Jlc coefficient 1

Routine TD3 parameters

routine exploration noise 0.2
action exploration noise 0.1
target routine smoothing noise 0.1

Routine SAC parameters

starting entropy temperature α 0.1
entropy temperature learning rate 0.0001
entropy temperature optimizer β1 0.5

etitions. Instead, we augment the experience collection pro-
cedure by recording transitions after each environment step,
relabeling the intermediate steps with the appropriate action
repetitions. The original paper by Sharma et al. (2017) is
also ambiguous on how the repetition values are logged in
the replay buffer. We tried utilizing both the actor’s nor-
malized outputted logits and a one-hot representation, with
the latter approach yielding substantially better results. We
further modified most of the original hyper-parameters for
performance, as shown Table 3, for further details please
refer to our shared implementation.

E. Full Results
In this section, we provide the per-environment experimen-
tal results for the proposed routine framework.

In Figure 5 we show the performance curves representing
the average cumulative returns obtained and the average
number of policy queries as a function of the epoch in each
of the fourteen tested environments for the Performance
Analysis (from Section 6.1). We see the greatest perfor-

Learning Routines for Effective Off-Policy Reinforcement Learning

Table 3. Hyper-parameters used for FiGAR TD3

FiGAR-TD3 parameters

buffer size |B| 100000
batch size |b| 256
minimum data to train 1000
optimizer Adam
learning rate 0.001
optimizer β1 0.9
policy delay 2
discount γ 0.99
polyak coefficient ρ 0.995
policy/Q network hidden layers 2
policy/Q network hidden dimensionality 256
action exploration noise 0.1
repetition exploration ε 0.2
exploration ε annealing steps 50000
target action smoothing noise 0.1

mance gains of the routine framework occur for the TD3
algorithms in the harder exploration tasks. Overall, for the
great majority of tasks, both routine versions of the exam-
ined algorithms provide improvements over their baselines.
The average number of policy queries required to complete
an episode appears to vary across the different environ-
ments. This can be seen as additional evidence that within
the routine framework, agents do adaptively select routines
of different lengths based on the granularity required to ef-
fectively solve a task. Routine TD3 also outperforms both
FiGAR TD3 and DynE TD3, which appear to particularly
struggle in some of the more complex locomotion tasks in
the Cheetah and Walker environments.

In Figure 6 we provide the performance curves detailing
the cumulative returns obtained by varying the maximum
routine length L to 2, 4, 8, and 16 for our Expressivity Anal-
ysis (from Section 6.2). Overall, in terms of performance
and stability, the best results are obtained by using a maxi-
mum routine length of 4 for our integration with TD3 and a
maximum routine length of 8 for our integration with SAC.
These values appear to most optimally tradeoff the increased
optimization complexity with the exploration, reward prop-
agation and abstraction advantages provided by the routine
framework.

F. Routine Analysis
In this section, we provide a further analysis of the rou-
tine framework and its main components through additional
ablations and visualizations. For the experiments in this
section, we show the average performance of different al-
gorithms and configurations obtained on the subset of four

task introduced in Section 6.2.

F.1. Exploration and Learning Benefits of Routines

As explained in Section 4, we hypothesize that the perfor-
mance benefits observed from applying the routine frame-
work to off-policy reinforcement learning algorithms come
from both structured exploration and faster reward propaga-
tion.

To reinforce the hypothesis that routines facilitate structured
exploration, we compare the states encountered through
action-based and routine-based exploration. Particularly, we
consider the Cheetah run task and collect different states
from uniformly sampling either actions or routines. We
categorize the states based on an internal Mujoco property
named ‘speed’, representing the velocity of the agent. We
use this property as an indicative way of separating states
corresponding to behavior with different effects on the un-
derlying task. We show the results in Figure 7, illustrating
that routine-based exploration reaches states covering a sig-
nificantly wider range of ‘speeds’, validating our hypothesis.

We also perform additional ablation experiments aimed at
decoupling the benefits of structured exploration from faster
reward propagation. Particularly, we implement new ver-
sions of our routine algorithms which are forced to re-plan
while acting, by selecting a new routine at every environ-
ment step and only executing its first action. Hence, these
agents should still benefit from faster reward propagation
during learning, but lose the hypothesized structured explo-
ration benefits during experience collection.

We summarize the performance of the Routine re-plan al-
gorithms in Figure 8. For comparison, we use the per-
formance obtained by the original routine algorithms both
through standard execution and also matching the evalu-
ation procedure of their re-planning counterparts, while
still using full routines for experience collection. We av-
erage the performance of applying each considered setting
of the routine framework to both SAC and TD3 algorithms.
The results show that the Routine re-plan agents initially
learn slower, yet, eventually clearly outperform the SAC and
TD3 baselines. Their performance also lags consistently be-
hind the standard routine algorithms (under both evaluation
schemes), reinforcing our hypothesis that our framework
provides complementary benefits both regarding structured
exploration and faster reward propagation.

F.2. Effects of Routine Space Noise

We analyze the effects of removing either the routine space
or action space exploration noise from the Routine TD3
algorithm. We summarize the results in Figure 9. Both
types of noise appear to have a positive impact on both
final performance and learning speed. Action space noise

Learning Routines for Effective Off-Policy Reinforcement Learning

Figure 5. Average cumulative returns and number of policy queries in each of the fourteen different tested environments for the Performance
Analysis from Section 6.1. Particularly, we report the mean and the standard deviation of these quantities across ten different runs as a
function of the epoch number.

Learning Routines for Effective Off-Policy Reinforcement Learning

Figure 6. Cumulative returns in each of the four environments considered for the Expressivity Analysis in Section 6.2. We show the
performance curves for the original algorithms and the integration of the routine framework for TD3 (Left) and SAC (Right).

Learning Routines for Effective Off-Policy Reinforcement Learning

Figure 7. Number of states visited in ten episodes of experience
collected in the Cheetah run task, as classified by the internal
Mujoco ‘speed’ property (corresponding to the agent’s velocity).
We compare random uniform exploration by sampling from either
the action space or the routine space.

Figure 8. Average cumulative returns across the analyzed subset of
tasks from decomposing the advantages of structured exploration
from faster reward propagation. We average the performance of
both SAC- and TD3-based algorithms for each of the different
considered configurations of the routine framework. We repeat
each experiment five times.

Figure 9. Average cumulative returns across the analyzed subset
of tasks from removing either action space or routine space noise
from Routine TD3. We repeat each experiment five times.

appears to be a crucial component in exploration throughout
learning and disabling it makes Routine TD3 converge to
significantly worse policies. Routine space noise appears to
have a greater effect on exploration early on, affecting more
prominently the algorithm’s learning speed.

F.3. Routines Visualization

To understand what kinds of behavior are encoded in rou-
tines, we collect visualizations by rendering the considered
environments after performing each of the actions sampled
by the routine decoder. We show these renderings in Figure
10, assigning them corresponding semantic labels. Specifi-
cally, different routines appear to perform simple behaviors
that can be reused effectively in multiple situations, allow-
ing the policy to reason with higher-level abstractions. For
example, in the Fish swim task, different routines corre-
spond to moving the agent’s tail in different directions and
to different extents, allowing the agent to maneuver towards
any target.

Learning Routines for Effective Off-Policy Reinforcement Learning

Figure 10. Visualizations of random routines by rendering the environments after executing each action sampled by the routine decoder.
We assign each a semantic label based on their observed effects.

