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Abstract
We present Graph Neural Diffusion (GRAND)
that approaches deep learning on graphs as a con-
tinuous diffusion process and treats Graph Neural
Networks (GNNs) as discretisations of an under-
lying PDE. In our model, the layer structure and
topology correspond to the discretisation choices
of temporal and spatial operators. Our approach
allows a principled development of a broad new
class of GNNs that are able to address the com-
mon plights of graph learning models such as
depth, oversmoothing, and bottlenecks. Key to
the success of our models are stability with re-
spect to perturbations in the data and this is ad-
dressed for both implicit and explicit discretisa-
tion schemes. We develop linear and nonlinear
versions of GRAND, which achieve competitive
results on many standard graph benchmarks.

1. Introduction
Machine learning on graphs and graph neural networks
(GNNs) have been shown to be successful in a broad
range of problems across different domains, extending way
beyond machine learning. Important results have been
achieved in the physical sciences (Li et al., 2020a;b), where
partial differential equations (PDEs) have traditionally been
the dominant modelling paradigm.

GNNs are in fact intimately connected to differential equa-
tions. The seminal work of Scarselli et al. (2009) was con-
cerned with finding the fixed points of differential equa-
tions using the Almeida-Pineda algorithm (Almeida, 1987;
Pineda, 1987). The currently predominant message passing
paradigm (Gilmer et al., 2017) can be modelled as a dif-
ferential equation. More recently, diffusion processes have
been shown to be an effective preprocessing step for graph
learning (Klicpera et al., 2019).

*Equal contribution 1Twitter Inc., London, UK 2Imperial Col-
lege London, UK 3IDSIA/USI, Switzerland. Correspondence to:
Ben Chamberlain <bchamberlain@twitter.com>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

PDEs are among the most studied mathematical construc-
tions, with a vast literature dating back at least to Leonhard
Euler in the eighteenth century. This includes various dis-
cretisation schemes, numerical methods for approximate
solutions, and theorems for their existence and stability. His-
torically, PDE-based methods have been used extensively
in signal and image processing (Perona & Malik, 1990),
computer graphics (Sun et al., 2009), and more recently, in
machine learning (Chen et al., 2018).

Our goal is to show that the tools of PDEs can be used to
understand existing GNN architectures and as a principled
way to develop a broad class of new methods. We focus on
GNN architectures that can be interpreted as information
diffusion on graphs, modelled by the diffusion equation.
In doing so, we show that many popular GNN architec-
tures can be derived from a single mathematical framework
by different choices of the form of diffusion equation and
discretisation schemes. Standard GNNs are equivalent to
the explicit single-step Euler scheme that is inefficient and
requires small step sizes. We show that more advanced,
adaptive multi-step schemes such as Runge-Kutta perform
significantly better and using implicit schemes, which are
unconditionally stable, amounts to larger multi-hop diffu-
sion operators. Choosing different spatial discretisation
amounts to graph rewiring, a technique recently used to
improve the performance of GNNs (Klicpera et al., 2019;
Alon & Yahav, 2021). We show that appropriate choices
within our framework allow the design of deep GNN archi-
tectures with tens of layers. This is a feat hard to achieve
otherwise due to feature oversmoothing (NT & Maehara,
2019; Oono & Suzuki, 2020) and bottlenecks (Alon & Ya-
hav, 2021) – phenomena that are recognised as a common
plight of most graph learning architectures.

Main contributions We describe a broad new class of
GNNs based on the discretised diffusion PDE on graphs
and study different numerical schemes for their solution.
Second, we provide stability conditions for these schemes.
Finally, based on our model, we develop linear and nonlinear
Graph Neural Diffusion (GRAND) architectures that per-
form competitively on many popular benchmark datasets.
We show detailed ablation studies shedding light on the
choice of numerical schemes and parameters.
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2. Background
Central to our work is the notion of diffusion processes. In
this section, we provide a concise background on diffusion
equations in the continuous setting, on which we build in
Section 3 to develop similar notions on graphs. As we are
concerned with continuous analogues of graph diffusion
and graphs are associated with a broad array of underlying
geometries, it is inadequate to formulate these processes in
simple flat spaces and more general Riemannian manifolds
are required.

Diffusion equation We are interested in studying diffu-
sion processes on Ω. Informally, diffusion describes the
movement of a substance from regions of higher to lower
concentration. For example, when a hot object is placed
on a cold surface, heat will diffuse from the object to the
surface until both are of equal temperature.

Let x(t) denote a family of scalar-valued functions on Ω×
[0,∞) representing the distribution of some property (which
we will assume to be temperature for simplicity) on Ω at
some time, and let x(u, t) be its value at point u ∈ Ω at time
t. According to Fourier’s law of heat conduction, the heat
flux

h = −g∇x,

is proportional to the temperature gradient ∇x, where g
is the diffusivity describing the thermal conductance prop-
erties of Ω. An idealized homogeneous setting assumes
that g is a constant scalar throughout Ω. More generally,
the diffusivity is a inhomogeneous (position-dependent)
function that can be scalar-valued (in which case it sim-
ply scales the temperature gradient and is isotropic) or
matrix-valued (in which case the diffusion is said to be
anisotropic, or direction-dependent). The continuity condi-
tion xt = −div(h) (roughly meaning that the only change
in the temperature is due to the heat flux, as measured by the
divergence operator, i.e., heat is not created or destroyed),
leads to a PDE referred to as the (heat) diffusion equation,

∂x(u, t)

∂t
= div[g(u, x(u, t), t)∇x(u, t)],

with the initial condition x(u, 0) = x0(t); for simplicity,
we assume no boundary conditions. The choice of the diffu-
sivity function determines if the diffusion is homogeneous
(g = c), inhomogeneous (g(u, t)), or anisotropic (A(u, t)).
In the isotropic case, the diffusion equation can be expressed
as ∂x(u,t)

∂t = div(c∇x) = c∆x, where ∆x = div(∇x) is
the Laplacian operator.

Diffusion on manifolds In our discussion so far we as-
sumed some abstract domain Ω. The structure of the domain
is manifested in the definition of the spatial differential oper-
ators in the diffusion PDE. In a general setting, we model Ω

as a Riemannian manifold, and letX (Ω) andX (TΩ) denote
the spaces of scalar and (tangent) vector fields on it, respec-
tively. We denote by 〈x, y〉 and 〈〈X ,Y 〉〉 the respective in-
ner products on X (Ω) and X (TΩ). Furthermore, we denote
by∇ : X (Ω)→ X (TΩ) and div = ∇∗ : X (TΩ)→ X (Ω)
the gradient and divergence operators, which are adjoint
w.r.t. the above inner products: 〈〈∇x,X 〉〉 = 〈x, div(X )〉.
Informally, the gradient ∇x of a scalar field x is a vector
field providing at each point u ∈ Ω the direction ∇x(u)
of the steepest change of x. The divergence div(X ) of a
vector field X is a scalar field providing, at each point, the
flow of X through an infinitesimal volume. The Lapla-
cian ∆x can be interpreted as the local difference between
the value of a scalar field x at a point and its infinitesimal
neighbourhood.

Applications of diffusion equations In image process-
ing, diffusion equations were used for nonlinear filtering
of images. Given an image x defined on Ω = [0, 1]2, the
non-homogeneous isotropic diffusion equation

∂x(t)

∂t
= div [g(‖∇x(u, t)‖)∇x(u, t)] ,

applied to the input image x(u, 0) = x0(u) as the initial
condition, is often referred to as Perona-Malik diffusion
or (erroneously) anisotropic diffusion (Perona & Malik,
1990). The scalar function g ∝ ‖∇x(u, t)‖−1 is referred
as an edge indicator and is designed to prevent diffusion
across discontinuities (edges) in the image, thus preserving
its sharpness while at the same time removing the noise. In
computer graphics and geometry processing, non-Euclidean
diffusion equations were studied as shape descriptors.

3. Diffusion equations on graphs
We now define diffusion equations on graphs, analogous to
Section 2 and argue that formalizing GNNs under the diffu-
sion equation framework provides a principled and rigorous
way to develop new architectures for graph learning.

3.1. Graph diffusion equation

Let G = (V, E) be an undirected graph with |V| = n nodes
and |E| = e edges, and let x and X denote features defined
on nodes and edges respectively.1 The node and edge fields
can be represented as n- and e-dimensional vectors assum-
ing some arbitrary ordering of nodes. We adopt the same
notation for the respective inner products:

〈x,y〉 =
∑
i∈V

xiyi 〈〈X ,Y 〉〉 =
∑
i>j

wijXijYij

1For simplicity, we assume these features to be scalar-valued
and refer to them as node and edge fields, by analogy to scalar
and vector fields on manifolds. In the rest of the paper, we assume
vector-valued node features, a straightforward extension.
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Here, wij denotes the adjacency of G: wij = wji = 1 iff
(i, j) ∈ E . We tacitly assume edge fields to be alternating,
so Xji = −Xij , and no self-edges, so (i, i) /∈ E . The
gradient (∇x)ij = xj − xi assigns the edge (i, j) ∈ E
the difference of its endpoint features and is alternating by
definition. Similarly, the divergence (div(X ))i assigns the
node i the sum of the features of all edges it shares:

(div(X ))i =
∑

j:(i,j)∈E

Xij =

n∑
j=1

wijXij

The two operators are adjoint, 〈〈∇x,X 〉〉 = 〈x,div(X )〉.

We consider the following diffusion equation on the graph

∂x(t)

∂t
= div[G(x(t), t)∇x(t)] (1)

with an initial condition x(0). Here we denote by G =
diag(a(xi(t), xj(t), t)) an e × e diagonal matrix and a is
some function determining the similarity between nodes i
and j. While in general a(xi, xj , t) can be time-dependent,
we will assume a = a(xi, xj) for the sake of simplicity.
Plugging in the expressions of∇ and div, we get

∂

∂t
x(t) = (A(x(t))− I)x(t) = Ā(x(t))x(t) (2)

where A(x) = (a(xi, xj)) is the n × n attention matrix
with the same structure as the adjacency of the graph (we
assume aij = 0 if (i, j) /∈ E). Note that in the setting when
A(x(t)) = A we get a linear diffusion equation that can be
solved analytically as x(t) = eĀtx(0).

3.2. Properties of the graph diffusion equation

Differential equation stability is closely related to the con-
cept of robustness in machine learning; changes in model
outputs should be small under small changes in inputs. For-
mally, a solution x(t) of the PDE is said to be stable, if
given any ε > 0 there exists δ > 0 such that for any solution
x̂(t), such that |x(0) − x̂(0)| ≤ δ, it is also the case that
|x(t)− x̂(t)| ≤ ε for all t ≥ 0.

In the linear case, it is sufficient to show that the eigenvalues
of Ā are non-positive (see the Supplementary Materials for
proof). For the general nonlinear case, we show

max
i
xi(0) ≥ xi(t) ≥ min

i
xi(0) ∀t ≥ 0, (3)

which follows from (i) the function Ā(x)x being continuous
in x, (ii) the largest component of x(t) not increasing in
time, and (iii) the smallest component is not decreasing in
time.

Condition (i) holds as Ā is a composition of Lipschitz-
continuous functions (cf. equation (10)). Defining indices

!
"

# $

%

% +

% +

%

+

# $'(

!
"

)

!
*

!
+ !

+
!
*

# $

# $'(

%

# $

# $'(

%

+
+

)

)

Figure 1. Block diagrams of (left to right) explicit Euler, 4th order
Runge-Kutta, and implicit Euler schemes.

k = arg maxi xi and l = arg mini xi we have

∂xk
∂t

=
∑
j

ākj(x)xj ≤ xk
∑
j

ākj = 0 (4)

∂xl
∂t

=
∑
j

ālj(x)xj ≥ xl
∑
j

ālj = 0 (5)

since A is right stochastic, which proves (ii) and (iii).

Furthermore, the derivative ∂
∂xA(x) is Lipschitz-continuous

(from the definition of the attention function we use), Taken
together with continuity in time, the requirements of Picard-
Lindelöf are satisfied and our PDE is also well posed.

3.3. Solving the graph diffusion equation

There are a wide range of numerical techniques for solving
nonlinear diffusion equations. Our method most resem-
bles the Method of Lines (MOL) where a finite difference
method discretises the spatial derivatives, leaving a linear
system of ODEs on the temporal axis that can be solved
with numerical integrators. On a graph, the spatial operators
are already discrete and follow the structure of the input
graph; nevertheless, we show that different structures can be
used, thus decoupling the input and computational graph.

For temporal discretisation, there exist two main schemes:
explicit and implicit. Furthermore, we can distinguish be-
tween single-step and multi-step schemes; the latter use
multiple function evaluations at different times to compute
the next iterate (see Figure 1).

Explicit schemes. The simplest way to discretise Equa-
tion (1) is using the forward time difference:

x
(k+1)
i − x(k)

i

τ
=

∑
j:(i,j)∈E

a
(
x

(k)
i , x

(k)
j

)
(x

(k)
j −x

(k)
i ), (6)

where k denotes the discrete time index (iteration), τ is the
time step (discretisation parameter), and a is assumed to be
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normalised,
∑
j a(x

(k)
i , x

(k)
j ) = 1. Rewriting compactly in

matrix-vector form, x(k+1)−x(k)

τ =
(
A(x(k))− I

)
x(k) =

Ā(x(k))x(k), leads to the explicit or forward Euler scheme
(Figure 1, left):

x(k+1) =
(
I + τĀ(x(k))

)
x(k) = Q(k)x(k), (7)

where for a(k)
ij = a(x

(k)
i , x

(k)
j ), the matrix Q(k) is given

by q(k)
ii = 1 − τ

∑
`:(i,`)∈E

a
(k)
i` , q(k)

ij = τa
(k)
ij if (i, j) ∈ E , and

q
(k)
ij = 0 otherwise. This scheme is called explicit because

the update x(k+1) is deduced from x(k) directly by the ap-
plication of the diffusion operator Q(k). The solution to the
diffusion equation is computed by applying the scheme (7)
multiple times in sequence, starting from some initial x(0).

Implicit schemes use a backward time difference,
x(k+1)−x(k)

τ = Ā
(
x(k)

)
x(k+1), which leads to the (semi-

)implicit scheme (Figure 1, right):(
I− τĀ(x(k))

)
x(k+1) = B(x(k))x(k+1) = x(k) (8)

This scheme is called (semi-)implicit because it requires
solving a linear system in order to compute the update
x(k+1) from x(k), amounting to the inversion of B. The
efficiency of this step is crucially dependent on the struc-
ture of B — for example, on grids, this matrix has a multi-
diagonal structure, allowingO(n) inversion that was heavily
exploited in PDE-based image processing applications (We-
ickert). In general, exact inversion is replaced with a few
iterations of a linear solver.

Stability There exists a tradeoff between the number of
iterations of the scheme K and the time step size τ . At the
same time, the step size τ must be chosen in a way that guar-
antees that the scheme is stable. We summarise the stability
results in the following theorems and provide additional
details and proofs in the Supplementary Materials.

Theorem 1. The explicit scheme (7) is stable for 0 < τ < 1.

Theorem 2. The implicit scheme (8) is unconditionally
stable for any τ > 0.

Multi-step schemes use intermediate fractional time
steps to obtain a higher-order numerical approximation,
reusing the calculations for efficiency. Runge-Kutta (Fig-
ure 1, center) is among the most common multi-step
schemes. General linear multi-step methods calculate the
subsequent iterate using a linear combination of previous
iterates of the form,

s∑
j=0

αjx
(k+j) = τ

s∑
j=0

βjĀ(x(k+j))x(k+j). (9)

and can be explicit or implicit depending s and {αj , βj}.

The (explicit) Adams–Bashford and (implicit) Adams–
Moulton methods are classes of linear multi-step methods
that set αs−1 = −1 and αs−2 = . . . = α0 = 0. For both,
the {βj} coefficients are solved for by interpolating the
dynamics function at the points of the previous solutions,
x(k+j) with a polynomial of order highest order possible
using the Lagrange formula and substituting this into the
integral form of the ODE. The methods differ in that Adams–
Moulton interpolates through x(k+s) and is consequently
implicit whereas the Adams–Bashford methods do not. For
Adams–Moulton methods, the implicit equations can be
solved by Newton’s method. Alternatively, one can use the
predictor-corrector algorithm, which in this case takes an
initial step with the explicit Adams–Bash method then multi-
ple steps of Adams–Moulton, replacing the unknown x(k+s)

with the solution from the previous iteration, repeating until
the difference between adjacent solutions is less than some
threshold. In our experiments, we use fourth-order meth-
ods, s = 4. Additional details of multi-step schemes are
provided in the Supplementary Material.

Adaptive step size Adaptive step size solvers estimate
the error in each iteration, which is then compared to an
error tolerance; the step size is adapted to either increase
or reduce the error. The error is estimated by comparing
two methods, one with order p and one with order p − 1.
They are interwoven, i.e., they have common intermediate
steps. As a result, estimating the error has little or negligible
computational cost compared to a step with the higher-order
method. Further details are in the Supplementary Material.

3.4. Connection to existing architectures

Many GNN architectures can be formalised as a discretisa-
tion scheme of (1). The discrete time index k corresponds
to a (convolutional) layer of the graph neural network. Run-
ning the diffusion for multiple iterations thus amounts to
applying a GNN layer multiple times. In the diffusion for-
malism, the time parameter t acts as a continuous analogy of
the layers, in the spirit of Neural ODEs (Chen et al., 2018).
This interpretation allows us to exploit more efficient nu-
merical schemes and analyze the stability and convergence
of the diffusion process.

The vast majority of GNN architectures are explicit single-
step schemes of the form (7). For example, Equation (6)
corresponds to the update formula of GAT (Veličković et al.,
2018) with residual connection, assuming a is a learnable
attention function and no non-linearity is used between the
layers. Our choice of a time-independent attention function
in the experiments in this paper amounts to all the layers
sharing the same parameters. We will show that this is
actually an advantage, as our models will be significantly
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more lightweight and less prone to overfitting.

The diffusion equation is a PDE, with temporal and spatial
components. In the graph setting, the former is continuous
while the latter is discrete. Thus, the diffusion operator Q
inherits the structure of the adjacency of the input graph.
However, it is possible to consider the graph as a discreti-
sation of a continuous object and thus regard the graph
diffusion operator as a discrete derivative. In the same way
that different discretisations of continuous derivatives with
different support can be chosen, we can rewire the graph
and make the structure of Q different from the input one
and possibly learnable. Multiple GNN architecture de facto
use a different computational graph from the input one,
whether for reasons of scalability (e.g. sampling used in
GraphSAGE (Hamilton et al., 2017)), denoising the input
graph (Klicpera et al., 2019), or avoiding bottlenecks (Alon
& Yahav, 2021). We argue that additional reasons are nu-
merical convenience, to produce diffusion operators that are
e.g. friendlier for matrix inversion.

In the following, we also show that the use of more efficient
multi-step explicit schemes as well as unconditionally stable
implicit schemes offers significant performance advantages.
In particular, implicit schemes of the form (8) can be inter-
preted as multi-hop diffusion operators, since the inverse
of B is typically dense (unlike Q in the explicit scheme (7)
that has the same sparsity structure of the 1-hop adjacency
matrix of the graph).

4. Graph Neural Diffusion
We now describe Graph Neural Diffusion (GRAND), a new
class of GNN architectures derived from the graph diffu-
sion formalism. We assume a given graph G = (V, E)
with n nodes and d-dimensional node-wise features repre-
sented as a matrix Xin. GRAND architectures implement
the learnable encoder/decoder functions φ, ψ and a learn-
able graph diffusion process, to produce node embeddings
Y = ψ(X(T )),

X(T ) = X(0) +

∫ T

0

∂X(t)

∂t
dt, X(0) = φ(Xin)

∂X(t)
∂t is given by the graph diffusion equation (1). Different

GRAND architectures amount to the choice of the learnable
diffusivity function G and spatial/temporal discretisations
of equation (1).

The diffusivity is modelled with an attention function a(., .).
Empirically, scaled dot product attention (Vaswani et al.,
2017) outperforms the Bahdanau et al. attention used in
GAT (Veličković et al., 2018). The scaled dot product atten-

tion is given by

a(Xi,Xj) = softmax

(
(WKXi)

>WQXj

dk

)
, (10)

where WK and WQ are learned matrices, and dk is a hy-
perparameter determining the dimension of Wk. We use
multi-head attention which is useful to stabilise the learning
(Veličković et al., 2018; Vaswani et al., 2017) by taking the
expectation, A(X) = 1

h

∑
h Ah(X). The attention weight

matrix A = (a(Xi,Xj)) is right-stochastic, allowing equa-
tion (12) to be written as

∂

∂t
X = (A(X)− I)X = Ā(X)X (11)

As discussed in Section 3, a broad range of discretisations
are possible. Temporal discretisations amount to the choice
of numerical scheme, which can use either fixed or adaptive
step sizes and be either explicit or implicit. Time forms
a continuous analogy to the layer index, where each layer
corresponds to an iteration of the solver. When using adap-
tive time step solvers, the number of layers is not specified
a-priori. Explicit schemes use residual structures (e.g. Fig-
ure1, left and middle) that are usually more complex than
those employed in resnets and which follow directly from
rigorous numerical stability results (see Supplementary Ma-
terial). Implicit numerical schemes offer a natural way of
trading off depth and width (spatial support of the diffu-
sion kernel). In Section 6.3 we explore several temporal
discretisations using various numerical integrators.

Spatial discretisation amounts to modifying the given graph,
or building one in settings where no graph is given and the
data can be assumed to lie in some feature space or on a
continuous manifold. When the input graph is given, which
is the case in our experimental sections, we can rewire the
given graph and use a different edge set in the diffusion
equation.

While in general equation (11) is nonlinear due to the depen-
dence of A on X, it becomes linear if the attention weights
are fixed inside the integral, Ā(X(t)) = Ā (note that A is
still parametric and learnable, but does not change through-
out the diffusion process). In this case, equation (11) can be
solved analytically as X(t) = eĀtX(0). As Ā is a form of
normalised Laplacian, all eigenvalues are non-positive and
the steady state solution is given by the dominating eigen-
vector, which is the degree vector. However, as Ā is learned,
this limitation is not severe as the system can be (and in
practice is) degenerate; the graph becomes (approximately)
disconnected, with connected components permitted to have
unique steady state solutions. We call this model GRAND-l
for linear to distinguish it from the more general GRAND-
nl for non-linear. The final variant is GRAND-nl-rw (non-
linear with rewiring), where rewiring is performed via a two
step process: as a preprocessing step, the graph is densified
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using diffusion weights as in (Klicpera et al., 2019), and
then at runtime the subset of edges to use is learned based
on attention weights. Equation (1) becomes:

∂Xi(t)

∂t
=

∑
j:(i,j)∈E′

a (Xi(t),Xj(t)) (Xj(t)−Xi(t))

(12)

where E ′ = {(i, j) : (i, j) ∈ E and aij > ρ} with some
threshold value ρ, is the ‘rewired’ edge set, which may
now contain self-loops. While a changes throughout the
diffusion process, rewiring is only performed at the start of
the epoch based on features at t = 0.

GRAND shares parameters across layer/iteration and is thus
more data-efficient than conventional GNNs. The full train-
ing objective is outlined in the Supplementary Material.
To update the parameters we either backpropagate through
the computational graph of the numerical integrator or use
Pontryagin’s maximum principle (Pontryagin, 2018) when
memory is constrained.

5. Related work
Image processing and graphics. During the 1990s-
2000s, a vast amount of image processing literature ex-
ploited the formalism of diffusion equations (Weickert,
1998), starting with the seminal work of Perona & Ma-
lik (1990). Sochen et al. (1998) developed a differential
geometric framework (‘Beltrami flow’) considering the evo-
lution of images represented as embedded manifolds. The
related bilateral (Tomasi & Manduchi, 1998) and non-local
means (Buades et al., 2005) filters, together with efficient
numerical techniques (Weickert; Durand & Dorsey, 2002),
have popularised these ideas in the image processing com-
munity. PDE-based methods were also used for low-level
tasks such as image segmentation (Caselles et al., 1997;
Chan & Vese, 2001) and inpainting (Bertalmio et al., 2000).

In computer graphics, solutions of non-Euclidean diffusion
equations were studied as heat kernel signature (Sun et al.,
2009; Bronstein & Kokkinos, 2010) local shape descriptors
related to the Gaussian curvature. Non-Euclidean diffusion
equations can be solved by using the Laplacian eigenvectors
as the analogy of Fourier basis and the corresponding eigen-
values as frequencies. The solution can be represented as
a spectral transfer function (Patané, 2016), which can also
be learned (Litman & Bronstein, 2013). The non-Euclidean
Fourier approach was exploited in the early work on deep
learning on graphs (Henaff et al., 2015; Defferrard et al.,
2016; Kipf & Welling, 2017; Levie et al., 2017).

Graph diffusion processes techniques such as eigen-
maps and diffusion maps (Coifman et al., 2005; Belkin
& Niyogi, 2003) use linear diffusion PDEs with closed

form solutions expressed through Laplacian eigenvec-
tors. Diffusion-Convolutional Neural Networks (Atwood
& Towsley, 2016) employ a diffusion operator for graph
convolutions and LanczosNet (Liao et al., 2019) uses a poly-
nomial filter on the Laplacian matrix, which corresponds
to a multi-scale linear diffusion PDE. Adaptive Lanczos-
Net (Liao et al., 2019) additionally allows learning the filters
to reweight the graph using a kernel. The use of a polyno-
mial filter approximates the solution of the PDE, and the
diffusion is linear with a fixed operator.

Neural ODEs. Chen et al. (2018) introduced neural
ODEs. Many follow-up works explored augmenta-
tion (Dupont et al., 2019) and regularization (Finlay et al.,
2020) and provided extensions into new domains such as
stochastic (Liu et al., 2019) differential equations. Neu-
ral ODEs have also been applied to GNNs: Avelar et al.
(2019) model continuous residual layers with GCN. Poli
et al. (2019) propose approaches for static and dynamic
graphs using GCN to model static graphs and a hybrid ap-
proach where the latent state evolves continuously between
RNN steps for dynamic graphs. Xhonneux et al. (2020)
address continuous message passing. Their model is a so-
lution to the constant linear diffusion PDE. Unlike most
GNN, it scales with the size of the graph having O(n) pa-
rameters. Continuous GNNs were also explored by Gu et al.
(2020) who, similarly to (Scarselli et al., 2009), addressed
the solutions of fixed point equations. Ordinary Differen-
tial Equations on Graph Networks (GODE)(Zhuang et al.,
2020) approach the problem using the technique of invert-
ible ResNets. Finally, Sanchez-Gonzalez et al. (2019) used
graph-based ODEs to generate physics simulations.

Neural PDEs. Using deep learning to solve PDEs was
explored by Raissi et al. (2017). Neural networks appeared
in (Li et al., 2020a) to accelerate PDE solvers with appli-
cations in the physical sciences. These have been applied
to problems where the PDE can be described on a graph
(Li et al., 2020b). Belbute-Peres et al. (2020) consider the
problem of predicting fluid flow and use a PDE inside a
GNN. These approaches differ from ours in that they solve a
given PDE, whereas we use the notion of discretising PDEs
as a principle to understand and design GNNs.

6. Results
We design experiments to answer the following: Are GNNs
derived from the diffusion PDE competitive with existing
popular methods? Can we address the problem of building
deep graph neural networks? Under which conditions can
implicit methods yield more efficient GNNs than explicit
methods? Additional experiments and details are shown in
the Supplementary Materials.
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GRAND is implemented in PyTorch (Paszke et al., 2019),
using PyTorch geometric (Fey & Lenssen, 2019) and torchd-
iffeq (Chen et al., 2018). Code and instructions to reproduce
the experiments are available at https://github.com/twitter-
research/graph-neural-pde.

6.1. Node classification benchmarks

We measure the performance of GRAND on a range of
common node classification benchmarks.

Methods We compare to four of the most popu-
lar GNN architectures: Graph Convolutional Network
(GCN) (Kipf & Welling, 2017), Graph Attention Net-
work (GAT) (Veličković et al., 2018), Mixture Model
Networks (Monti et al., 2017) and GraphSage (Hamilton
et al., 2017). Additionally we compare to recent ODE-
based GNN models, Continuous Graph Neural Networks
(CGNN) (Xhonneux et al., 2020), Graph Neural Ordinary
Differential Equations (GDE) (Poli et al., 2019), and Ordi-
nary Differential Equations on Graphs (GODE) (Zhuang
et al., 2020) and two versions of LanczosNet (Liao et al.,
2019) which approximate solutions to a linear diffusion
PDE.

We study three variants of GRAND: linear, nonlinear and
nonlinear with graph rewiring. In the GRAND-l, the atten-
tion weights are constant throughout the integration, pro-
ducing a coupled system of linear ODEs. In GRAND-nl,
the attention weights are updated at each step of the nu-
merical integration. In both cases, the given graph is used
as the spatial discretisation of the diffusion operator. In
GRAND-nl-rw, the graph is rewired after each backward
pass by thresholding the diffusivity attention mechanism.
The rewiring is held constant throughout the integration.

Datasets We report results for the most widely used cita-
tion networks Cora (McCallum et al., 2000), Citeseer (Sen
et al., 2008), Pubmed (Namata et al., 2012). These datasets
contain fixed splits that are often used, which we include
for direct comparison in Table 1. To address the limitations
of this evaluation methodology (Shchur et al., 2018), we
also report results for all datasets using 100 random splits
with 20 random initializations. Additional datasets are the
coauthor graph CoauthorCS (Shchur et al., 2018), the Ama-
zon co-purchasing graphs Computer and Photo (McAuley
et al., 2015), and the OGB arxiv dataset (Hu et al., 2020). In
all cases, we use the largest connected component. Dataset
statistics are included in the Supplementary Materials.

Experimental setup We follow the experimental method-
ology described in (Shchur et al., 2018) using 20 random
weight initializations for datasets with fixed Planetoid splits
and 100 random splits for the remaining datasets. Where
available, results from (Shchur et al., 2018) were used. Hy-

perparameters with the highest validation accuracy were
chosen and results are reported on a test set that is used only
once. Hyperparameter search used Ray Tune (Liaw et al.,
2018) with a thousand random trials using an asynchronous
hyperband scheduler with a grace period of ten epochs and a
half life of ten epochs. The code to reproduce our results is
included with the submission and will be released publicly
following the review process. Experiments ran on AWS
p2.8xlarge machines, each with 8 Tesla V100-SXM2 GPUs.

Implementation details For smaller datasets (Cora, Cite-
seer) we used the Anode augmentation scheme (Dupont
et al., 2019) to stabilise training. The ogb-arxiv dataset used
the Runge-Kutta method, for all others Dormand-Prince
was used. For the larger datasets, we used kinetic energy
and Jacobian regularization (Finlay et al., 2020; Kelly et al.,
2020). The regularization ensures the learned dynamics is
well-conditioned and easily solvable by a numeric solver,
which reduced training time. We use constant initialization
for the attention weights, WK ,WQ, so training starts from
a well-conditioned system that induces small regularization
penalty terms (Finlay et al., 2020).

Complexity For all datasets we use the adjoint method
described in (Chen et al., 2018). The space complexity
is dominated by evaluating Equation (10) over edges and
is O(|E ′|d) where E ′ is the edge set following rewiring
and d is dimension of features. The runtime complexity is
O(|E ′|d)(Eb + Ef ), split between the forward and back-
ward pass and can be dominated by either depending on the
number of function evaluations (Eb, Ef ).

Number of parameters In traditional GNNs there is a
linear relationship between the number of parameters and
depth. Conversely, GRAND shares parameters across lay-
ers (due to our choice of a time-independent attention) and
consequently, requires significantly less parameters than
competing methods, while achieving on par or superior per-
formance. The versions of GCN, SAGE and GAT used
for the ogb-arxiv results required 143K, 219K and 1.63M
parameters respectively, while our model only 70K.

Performance Tables 1–2 summarise the results of our ex-
periments. GRAND variants consistently perform among
the best methods, achieving first place on all but one dataset,
where it is second. On ogb-arxiv, our results are slightly in-
ferior to the best-performing GAT, which, however, requires
20 times as many parameters.

6.2. Depth

To demonstrate that our model solves the oversmoothing
problem and performs well with many layers, we performed
an experiment using the RK4 fixed step-size solver (with
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Planetoid splits CORA CiteSeer PubMed
GCN 81.9 ± 0.8 69.5 ± 0.9 79.0 ± 0.5
GAT 82.8 ± 0.5 71.0 ± 0.6 77.0 ± 1.3
MoNet 82.2 ± 0.7 70.0 ± 0.6 77.7 ± 0.6
GS-maxpool 77.4 ± 1.0 67.0 ± 1.0 76.6 ± 0.8
Lanczos 79.5±1.8 66.2±1.9 78.3±0.3
AdaLanczos 80.4±1.1 68.7±1.0 78.1±0.4
CGNN† 81.7 ± 0.7 68.1 ± 1.2 80.2± 0.3
GDE* 83.8 ± 0.5 72.5± 0.5 79.9 ± 0.3
GODE* 83.3 ± 0.3 72.4 ± 0.6 80.1 ± 0.3
GRAND-l (ours) 84.7 ± 0.6 73.3 ± 0.4 80.4 ± 0.4
GRAND-nl (ours) 83.6± 0.5 70.8± 1.1 79.7± 0.3
GRAND-nl-rw (ours) 82.9 ± 0.7 73.6 ± 0.3 81.0 ± 0.4

Table 1. Test accuracy and std for 20 random initializations us-
ing the original Planetoid train-val-test splits. *GODE and GDE
comprises six and three separate models respectively. For each
dataset we present the best performing variant of GODE and GDE.
†Results obtained running the authors’ code with the hyperparam-
eters given in their paper using Pytorch Geometric data readers.
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Figure 2. Performance of architectures of different depth.

step size τ = 1.0), varying the integration time T while
holding the other hyper-parameters fixed. This effectively
produces architectures of varying depth. Figure 2 shows that
compared to GCN and a GCN with residual connections,
our model maintains performance as the layers increase
whilst the baselines degrade by 50% after 4 layers.

6.3. Choice of discretisation scheme

We investigated the stability of explicit numerical schemes
with a fixed step size and the tradeoff between step size
and computational time for an equivalent implicit numer-
ical scheme. We compared these to the Dormand–Prince
adaptive step size scheme (DOPRI5).

Method choice We ran GRAND on Cora with the explicit
Adams–Bashford method, an implicit Adams–Moulton
method with a predictor-corrector algorithm, and the adap-
tive Runge-Kutta 4(5) method (see Figure 3, left), varying
the step sizes for the two fixed-step size methods. We ob-
serve that the explicit Adams method is unstable for all but

a small step size of τ = 0.005, while the implicit Adams
method is stable for all step sizes. Moreover, in this case
the implicit method converges to the solution faster than a
state-of-the-art adaptive step size solver for large enough
step size. We note, however, that this may not always be
the case. As the step size is increased, the implicit method
can take fewer steps. However, as the step size is increased
the implicit equations become more difficult to solve and
require more iterations of the algorithm used to solve them.

Graph rewiring In this experiment, we rewired the Cora
graph using the method of Klicpera et al. (2019), keeping
the largest K coefficients for each node. We varied K to
explore the tradeoff between sparsity, computation time,
and accuracy (see Figure 3, right). As the graph is made
sparser (K decreases), all methods become faster. The
accuracy converges to similar values until the graph is so
sparse that the flow of information is impeded (K < 8). We
observe that for implicit solvers the benefit of sparsification
is independent of the step size, and both can be combined
somewhat to decrease the time per epoch without effecting
accuracy. We hypothesize that, in general, a sparser graph is
particularly desirable for implicit solvers since it may reduce
the difficulty of solving the implicit equations (less iterations
until convergence). A final observation is that we can draw
a diagram similar to Figure 1 for the computational graph of
the Adams–Moulton method with predictor–corrector steps;
it is redolent of an RNN with adaptive computation time
(Graves, 2016), where the stopping rule is deterministic
rather than learnt (that is, continue unrolling the RNN until
the difference between outputs is below a cutoff).

6.4. Diffusion on MNIST Image Data Experiments

We performed an experiment to illustrate the learned dif-
fusion characteristics of GRAND. MNIST pixel data was
used to construct a superpixel representation (Achanta et al.,
2012) and adjacent patches were joined with edges, binary
pixel labels were applied (number or background) with a
50% training mask. We evolved both GRAND-nl and a con-
stant Laplacian diffusion model for T = 4.8 and τ = 0.8,
equating to a 6 layer GNN. We show the attention weights
by the colour and thickness of the edges. Figure 4 shows
Non-linear GRAND performs edge detection weighting dif-
fusion within a class boundary in a way that preserves the
image after diffusion. The Laplacian diffusion is unable to
preserve the features of the original image.

7. Conclusion
We presented a new class of graph neural network called
Graph Neural Diffusion (GRAND), based on the discreti-
sation of diffusion PDEs on graphs. Our framework al-
lows leveraging vast literature on PDEs relating to discrete
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Random splits CORA CiteSeer PubMed Coathor CS Computer Photo ogb-arxiv∗
GCN 81.5 ± 1.3 71.9± 1.9 77.8 ± 2.9 91.1 ± 0.5 82.6 ± 2.4 91.2 ± 1.2 72.17± 0.33
GAT 81.8 ± 1.3 71.4 ± 1.9 78.7± 2.3 90.5 ± 0.6 78.0 ± 19.0 85.7 ± 20.3 73.65 ± 0.11†

GAT-ppr 81.6± 0.3 68.5± 0.2 76.7± 0.3 91.3± 0.1 85.4 ± 0.3 90.9± 0.3 N/A
MoNet 81.3 ± 1.3 71.2 ± 2.0 78.6± 2.3 90.8 ± 0.6 83.5 ± 2.2 91.2 ± 2.3 N/A
GS-mean 79.2 ± 7.7 71.6 ± 1.9 77.4 ± 2.2 91.3 ± 2.8 82.4 ± 1.8 91.4 ± 1.3 71.39 ± 0.16
GS-maxpool 76.6 ± 1.9 67.5 ± 2.3 76.1 ± 2.3 85.0 ± 1.1 N/A 90.4 ± 1.3 N/A
CGNN 81.4± 1.6 66.9± 1.8 66.6 ± 4.4 92.3± 0.2 80.29 ±2.0 91.39 ± 1.5 58.70 ± 2.5
GDE 78.7 ± 2.2 71.8 ± 1.1 73.9 ± 3.7 91.6 ± 0.1 82.9 ± 0.6 92.4 ± 2.0 56.66 ± 10.9
GRAND-l (ours) 83.6 ± 1.0 73.4 ± 0.5 78.8 ± 1.7 92.9 ± 0.4 83.7± 1.2 92.3 ± 0.9 71.87 ± 0.17
GRAND-nl (ours) 82.3± 1.6 70.9± 1.0 77.5± 1.8 92.4 ± 0.3 82.4± 2.1 92.4 ± 0.8 71.2 ± 0.2
GRAND-nl-rw (ours) 83.3 ± 1.3 74.1 ± 1.7 78.1± 2.1 91.3± 0.7 85.8 ± 1.5 92.5 ± 1.0 72.23 ± 0.20

Table 2. Test accuracy and std for 20 random initializations and 100 random train-val-test splits. *Using labels. †using 1.5M parameters.

Figure 3. Performance of different solvers. Left: Test accuracy on plain Cora varying the step size, comparing explicit Adams–Bashford,
implicit Adams–Moulton, and adaptive Runge-Kutta 4(5). We observe that the explicit fixed step size scheme is unstable for all but a
small step size whereas the implicit scheme is stable for all step sizes tried. For a large step size, the implicit scheme is faster than a
state-of-the-art explicit scheme with adaptive step size. Right: Diffusion-rewired Cora varying the sparsity of the graph by keeping the
largest K coefficients for each node. Explicit Adams–Bashford has step size τ = 0.005, and implicit Adams–Moulton τ = 1.0. We
observe a trade-off between sparsity, speed, and accuracy.

Figure 4. Illustration of the effect of attention weights on pixel
diffusion
temporal and spatial operators and stability, and provides
a blueprint for a principled design of new graph learning
architectures. We show that appropriate choice of discreti-
sation and numerical schemes in GRAND allows us to train
very deep graph neural networks and results in superior
performance on popular benchmarks.

Limitations We intentionally considered a form of the
diffusion equation that is easier to treat mathematically. Our

model is currently limited to learn only functions of the
form ∂x

∂t = f(x(t), t, θ), with an ‘attentional’ structure of f .
This imposes two limitations that are not present in discrete
neural networks: first, the size of the hidden state vector
must be constant for all layers (a usual situation in GNNs),
and second, the same set of parameters θ must be used
for all layers. The later constraint comes as an advantage,
allowing our model to use 10−20 times less parameters than
the top performing model on ogbn-arxiv. In future work,
we intend to overcome these limitation by introducing a
θ = θ(t) as described in (Queiruga et al., 2020; Zhang
et al., 2019). We will also consider more general nonlinear
diffusion equations that result in message passing ‘flavors’
of GNN architectures.
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Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò,
P., and Bengio, Y. Graph attention networks. In ICLR,
2018.

Weickert, J. A review of nonlinear diffusion filtering. In
Proceedings ScaleSpace.



GRAND: Graph Neural Diffusion

Weickert, J. Anisotropic diffusion in image processing. Teub-
ner Stuttgart, 1998.

Xhonneux, L.-p. A. C., Qu, M., and Tang, J. Continuous
graph neural networks. In ICML, 2020.

Zhang, T., Yao, Z., Gholami, A., Keutzer, K., Gonzalez, J.,
Biros, G., and Mahoney, M. W. ANODEV2: A coupled
neural ODE framework. In NeurIPS, 2019.

Zhuang, J., Dvornek, N., Li, X., and Duncan, J. S. Ordi-
nary differential equations on graph networks. Technical
Report 1, 2020.


