
GRAND: Graph Neural Diffusion Supplementary Material

Benjamin P. Chamberlain * 1 James Rowbottom * 1 Maria Gorinova 1 Stefan Webb 1 Emanuele Rossi 1

Michael M. Bronstein 1 2

1. Datasets
The statistics for the largest connected components of the
experimental datasets are given in Table 1.

2. Diffusivity Formulations
GRAND can use any right stochastic attention matrix. We
performed experiments with the multiheaded Bahdanau for-
mulation (Bahdanau et al., 2014) of attention, which has
previously been applied to graphs in (Veličković et al., 2018)

a(xi, xj) =
exp

(
LeakyReLU

(
aT [Wxi‖Wxj]

))∑
k∈Ni

exp (LeakyReLU (aT [Wxi‖Wxk]))
,

(1)

where W and a are learned and ‖ is the concatenation op-
erator. However, for all datasets, the scaled dot product
attention performed better. This may be because GAT re-
lies on dropout. Dropout performs poorly inside adaptive
timestep numerical ODE solvers as the stochasticity in the
forward pass drives τ → 0.

3. Full Training Objective
The full training program optimises cross entropy loss

L(Y,T) = H(Y,T) =

n∑
i=1

tTi logyi (2)

where ti ∈ Rdclass is the one-hot truth vector of the ith node
with prediction

yi = ψ(xi(T)) (3)

where ψ : Rd → Rdclass is a linear layer decoder of the
terminal value of the evolutionary PDE

yi = Dxi(T) + bd (4)

= D

(
X(0) +

∫ T

0

∂X(t)

∂t
dt

)
+ bd (5)

= D

(
φ(Xin) +

∫ T

0

∂X(t)

∂t
dt

)
+ bd (6)

with the initial condition given by the linear layer encoder
φ : Rdin → Rd of the input data

yi =

(
D

(
E(Xin) + be +

∫ T

0

∂X(t)

∂t
dt

)
+ bd

)
i

and f(X(t), t, θ) = ∂X(t)
∂t is the system dynamics that we

wish to learn. For the nonlinear version of GRAND this is

f =
∂

∂t
X(t) = (A(X(t))− I)X(t) = Ā(X(t))X(t)

4. Stability
4.1. Stability of linear ODE

In the main paper we reported the linear GRAND ẋ = Āx
has solution

x(t) = x(0)eĀt. (7)

As Ā is not diagonal this matrix exponential is not analyt-
ically recoverable. Performing eigenvalue decomposition
the solution is

x(t) = T̄ eD̄tT̄−1x(0). (8)

Assuming T̄−1 exists, T̄ has full rank and both are bounded,
the test equation becomes

y(t) = eD̄ty(0) (9)

where y(t) = T̄x(t). If x(t) and x̂(t) are two solutions of
the ODE then their projections in eigenspace are y(t) and
ŷ(t). For each node i:

|yi(t)− ŷi(t)| =
∣∣∣(yi(0)− ŷi(0))eλ̄it

∣∣∣ (10)

= |yi(0)− ŷi(0)|eRe(λ̄i)t (11)

for this to converge as t → ∞ we require Re(λ̄i) ≤ 0 ∀i.
AsA is right stochastic the eigenvalues of Ā = A−I satisfy
this property.

Supplementary Material

Dataset Type Classes Features Nodes Edges Label rate
Cora citation 7 1433 2485 5069 0.056

Citeseer citation 6 3703 2120 3679 0.057
PubMed citation 3 500 19717 44324 0.003

Coauthor CS co-author 15 6805 18333 81894 0.016
Computers co-purchase 10 767 13381 245778 0.015

Photos co-purchase 8 745 7487 119043 0.021
OGB-Arxiv citation 40 128 169343 1166243 1

Table 1. Dataset Statistics

5. Numerical Schemes
5.1. Proof of theorem 1: Stability of explicit Euler

For linear GRAND with an Euler numerical integrator

x(t+1) =
(
I + τĀ(x(t))

)
x(t) (12)

= Q(t)x(t). (13)

We require that the amplification factor ||Q(t)|| < 1. It
is sufficient to show that Q(t) is a right stochastic matrix,
which has the property that its spectral radius λmax ≤ 1. Q
is right stochastic if

1.
∑N
j=1 qij = 1

2. qij > 0 ∀i, j

as A is right stochastic
∑
j Iij + τ(Aij − Iij) = 1 proving

1). As aij = qij for i 6= j, to prove 2) it remains to show
that 1 + τ(aii − 1) > 0 ⇐⇒ τ < 1.

5.2. Proof of theorem 2: Implicit methods

For implicit Euler

ẋn =
xn − xn−1

τ
= f(xn, tn) (14)

xn = τf(xn, tn) + xn−1, (15)

incrementing the indices gives

xn+1 = τf(xn+1, tn+1) + xn (16)

and now, unlike the explicit case, xn+1 now appears on both
sides of the equation. If f is linear

xn+1 = τĀxn+1 + xn (17)

xn+1 = (I − τĀ)−1xn = B−1xn = Qxn, (18)

and the matrix B must be inverted. The inverse exists as B
is diagonally dominant

Iii − τ(Aii − Iii) > τ
∑
j 6=i

Aij = τ(1−Aii) (19)

By considering the action of B on w = (1, ..., 1)T it is clear
that Bw = w =⇒ Qw = w =⇒

∑
j Qij = 1. As B

is diagonally dominant it is irreducible and satisfies Bij ≤
0 i 6= j and Bii > 0 giving Qij > 0 ∀i, j (Varga, 1999)
and Q is a Markov matrix with spectral radius bounded by
unity and the implicit scheme is stable for all choices of τ .

6. General Multistep Methods
A general multistep method (combining both implicit and
explicit methods) can be written as

xn+1 +

s∑
i=1

αixn+1−i = τ

s∑
i=0

βifn+1−i, (20)

where f = ẋ. If β0 = 0 then xn+1 only depends on terms
up to n and the method is explicit.

6.1. Order

The order of a method gives the approximation error in
terms of a Taylor series expansion. If p is the order, then
the error is a single step ∝ τp+1 and the error in the entire
interval ∝ τp. In practice the order of a numerical method
can be determined by measuring how the error changes with
step size for a known integral.

6.2. Butcher Tableau

The set of coefficients for each multi step method are given
by the Butcher Tableau. The simple case of forward Euler
has α1 = −1, β1 = 1 with all other terms zero.

There is a law of diminishing return that relates the min-
imum number of function evaluations and the order of a
higher order Runge-Kutta solver. Table 2 shows why the
Runge-Kutta 4 method (RK4) is often regarded as the op-
timal trade-off between speed and accuracy for multi step
solvers.

6.3. Runge-Kutta 4

For all experiments we find that Runge-Kutta 4 (or it’s
adaptive step size variants) outperforms lower order meth-
ods. The Runge-Kutta 4 method follows the schema: if

Supplementary Material

Order 1 2 3 4 5 6 7 8
Evals 1 2 3 4 6 7 9 11

Table 2. Function evaluations grow super-linearly with order after
4.

f(x, t) = Ā(xt)xt

x(t+1) = x(t) +
1

6
τ (k1 + 2k2 + 2k3 + k4) (21)

k1 = f(xt, t) (22)
k2 = f(xt + τk1/2, t+ τ/2) (23)
k3 = f(xt + τk2/2, t+ τ/2) (24)
k4 = f(xt + τk3, t+ τ) (25)

6.4. Adaptive Step Size

Adaptive step size solvers estimate the error in xn+1, which
is compared to an error tolerance. The error is estimated
by comparing two methods, one with order p and one with
order p− 1. They are interwoven, i.e., they have common
intermediate steps. As a result, estimating the error has little
or negligible computational cost compared to a step with
the higher-order method.

x∗n+1 = xn + τ

s∑
i=1

b∗i ki (26)

where ki are the same as for the higher-order method. Then
the error is

en+1 = xn+1 − x∗n+1 = τ

s∑
i=1

(bi − b∗i)ki. (27)

The time step is increased if the error is below tolerance and
decreased otherwise.

7. Adaptive step size implementation details
Most results presented used the adaptive step size solver
Dormand-Prince5. Key to getting this to work well is setting
appropriate tolerances for the step size. Adaptive step size
ODE solvers require two tolerance parameters; the relative
tolerance rtol and the absolute atol. Both are used to assess
the new step size

etol = atol + rtol ∗max(|x0|, |x1|), (28)

where x0 and x1 are successive estimations of the new state.
Dupont et al. (2019) speculate that ResNets can learn a
richer class of functions than ODEs because “the error aris-
ing from discrete steps allows trajectories to cross”. We

find that increasing the estimation error is also helpful when
learning continuous diffusion functions and use value of
rtol and etal that are ×10−×1000 larger than the defaults.
This both improves prediction accuracy and reduces the
runtime.

In hyperparameter search atol and rtol were paired together
using a tolerance scale variable ts such that atol = ts ×
10−12 and atol = ts−6.

When using the adjoint method to backpropagate deriva-
tives, two separate ODEs are being solved. This requires
separate tolerance scales, which may differ: the forward
pass tolerance, ts, controls for how close the approximated
ODE solution is compared to the true solution, while the
backward pass tolerance, tsadj , controls the accuracy of the
computed gradient. The hyperparameter search includes
both ts and tsadj .

References
Bahdanau, D., Cho, K., and Bengio, Y. Neural machine

translation by jointly learning to align and translate. In
ICLR, 2014.

Dupont, E., Doucet, A., and Teh, Y. W. Augmented neural
ODEs. In NeurIPS, 2019.

Varga, R. S. Matrix Iterative Analysis, volume 27. Springer
Science & Business Media, 1999.

Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò,
P., and Bengio, Y. Graph attention networks. In ICLR,
2018.

