
Hyperbolic Dimensionality Reduction

A. Horospherical Projection: Proofs and
Discussions

We show that the horospherical projection πH
b,p1,...,pK

in
Section 3.2.2 is well-defined, shares many nice properties
with Euclidean orthogonal projections, and has a closed-
form expression.

More specifically, this section is organized as follows. In
Appendix A.1, we show that horospherical projections are
well-defined (Theorem A.4). In Appendix A.2, we show
that they are base-point independent (Corollary A.7), non-
expanding (Corollary A.12), and distance-preserving along
a family of K-dimensional submanifolds (Corollary A.10).
Finally, in Appendix A.4, we explain how they can be com-
puted efficiently in the hyperboloid model.

For an illustration in the case of K = 2 ideal points in H3,
see Fig. 5. This figure might help explain the intuitions
behind the theorems in Appendix A.1 and Appendix A.2.

A.1. Well-definedness

Recall that given a base point b ∈ Hd and K > 1 ideal
points {p1, . . . , pK}, we would like to define πH

b,p1,...,pK
by

x→M ∩ S(p1, x) ∩ S(p2, x) ∩ · · · ∩ S(pK , x),

where M = GH(b, p1, . . . , pK) is the target submanifold
and S(pj , x) is the horosphere centered at pj and passing
through x. For this definition to make sense, the intersection
in the right hand side must contain exactly one point for
each x ∈ Hd. Unfortunately, this is not the case: In fact, the
intersection generally consists of two points. Nevertheless,
we will show that there is a consistent way to choose one
from these two points, making the function πH

b,p1,...,pK
well-

defined. This is the result of Theorem A.4.

First, to understand the above intersection, we give a more
concrete description of ∩jS(pj , x).

Lemma A.1. Let P = GH(p1, p2, . . . , pK). Then for every
x ∈ Hd, the intersection of horospheres

S(x) = S(p1, x) ∩ S(p2, x) ∩ · · · ∩ S(pk, x)

is precisely the orbit of x under the group G of rotations
around P .

Proof. First, note that every rotation around P preserves the
horospheres S(pj , x) - just like how every rotation around
an axis preserves every sphere whose center is on that axis.
It follows that S(x) is preserved by G. In particular, the
orbit of x under G is contained in S(x).

It remains to show that S(x) contains no other points. To
this end, consider any y 6= x in S(x). The perpendicular
bisector B of x and y is a totally geodesic hyperplane of

Hd that contains every pj (because each pj is intuitively
the center of a sphere that goes through x and y). Thus, by
the definition of geodesic hull, B ⊃ P . In particular, the
reflection through B sends x to y and fixes every point in
P .

Now take any geodesic hyperplane A that contains both P
and y, so that the reflection through A fixes y and every
point in P . Then the composition of the reflections through
B and A is a rotation that sends x to y and fixes every point
in P . In other words, it is a rotation around P that sends x
to y. Therefore, y belongs to the orbit of x under G.

Corollary A.2. If x ∈ P then S(x) = {x}. Otherwise, let
πG
P (x) be the geodesic projection of x onto P , and Q(x) be

the geodesic submanifold that orthogonally complements
P at πG

P (x). Then S(x) ⊂ Q(x) and is precisely the (hy-
per)sphere in Q(x) that is centered at πG

P (x) and passing
through x.

Proof. This follows from Lemma A.1. If x ∈ P then every
rotation around P fixes x, so the orbit of x is just itself.

Now consider the case x 6∈ P . All rotations around P must
preserve πG

P (x) and the orthogonal complement Q(x) of P
at πG

P (x). Furthermore, when restricted to the space Q(x),
these rotations are precisely the rotations in Q(x) around
the point πG

P (x). Thus, for every y ∈ Q(x), the orbit of y
underG is a sphere inQ(x) centered at πG

P (x). In particular,
S(x), which is the orbit of x, is the sphere in Q(x) that is
centered at πG

P (x) and passing through x.

Corollary A.2 gives the following characterization of the
intersection

M ∩ S(p1, x) ∩ S(p2, x) ∩ · · · ∩ S(pK , x) = M ∩ S(x) :

Note that P = GH(p1, . . . , pK) is a geodesic submanifold
of M = GH(b, p1, . . . , pK) and that dimP = dimM − 1.
Thus, through every point y ∈ P , there is a unique geodesic
α on M that goes through y and is perpendicular to P .

Corollary A.3. If x ∈ P thenM∩S(x) = {x}. Otherwise,
let α be the geodesic on M that goes through πG

P (x) and
is perpendicular to P . Then M ∩ S(x) consists of the two
points on α whose distance to πG

P (x) equals dH(x, πG
P (x)).

Proof. The case x ∈ P is clear since x ∈ M and S(x) =
{x} by Corollary A.2.

For the other case, let Q(x) be the orthogonal complement
of P at πG

P (x). Then by Corollary A.2, S(x) is precisely the
sphere in Q(x) that is centered at c(x) and passing through
x.

Now note that M ∩ Q(x) = α. Since S(x) ⊂ Q(x), this
givesM ∩S(x) = M ∩Q(x)∩S(x) = α∩S(x). We know
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that every sphere intersects every line through the center at
two points.

Therefore, to define πH
b,p1,...,pK

(x), we just need to choose
one of the two poins in M ∩ S(x) in a consistent way (so
that the map is differentiable). To this end, note that P cuts
M into two half-spaces, and exactly one of them contains
the base point b. (Recall that b ∈ M and b 6∈ P by the
“independence” condition). We denote this half by Pb. Then,
while S(x) contains two points in M , it only contains one
point in Pb:
Theorem A.4. Let α be the geodesic on M that goes
through πG

P (x) and is perpendicular to P . Let α+ be the
half of α contained in Pb. Then α+ intersects the sphere
S(x) at a unique point x′, which is also the unique inter-
section point between Pb and S(x). Thus, we can define
πH
b,p1,...,pK

by

πH
b,p1,...,pK (x) = α+ ∩ S(x) = Pb ∩ S(x).

Equivalently, πH
b,p1,...,pK

(x) is the point in M ∩ S(x) that
is strictly closer to b.

Proof. By Corollary A.2, S(x) is a sphere centered at
πG
P (x). Then, since α+ is a geodesic ray starting at πG

P (x),
it must intersect S(x) at a unique point x′.

Next, we have

Pb∩S(x) = Pb∩M∩S(x) = Pb∩α∩S(x) = α+∩S(x),

where the first equality holds because Pb ⊂M , the second
becauseM∩S(x) = α∩S(x) by the proof of Corollary A.3,
and the third because Pb ∩ α = α+. Thus, Pb ∩ S(x) is
precisely x′.

Finally, let x′′ be the other point of M ∩ S(x) = α ∩ S(x).
Then P is the perpendicular bisector of x′ and x′′ in M .
Thus, every point on the same side of P in M as x′ (but not
on the boundary P ) is strictly closer to x′ than to x′′. By
definition, b is one of such point. Thus, πH

b,p1,...,pK
(x) is the

point in M ∩ S(x) that is closer to b.

A.2. Geometric properties

From Lemma A.1 and Theorem A.4, we obtain another
interpretation of πH

b,p1,...,pK
: It maps Hd to Pb ⊂ M by

rotating every point x ∈ Hd around P until it hits Pb. In
other words, we have
Theorem A.5 (The “open book” interpretation). For any
x 6∈ P , let Mx = GH(P ∪ {x}). Then P cuts Mx into two
half-spaces; we denote the half that contains x by Px. Then,
when restricted to Px, the map

πH
b,p1,...,pK : Px → Pb

is simply a rotation around P .

Following this, we call P the spine of the horosphere pro-
jection. The identity Hd = ∪x 6∈PPx can be thought of
as an open book decomposition of Hd into pages Px that
are bounded by the spine P . The horosphere projection
πH
b,p1,...,pK

then simply acts by collapsing every page onto a
specified page Pb.

Here are some consequences of this interpretation:

Corollary A.6. πH
b,p1,...,pK

only depends on the spine P
and not specifically on p1, . . . pK . Thus, when we are not
interested in the specific ideal points, we simply write πH

b,P .

Proof. As noted above, πH
b,p1,...,pK

(x) can be obtained by
rotating x around P until it hits Pb. This operation does not
used the exact positions of pj at all.

Corollary A.7. The choice of b does not affect the geometry
of the projection πH

b,P . More precisely, for any two base
points b, b′ 6∈ P , the horosphere projections

πH
b,P : Hd → Pb and πH

b′,P : Hd → Pb′

only differ by a rotation Pb → Pb′ around P .

Proof. By Theorem A.5, when restricted to any page Px,
the maps πH

b,P : Hd → Pb and πH
b′,P : Hd → Pb′ are

just rotations around P . The difference between any two
rotations around P is another rotation around P .

In particular, Corollary A.7 implies Theorem 4.1:

Theorem 4.1. For any b, b′ and any x, y ∈ Hd, the two
projected distances dH(πH

b,p1,...,pK
(x), πH

b,p1,...,pK
(y)) and

dH(πH
b′,p1,...,pK

(x), πH
b′,p1,...,pK

(y)) are equal.

As discussed in Section 4, this theorem helps reduces pa-
rameters and simplifies the computation of πH

b,P .
Remark A.8. Corollary A.6 and Corollary A.7 together im-
ply that the HOROPCA algorithm (5) only depends on the
geodesic hulls GH(p1),GH(p1, p2), . . .GH(p1, . . . , pK)
of the ideal points and not the specific ideal points them-
selves. It follows that, theoretically, the search space of
(5) has dimension dK − 1

2K(K + 1) – the same as the
dimension of the space of flags in Euclidean spaces.

In our implementation, for simplicity we parametrize the K
ideal points independently, which results in a suboptimal
search space dimension (d − 1)K. Nevertheless, this is
still slightly more efficient than the parametrizations used in
PGA and BSA, which require have (d+ 1)K-dimensions.

The following corollaries say that horospherical projections
share a nice property with Euclidean orthogonal projections:
When projecting to a K-dimensional submanifold, they
preserve the distances along K dimensions and collapse the
distances along the other d−K orthogonal dimensions:
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Figure 5: The horospherical projection πH
b,p1,p2

from H3 to 2 dimensions. Here p1, p2 are ideal points, and the base point
b ∈ H3 is chosen to be the origin of the Poincaré ball. The geodesic hull GH(b, p1, p2) is the hyperbolic plane bounded
by the yellow circle. The geodesic between p1 and p2 is shown in blue and is called the spine P = GH(p1, p2) of this
projection. For any input x ∈ H3, the two horospheres S(p1, x) and S(p2, x) (shown in red) intersect along a circle S(x)
(shown in green). Note that this circle is precisely the set {y ∈ H3 : Bpj (y) = Bpj (x), j = 1, 2} and is symmetric around
the spine P . It intersects GH(b, p1, p2) at two points x′ and x′′, which lie on opposite sides of the spine. Since x′ belongs to
the side containing b, it is closer to b than x′′ is. Thus, we define πH

b,p1,p2
(x) to be x′.

Corollary A.9. πH
b,P is invariant under rotations around

P . In other words, if a rotation around P takes x to y then
πH
b,P (x) = πH

b,P (y).

Consequently, every x 6∈ P belongs to a (d − K)-
dimensional submanifold that is collapsed to a point by
πH
b,P .

Proof. The open book interpretation tells us that πH
b,P (x)

and πH
b,P (y) are precisely the intersections of Pb with S(x)

and S(y), respectively. If y belongs to the rotation orbit
S(x) of x then the rotation orbit S(y) of y is the same as
S(x). Thus πH

b,P (x) = πH
b,P (y).

Hence, for every x ∈ Hd, S(x) is collapsed to a point by
πH
b,P . To see that dimS(x) = d−K when x 6∈ P , recall that

by Corollary A.2, if Q(x) is the orthogonal complement of
P at πG

P (x) then S(x) is a hypersphere inside Q(x). Since
the ideal points pj are assumed to be “affinely independent,”
we have dimP = K− 1, so dimQ(x) = d− (K− 1), and
dimS(x) = dimQ(x)− 1 = d−K.

Corollary A.10. For every x ∈ Hd, there exists a K-
dimensional totally geodesic submanifold (with boundary)
that contains x and is mapped isometrically to Pb by πH

b,P .
If x 6∈ P then such a manifold is unique.

Proof. If x 6∈ P then the submanifold Px in Theorem A.5
is a geodesic submanifold that contains x and is mapped
isometrically toPb by πH

b,P . As in the proof of Corollary A.9,
we have dimP = K − 1 and dimPx = dimP + 1 = K.

Since Corollary A.9 implies that the other d−K dimensions
are collapsed by πH

b,P , no other distances from x can be
preserved. Thus, Px is the unique submanifold with the
desired properties.

If x ∈ P then x ∈ Py for every y 6∈ P . Note that this means
every distance from x is preserved by πH

b,P .

The following corollaries say that, like Euclidean orthog-
onal projections, horospherical projections never increase
distances. Thus, minimizing distortion is roughly equiv-
alent to maximizing projected distances. This is another
motivation for Eq. (4).
Corollary A.11. For every x ∈ Hd and every tangent vec-
tor ~v at x,

‖πH
b,P (~v)‖H ≤ ‖~v‖H.

Proof. This follows from Corollary A.10 and Corollary A.9:

If x ∈ P then the proof of Corollary A.10 implies that
πH
b,P preserves every distance from x. Thus, the desired

inequality is actually an equality.
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If x 6∈ P then by ~v has an orthogonal decomposition ~v =
~u + ~u⊥, where ~u and ~u⊥ are tangent and perpendicular
to Px, respectively. By Corollary A.10 and Corollary A.9,
πH
b,P preserves the length of ~u while collapsing ~u⊥ to 0. It

follows that ‖πH
b,P (~v)‖H = ‖~u‖H ≤ ‖~v‖H.

Corollary A.12. πH
b,P is non-expanding. In other words,

for every x, y ∈ Hd,

dH(πH
b,P (x), πH

b,P (y)) ≤ dH(x, y).

Proof. We first show that for any path γ(t) in Hd,

length(πH
b,P (γ)) ≤ length(γ).

Indeed, note that the velocity vector of πH
b,P (γ) is precisely

πH
b,P (γ̇). Then, by Corollary A.11,

length(πH
b,P (γ)) =

∫
‖πH

b,P (γ̇(t))‖Hdt

≤
∫
‖γ̇(t)‖Hdt = length(γ).

Now for any x, y ∈ Hd, let γ(t) be the geodesic segment
from x to y. Then πH

b,P (γ) is a path connecting πH
b,P (x)

and πH
b,P (y). Thus, the projected distance is at most the

length of πH
b,P (γ), which by the above argument is at most

length(γ) = dH(x, y).

A.3. Detour: A Review of the Hyperboloid Model

Theorem A.4 suggests that πH
b,P (x) can be computed in

three steps:

1. Find the geodesic projection πG
P (x) of x onto P .

2. Find a geodesic ray α+ on Pb that starts at πG
P (x) and

is orthogonal to P .
3. Return the unique point on α+ that is of distance
dH(x, πG

P (x)) from πG
P (x).

It turns out that these subroutines are easier to implement
in the hyperboloid model instead of the Poincaré model of
hyperbolic spaces. Thus, we first briefly review the basic
definitions and properties of this model. The readers who
are already familiar with the hyperboloid model can skip to
Appendix A.4, where we describe the full algorithm.

For a more detailed treatment, see (Thurston, 1978).
Remark A.13. The above steps are slightly different from
the ones mentioned in Section 3.2.2. However, by Theo-
rem A.4, these two descriptions are equivalent. We decided
to use the “closer-to-b” description in Section 3.2.2 because
it is slightly more self-contained, but the actual implementa-
tion will be based on the above three steps.

Minkowski spaces We first describe Minkowski spaces,
which is the embedding space where the hyperboloid model
sits in as hypersurfaces.

The (d+ 1)-dimensional Minkowski space R1,d is like the
flat Euclidean space R1+d except with a dot product that
has a negative sign in the first coordinate. More precisely,
R1,d is the vector space R1+d equipped with the indefinite,
non-degenerate bilinear form

B ((t, x1, . . . , xd), (u, y1, . . . , yd)) = −tu+

d∑
i=1

xiyi,

which serves as the “dot product.”

Like with Euclidean spaces, the quantity B(~v,~v) is called
the (Minkowski) squared norm of the vector ~v. Two vectors
~u,~v ∈ R1,d are called orthogonal if B(~u,~v) = 0. The
orthogonal complement of a linear subspace V ⊂ R1,d is
the set V ⊥ = {~w ∈ R1,d : B(~w,~v) = 0 for every ~v ∈ V },
which still has dimension dimR1,d − dimV . However,
unlike in Euclidean spaces, vectors in R1,d can have negative
or zero squared norms, and linear subspaces can intersect
their orthogonal complements.

Types of vectors in R1,d Vectors with negative, zero, and
positive (Minkowski) squared norms are called time-like,
light-like, and space-like, respectively. Time-like and light-
like vectors together form a solid double cone in R1,d.

If ~v is a time-like or light-like vector, we call it future-
pointing if its first coordinate is positive, otherwise we call
it past-pointing. It follows from Cauchy-Schwarz inequality
that.

Proposition A.14. If ~u,~v are future-pointing time-like or
light-like vectors then B(~u,~v) < 0.

A linear subspace V of R1,d is called space-like if every
non-zero vector in V is space-like. In that case, the bilinear
form B(·, ·) restricts to a positive-definite bilinear form on
V , thus making it isometric to an Euclidean vector space. It
follows from Proposition A.14 that

Proposition A.15. The orthogonal complement of a time-
like vector is a space-like linear subspace.

The hyperboloid model of hyperbolic spaces We are
now ready to introduce the hyperboloid model Hd. It sits
inside R1,d in a similar way to how the unit sphere Sd sits
inside the Euclidean space R1+d.

Definition A.16. The hyperboloid model of d-dimensional
hyperbolic spaces is the set Hd of future-pointing vectors in
R1,d with Minkowsi squared norm −1.

Remark A.17. For the rest of Appendix A, we will use Hd
to denote this hyperboloid model as a subset of R1,d, and
not the abstract hyperbolic space or its other models (e.g.
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Poincaré ball). This should not lead to any ambiguities
because we will not work with any other model.

The following properties of Hd further illustrate the analogy
with spheres in Euclidean spaces.

Proposition A.18. For every ~x ∈ Hd, the tangent space
T~xHd of Hd at ~x is (parallel to) the orthogonal complement
of ~x in R1,d.

Proposition A.19. When restricted to each tangent space of
Hd, the bilinear formB(·, ·) is positive definite. This defines
a Riemannian metric on Hd which has constant curvature
−1. The stereographic projection

(t, x1, . . . , xd)→
(

x1
1 + t

, . . . ,
xd

1 + t

)
is an isometry between Hd and the Poincaré model. Its
inverse map is given by

(y1, . . . , yd)→
(1 +

∑
i y

2
i , 2y1, . . . , 2yd)

1−∑i y
2
i

.

Proposition A.20. Every k-dimensional geodesic subman-
ifold of Hd is the intersection of Hd with a (k + 1)-
dimensional linear subspace of R1,d.

In the hyperboloid model, the ideal points of hyperbolic
spaces are represented by light-like directions (instead of
individual vectors):

Proposition A.21. Each ideal point of Hd is represented by
a 1-dimensional linear subspace spanned by some ~v ∈ R1,d

with B(~v,~v) = 0. The map

(t, x1, . . . , xd)→
(x1
t
, . . . ,

xd
t

)
gives a correspondence between a light-like vector ~v ∈ R1,d

and an ideal point p ∈ Sd−1∞ in the Poincaré model that is
represented by span(~v). This correspondence is compatible
with the stereographic projection in Proposition A.19. Its
inverse map is given by

(y1, . . . , yd)→ (1, y1, . . . , yd).

We conclude this section by noting that geodesic hulls in
the hyperboloid model are closely related to linear spans in
Minkowski space:

Proposition A.22. Let S be a set of vectors that are either
in Hd or represent ideal directions of Hd. Then the geodesic
hull of S in Hd is the intersection of Hd with the linear span
of S.

In particular, since the spine P in our setting (Theorem A.4)
is the geodesic hull of some ideal points, it is cut out by the
linear span of the corresponding ideal directions.

Algorithm 1 Horospherical Projection

Input: point x, ideal points {p1, . . . , pK}, base point b.
z ← πMink

span(p1,...,pK)(x) {orthogonal projection in ambi-
ent space}
w ← z/‖z‖ {rescale to a vector on the hyperboloid}
u← b− w {subtraction in ambient space}
u ← u − πMink

span(p1,...,pK)(u) {orthogonal projection in
ambient space}
u← u/‖u‖ {make u the unit tangent vector orthogonal
to the spine P}
y ← expw(dH(x,w) · u) {exponential map in Hd}

return y

A.4. Computation of Horospherical Projections

Now we describe how the three steps mentioned at the
beginning of Appendix A.3 can be implemented in the hy-
perboloid model. The results of this section are summarized
in Algorithm 1. To transfer back and forth between the
hyperboloid and Poincaré models, we use the formulas in
Proposition A.19 and Proposition A.21.

Step 1: Computing geodesic projections We first de-
scribe how to compute the geodesic (or closest-point) pro-
jection from Hd to a geodesic submanifold P in Hd. This
process is very similar to how geodesic projections work in
Euclidean spheres: We first perform an orthogonal projec-
tion onto the linear subspace V that cuts out P , then rescale
the result to get a vector on Hd.

Generally, orthogonal projections in Minkowski spaces are
very similar to those in Euclidean spaces. However, since
vectors in R1,d can have norm zero, the orthogonal projec-
tion πMink

V is not well-defined for every subspace V . Thus,
a little extra argument is needed.

Proposition A.23 (Orthogonal projections onto time-con-
taining linear subspaces). Let V be a linear subspace of
R1,d that contains some time-like vectors. Then

1. V ∩ V ⊥ = {0}. Consequently, we can define a linear
orthogonal projection πMink

V : R1,d → V as follows:
Since R1,d = V ⊕ V ⊥, every vector ~x ∈ R1,d can be
uniquely written as ~x = ~z + ~n for some ~z ∈ V and
~n ∈ V ⊥. Then, we let πMink

V (~x) := ~z.
2. Let A be a matrix whose column vectors form a linear

basis of V . Let B be the (1 + d) × (1 + d) sym-
metric matrix associated to the bilinear form B, i.e.
the diagonal matrix with entries (−1, 1, 1, 1, . . . , 1).
Then A>BA is non-singular, and the linear projection
πMink
V is given by ~x→ A(A>BA)−1A>B~x

3. If ~x is a future-pointing time-like vector then so is
πMink
V (~x).
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Proof.

1. Let ~v be a time-like vector in V . Then ~v⊥ is space-like
by Proposition A.15. Since V ∩ V ⊥ ⊂ V ⊥ ⊂ ~v⊥, the
intersection V ∩ V ⊥ must be space-like. On the other
hand, for every ~w ∈ V ∩ V ⊥, we have B(~w, ~w) = 0,
so ~w must be light-like. It follows that V ∩ V ⊥ = {0}.
The R1,d = V ⊕ V ⊥ part of the claim is a standard
linear algebra fact.

2. This follows from the same argument that deduces the
formula for Euclidean orthogonal projections.

3. To avoid cumbersome notations, let ~z = πMink
V (~x).

Then since ~x− ~z is orthogonal to V and in particular
to ~z, we have the Pythagorean formula

B(~z, ~z) +B(~x− ~z, ~x− ~z) = B(~x, ~x).

On the other hand, since ~x − ~z is orthogonal to V
and in particular orthogonal to some time-like vec-
tors in V , by Proposition A.15, it must be space-like.
Thus, if B(~x, ~x) < 0 then the above equation implies
B(~z, ~z) < 0, which means ~z is time-lile.
Now either ~z or−~z is future-pointing. In the latter case,
since ~x is future-pointing, Proposition A.14 implies
B(−~z, ~x) < 0. On the other hand, we have B(~z, ~x) =
B(~z, ~z) < 0, contradicting the above inequality. Thus,
~z is future-pointing.

Proposition A.24 (Geodesic projections in Hd). Let P be
a geodesic submanifold of Hd. Recall that by Proposi-
tion A.20, P = Hd ∩ V for some linear subspace V of R1,d.
Then for every ~x ∈ Hd, the geodesic projection πG

P (~x) of ~x
onto P in Hd is given by

πG
P (~x) =

~z√
−B(~z, ~z)

,

where ~z = πMink
V (~x) is the linear orthogonal projection of

~x onto V .

Proof. Again, to avoid cumbersome notations, let

~w =
~z√

−B(~z, ~z)
.

We will show that ~w = πG
P (~x). First, note that since ~z

is a future-pointing time-like vector by Proposition A.23,
~w ∈ Hd. Since ~w ∈ V , it follows that ~w ∈ P .

Let W be the linear span of ~w and ~x, so that W ∩Hd is the
geodesic γ in Hd that connects ~w and ~x. Note that ~w and
~x− ~z form a basis of W . They are both orthogonal to the
tangent space T~wP of P at ~w because:

• By Proposition A.18, ~w is orthogonal to every tangent
vector of Hd at ~w.
• T~wP is contained in V , which is orthogonal to ~x− ~z.

Thus, W is orthogonal to T~wP . It follows that the geodesic
γ is orthogonal to P , which means ~w = πG

P (~x).

Step 2: Finding orthogonal geodesic ray Recall that if
P is a geodesic submanifold of Hd and ~b ∈ Hd is a point
not in P , then the geodesic hull M of P ∪ {~b} in Hd is
a geodesic submanifold of Hd with dimension dimP + 1.
Thus, P cuts M into two halves, and we denote the half that
contains~b by Pb.

Given a point ~w ∈ P , there exists a unique geodesic ray α+

that starts at ~w, stays on Pb, and is orthogonal to P . In this
section, we describe how to compute α+.

Recall that by Proposition A.20, P = V ∩ Hd for some
linear subspace V .
Proposition A.25. The vector

~u = (~b− ~w)− πMink
V (~b− ~w)

is tangent to M and orthogonal to P at ~w. Furthermore, it
points toward the side of Pb.

Proof. By construction, ~u is orthogonal to V . Note that
V contains both ~w and the tangent space T~wP of P at
~w. Thus, ~u is orthogonal to both of them. Together with
Proposition A.18, this implies that ~u is a tangent vector of
Hd at ~w that is orthogonal to P .

Next, note that M is the intersection of Hd with the linear
span of V ∪{~b}, and since~b and ~w both belong to this linear
span, so does ~u. Thus, since ~u is a tangent vector of Hd at
~w, it must be tangent to M .

By construction, ~u points from ~w toward the side of~b instead
of away from it. More rigorously, note that by essentially
the same argument as above,

~a := (~b− ~w)− πMink
~w (~b− ~w)

is a tangent vector at ~w of the geodesic on Hd that goes
from ~w to~b. Also, note that

~a− ~u = πMink
V (~b− ~w)− πMink

~w (~b− ~w).

Since V = T~wP⊕span(~w) is an orthogonal decomposition,
this means

~a− ~u = πMink
T~wP

(~b− ~w),

which in particular implies ~a − ~u ∈ T~wP . It follows that
~u is the projection of ~a onto the orthogonal complement of
T~wP in T~wHd.

In an Euclidean vector space, the dot product of any vector
with its projection onto any direction is positive unless the
projection is zero. Since T~wHd is a space-like subspace,
this statement applies to ~a and ~u. Note that ~u cannot be
zero because otherwise~b would belong to V and hence P .
Thus, we conclude that ~a ·~u > 0, which means that ~u points
toward the side of Pb.
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Thus, ~u is the tangent vector at ~w of the desired ray α+. To
compute points on this ray, we can use the exponential map
at ~w.

Step 3: The exponential map Finally, given a distance
d and a tangent vector ~u at ~w of a geodesic ray α+ in Hd,
we need to compute the point on α+ that is of hyperbolic
distance d from ~w. This is based on the following lemma:

Lemma A.26. Suppose that ~u is a unit tangent vector of
Hd at ~w. Then

α(t) = (cosh t)~w + (sinh t)~u

is a unit-speed geodesic with α(0) = ~w and α̇(0) = ~u.

Proof. Note that ~w and ~u are orthogonal by Proposi-
tion A.18. The facts that α(0) = ~w, α̇(0) = ~u, and that
α(t) is a unit-speed curve on Hd follow from simple, direct
computations. To see that α(t) is a geodesic, note that it is
the intersection of Hd with the linear subspace span(~w, ~u)
and apply Proposition A.20.

It follows that

Proposition A.27. If ~u is the tangent vector at the starting
point ~w of a geodesic ray α+ in Hd then

(cosh d)~w + (sinh d)
~u√

B(~u, ~u)

is the point on α+ that is of distance d from ~w.

From the results in this section, we conclude that Algo-
rithm 1 computes the horospherical projection πH

b,P (x).

B. Geodesic Projection: Distortion Analysis
We show that in hyperbolic geometry, the geodesic projec-
tion πG

M (also called closest-point projection) to a geodesic
submanifold M always strictly decreases distances unless
the inputs are already in M ; furthermore, all paths of dis-
tance at least r from M get shorter by at least cosh r times
under the projection. Note that most ideas and results in this
section already exist in the literature. For a comprehensive
treatment, see (Thurston, 1978).

This section is organized as follows. First, we use basic
hyperbolic trigonometry to prove a bound on projected dis-
tances onto geodesics in dimension two (Proposition B.3).
Then we generalize this bound to higher dimensions (The-
orem B.4) and obtain an infinitesimal version of it (Corol-
lary B.5). The main theorem (Theorem B.6) then follows
immediately.

Hyperbolic trigonometry in two dimensions We first
recall the laws of sine and cosine for triangle in hyperbolic
planes:

Proposition B.1. Consider any triangle in H2 with edge
lengths A,B,C. Let α, β, γ be the angles at the vertices
opposite to edges A,B,C. Then

sinhA

sinα
=

sinhB

sinβ
=

sinhC

sin γ
,

cos γ =
coshA coshB − coshC

sinhA sinhB
.

Proof. See (Thurston, 1978), section 2.6.

Proposition B.2. Consider any quadrilateral in H2 with
vertices x, y, z, w (in that order). Suppose that the angles
at z and w are 90 degrees. Then

cosh(xy) = cosh(zw) cosh(xw) cosh(yz)

− sinh(xw) sinh(yz).

Here cosh(xy) is a shorthand for cosh(dH(x, y)).

Proof. Applying the laws of sine to triangle wxz gives

sinh(xw)

sin∠(zx, zw)
=

sinh(xz)

sin∠(wx,wz)
= sinh(xz),

so

sin∠(zx, zw) =
sinh(xw)

sinh(xz)
.

On the other hand, applying the law of cosine to triangle
xyz gives

cos∠(zx, zy) =
cosh(zx) cosh(zy)− cosh(xy)

sinh(zx) sinh(zy)
.

Now note that sin∠(zx, zw) = cos∠(zx, zy). Thus,

sinh(xw)

sinh(xz)
=

cosh(zx) cosh(zy)− cosh(xy)

sinh(zx) sinh(zy)
,

which can be simplified to

cosh(zx) cosh(zy)− cosh(xy) = sinh(xw) sinh(zy).

Finally, note that the law of cosine for triangle wxz gives

cosh(wx) cosh(wz)− cosh(xz)

sinh(wx) sinh(wz)
= cos∠(wx,wz) = 0,

so cosh(xz) = cosh(wx) cosh(wz). Plugging this into the
above equation gives

cosh(wx) cosh(wz) cosh(zy)− cosh(xy)

= sinh(xw) sinh(zy),

which can be arranged to get the desired identity.
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Now we are ready to prove a bound on the projected dis-
tances onto a geodesic in H2:

Proposition B.3. Let L be a geodesic in H2. Consider
any x, y ∈ H2 that are on the same side of L and are
of distances at least r from L. Let d = dH(x, y) and
d′ = dH(πG

L (x), πG
L (y)) denote the original and projected

distances of x and y. Then,

sinh(d′/2) ≤ sinh(d/2)

cosh r
.

Proof. Let rx = dH(x, πG
L (x)) and ry = dH(y, πG

L (y)).
Then by Proposition B.2,

cosh d = cosh d′ cosh rx cosh ry − sinh rx sinh ry.

Since cosh a cosh b−sinh a sinh b = cosh(a−b), this gives

cosh d = (cosh d′ − 1) cosh rx cosh ry + cosh(rx − ry).

Subtracting 1 from both sides and using cosh(a) − 1 =
2 sinh2(a/2) gives

2 sinh2(d/2)

=2 sinh2(d′/2) cosh rx cosh ry + 2 sinh2((rx − ry)/2).

Thus,

sinh2(d/2) ≥ sinh2(d′/2) cosh rx cosh ry.

Since rx, ry ≥ r, this implies

sinh2(d/2) ≥ sinh2(d′/2) cosh2 r,

which is equivalent to the desired inequality.

General dimensions Now we show that Proposition B.3
generalizes to higher dimensions.

Theorem B.4. Let M ⊂ Hd be a totally geodesic submani-
fold. Consider any x, y ∈ Hd that are of distances at least
r from M . Let d = dH(x, y) and d′ = dH(πG

M (x), πG
M (y))

denote the original and projected distances of x and y.
Then,

sinh(d′/2) ≤ sinh(d/2)

cosh r
.

Proof. This is clearly true if πG
M (x) = πG

M (y) or if both x
and y belong to M . Thus, without loss of generality, we can
assume that πG

M (x) 6= πG
M (y) and πG

M (x) 6= x.

Let L ⊂M be the geodesic joining πG
M (x) and πG

M (y), so
that dH(x,M) = dH(x, L) and dH(y,M) = dH(y, L). Let
Lx be the half-plane of GH(L ∪ {x}) that is bounded by L
and contains x. Note that if we rotate y around L until it
hits Lx at a point ȳ then

(i) πG
L (ȳ) = πG

L (y),

(ii) dH(ȳ, L) = dH(y, L),
(iii) πH

x,L(y) = ȳ by the “open book interpretation” of
horospherical projections (see the beginning of Ap-
pendix A.2).

Thus, using (i), (ii) and applying Proposition B.3 to L, x, ȳ
gives,

sinh(d′/2) ≤ sinh(dH(x, ȳ)/2)

cosh r
.

By (iii) and Corollary A.12,

dH(x, ȳ) ≤ dH(x, y).

Combining these two inequalities gives the desired inequal-
ity.

Since sinh(t) ≈ t as t → 0, applying Theorem B.4 as
y → x gives
Corollary B.5. Under the geodesic projection πG

M (·), every
tangent vector ~v at x gets at least cosh(dH(x,M)) times
shorter.

This implies the main theorem of this section:
Theorem B.6. Let γ(t) be any smooth path in Hd that stays
a distance at least r away from M . Then

length(πG
M (γ)) ≤ length(γ)

cosh r
.

In particular, length(πG
M (γ)) < length(γ) unless γ is en-

tirely in M .

Proof. Note that the velocity vector of πG
M (γ) is precisely

πG
M (γ̇). Then, by Corollary B.5,

length(πG
M (γ)) =

∫
‖πG

M (γ̇(t))‖Hdt

≤
∫ ‖γ̇(t)‖H

cosh r
dt =

length(γ)

cosh r
.

Since cosh r ≥ 1, this implies

length(πG
M (γ)) ≤ length(γ).

This can only be an equality if the cosh r factor is constantly
1, which means γ stays in M .

When γ is a geodesic, this gives a proof of Proposition 3.5:
Proposition 3.5. Let M ⊂ Hd be a geodesic submanifold.
Then every geodesic segment of distance at least r from
M gets at least cosh(r) times shorter under the geodesic
projection πG

M (·) to M :

length(πG
M (I)) ≤ 1

cosh(r)
length(I).

In particular, the shrink factor grows exponentially as the
segment I moves away from M .
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Sarkar PyTorch
dimension 2 10 50 2 10 50

Balanced Tree 0.088 0.136 0.152 0.097 0.022 0.022
Phylo Tree 0.639 0.639 0.638 0.292 0.286 0.284
Diseases 0.247 0.212 0.210 0.126 0.054 0.055
CS Ph.D. 0.388 0.384 0.380 0.189 0.140 0.139

Table 4: Average distortion for embeddings learned with
different methods. Sarkar refers to combinatorial embed-
dings learned with Sarkar’s construction (Sarkar, 2011; Sala
et al., 2018) while PyTorch refers to embeddings learned
using the PyTorch code from (Gu et al., 2018).

Remark B.7. The above proposition does not imply that if x
and y are of distances at least r from M then dH(x, y) gets
at least cosh r times shorter under the geodesic projection.
This is because the geodesic segment between x and y can
get closer to M in the middle. This is inevitable when x
and y are extremely far apart: For example, if dH(x,M) =
dH(y,M) = r, then the triangle inequality implies

dH(πG
M (x), πG

M (y)) ≥ dH(x, y)− 2r.

Hence, if dH(x, y) � r then the shrink factor cannot be
much smaller than 1. Generally, the rule of thumb is that
geodesic projections shrink distances by a big factor if the
input points are not very far from each other but quite far
from the target submanifold.

C. Additional Experimental Details
We first provide more details about our experimental setup,
including a description of how we implemented different
methods and then provide additional experimental results.

C.1. Datasets

Embedding The datasets we use are structured as graphs
with nodes and edges. We map these graphs to the hy-
perbolic space using different embedding methods. The
datasets from (Sala et al., 2018) can be found in the open-
source implementation7 and we compute hyperbolic em-
beddings for different dimensions using the PyTorch code
from (Gu et al., 2018). We also consider embeddings
computed with Sarkar’s combinatorial construction (Sarkar,
2011) and report the average distortion measure with respect
to the original graph distances in Table 4.

For classification experiments, we follow the experimen-
tal protocol in (Cho et al., 2019) and use the embeddings
provided in the open-source implementation.8

7https://github.com/HazyResearch/
hyperbolics

8https://github.com/hhcho/hyplinear

Centering For simplicity, we center the input embeddings
so that they have a Fréchet mean of zero. This makes compu-
tations of projections more efficient. To do so, we compute
the Fréchet mean of input hyperbolic points using gradient-
descent, and then apply an isometric hyperbolic reflection
that maps the mean to the origin.9

C.2. Implementation Details in the Poincaré Model

Appendix A.4 (in particular, Proposition A.24 and Algo-
rithm 1) describes how geodesic projections and horospher-
ical projections can be computed efficiently in the hyper-
boloid model. However, because the Poincaré ball model
is useful for visualizations and is popular in the ML liter-
ature, here we also give high-level descriptions of simple
alternative methods to compute these projections directly in
the Poincaré model.

This subsection is organized as follows. We first describe
an implementation of geodesic projections in the Poincaré
model (Appendix C.2.1). We then describe our imple-
mentation of all baseline methods, which rely on geodesic
projections (Appendix C.2.2). Finally, we describe how
HOROPCA could also be implemented in the Poincaré
model (Appendix C.2.3).

C.2.1. COMPUTING GEODESIC PROJECTIONS

Recall that geodesic projections map points to a target sub-
manifold such that the projection of a point is the point
on the submanifold that is closest to it. In the Poincaré
model, when the target submanifold goes through the origin,
geodesic projections can be computed efficiently as follows.

Consider any geodesic submanifold P that contains the
origin in the Poincaré Ball: this must be a linear space since
any geodesic that goes through the origin in this model is
a straight-line. The Euclidean reflection with respect to P
is a hyperbolic isometry (i.e. preserves distances). Given
any point x, we can compute its Euclidean (and hyperbolic)
reflection rP (x) with respect to P . Then, the (hyperbolic
geometry) midpoint between x and rP (x) belongs to P and
is the geodesic projection of x onto P . There is a closed-
form expression for this midpoint, which can be derived
using Mobı̈us operations.

C.2.2. IMPLEMENTATION OF BASELINES

We now detail our baseline implementation.

PCA and tPCA We used the Singular Value Decompo-
sition (SVD) PyTorch implementation to implement both
PCA and tPCA. Before using the SVD algorithm, tPCA
maps points to the tangent space at the Frćhet mean using

9This reflection can be computed in closed-form using circle
inversions, see for instance Section 2 in (Sala et al., 2018).

https://github.com/HazyResearch/hyperbolics
https://github.com/HazyResearch/hyperbolics
https://github.com/hhcho/hyplinear
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Balanced Tree Phylo Tree Diseases CS Ph.D.
distortion (↓) variance (↑) distortion (↓) variance (↑) distortion (↓) variance (↑) distortion (↓) variance (↑)

PCA 0.91 1.09 0.99 0.28 0.95 0.75 0.96 1.25
tPCA 0.83 4.01 0.27 62.54 0.64 35.45 0.55 86.10
PGA 0.67 ± 0.013 11.15 ± 0.941 0.08 ± 0.001 1110.30 ± 0.577 0.55 ± 0.006 56.82 ± 0.493 0.25 ± 0.002 270.28 ± 0.487
BSA 0.58 ± 0.018 16.74 ± 1.278 0.08 ± 0.000 1110.05 ± 0.130 0.54 ± 0.008 57.73 ± 0.486 0.25 ± 0.001 270.98 ± 0.363
hMDS 0.12 58.62 0.08 498.05 0.32 568.22 0.18 1241.34
HOROPCA 0.06 ± 0.010 62.72 ± 0.924 0.01 ± 0.000 1190.27 ± 2.974 0.09 ± 0.010 161.32 ± 1.185 0.05 ± 0.004 994.69 ± 321.359

Table 5: Dimensionality reduction results on 10-dimensional combinatorial embeddings (Sarkar’s construction) reduced to
two dimensions. Results are averaged over 5 runs for non-deterministic methods. Best in bold and second best underlined.

the logarithmic map. Having centered the data, this mapping
can be done using the logarithmic map at the origin which
is simply:

logo(x) = tanh-1(||x||) x

||x|| .

PGA and BSA Both PGA and BSA rely on geodesic pro-
jections. When the data is centered, the target submanifolds
in BSA and PGA are simply linear spaces going through
the origin. We can therefore compute the geodesic projec-
tions in these methods using the computations described
above. To test their sensitivity to the base point, we also
implemented two baselines that perturb the base point, by
adding Gaussian noise.

hMDS To implement hMDS, we simply implemented the
formulas in the original paper (see Algorithm 2 in (Sala
et al., 2018)).

hAE For hyperbolic autoencoders, we used two fully-
connected layers following the approach of (Ganea et al.,
2018). One layer was used for encoding into the reduced
number of dimensions, and one layer was used for decoding
into the original number of dimensions. We trained these
networks by minimizing the reconstruction error, and used
the intermediate hidden representations as low-dimensional
representations.

C.2.3. HOROPCA IMPLEMENTATION

The definition of horospherical projections onto K > 1 di-
rections involves taking the intersection of K horospheres
S(p1, x) ∩ · · · ∩ S(pK , x) (Section 3.2.2). Although Ap-
pendix A.4 shows that horospherical projections can be
computed efficiently in the hyperboloid model without ac-
tually computing these intersections, it is also possible to
implement HOROPCA by directly computing these inter-
sections. This can be done in a simple iterative fashion.

For example, in the Poincaré ball, horospheres can be repre-
sented as Euclidean spheres. Note that the intersection of
two d-dimensional Euclidean hyperspheres S(p0, r0) and
S(p1, r1) is a d− 1-dimensional hypersphere which can be
represented by a center, a radius, and d − 1-dimensional
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Average distortion
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Figure 6: Histogram of average distortion computed for
the projections of 1000 random hyperbolic points onto 100
random directions. Best in bold and second best underlined.

subspace. The radius is uniquely determined by the radii
of the original spheres r0, r1 and the distance between their
centers ‖p0 − p1‖ and analyzing the 2-dimensional case,
for which there is a simple closed formula. The center can
similarly be found as a weighted combination of the centers
p0, p1 based on the formula for the 2D case. Lastly, this
d− 1-dimensional subspace can be represented by noting
it is the orthogonal space to the vector p1 − p0. Thus the
intersection of these d-dimensional hyperspheres can be
easily computed, and this process can be iterated to find the
intersection of K spheres S(pi, ri).

C.3. Additional Experimental Results

C.3.1. DISTORTION ANALYSIS

We first analyze the average distortion incurred by horo-
spherical and geodesic projections on a toy example with
synthetically-generated data. We generate 1000 points the
Poincaré disk by sampling tangent vectors from a multi-
variate Gaussian, and mapping them to the disk using the
exponential map at the origin. We then sample 100 random
ideal points (directions) in the disk, and consider the cor-
responding straight-line geodesics pointing towards these
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directions. We project the datapoints onto these geodesics
and measure the average distortion from before and after pro-
jection and visualize the results in a histogram (Fig. 6). As
we can see, Horospherical projections achieve much lower
distortion than geodesic projections on average, suggesting
that these projections may better preserve information such
as distances in higher-dimensional datasets.

C.3.2. DIMENSIONALITY REDUCTION RESULTS

Sarkar embeddings Table 2 showed dimensionality re-
duction results for embeddings learned with optimization.
Here, we consider the same reduction experiment on combi-
natorial embeddings and report the results in Table 5. The
results confirm the trends observed in Table 2: HOROPCA
outperforms baseline methods, with significant improve-
ments on distance preservation.

More dimension/component configurations We con-
sider the reduction of 50-dimensional PyTorch embeddings
of the Diseases and CS Ph.D. datasets. We plot average dis-
tortion and explained Fréchet variance for different number
of components in Fig. 7. HOROPCA significantly outper-
forms all previous generalizations of PCA. HOROPCA also
outperforms hMDS, which is a competitive baseline, but not
a PCA method as discussed before.
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(b) Diseases explained Fréchet variance.
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(c) CS Ph.D. average distortion.
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(d) CS Ph.D. explained Fréchet variance.

Figure 7: Average distortion and explained Fréchet variance for different numbers of principal components.
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(a) PCA (average distortion: 0.942)
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(b) PGA (average distortion: 0.534)
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(c) BSA (average distortion: 0.532)
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(d) HOROPCA (average distortion: 0.078)

Figure 8: Visualization of embeddings of the WordNet mammal subtree computed by reducing 10-dimensional Poincaré embed-
dings (Nickel & Kiela, 2017).


