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Abstract
This paper studies Principal Component Anal-
ysis (PCA) for data lying in hyperbolic spaces.
Given directions, PCA relies on: (1) a parameteri-
zation of subspaces spanned by these directions,
(2) a method of projection onto subspaces that
preserves information in these directions, and (3)
an objective to optimize, namely the variance ex-
plained by projections. We generalize each of
these concepts to the hyperbolic space and pro-
pose HOROPCA, a method for hyperbolic dimen-
sionality reduction. By focusing on the core prob-
lem of extracting principal directions, HOROPCA
theoretically better preserves information in the
original data such as distances, compared to pre-
vious generalizations of PCA. Empirically, we
validate that HOROPCA outperforms existing di-
mensionality reduction methods, significantly re-
ducing error in distance preservation. As a data
whitening method, it improves downstream clas-
sification by up to 3.9% compared to methods
that don’t use whitening. Finally, we show that
HOROPCA can be used to visualize hyperbolic
data in two dimensions.

1. Introduction
Learning representations of data in hyperbolic spaces has
recently attracted important interest in Machine Learning
(ML) (Nickel & Kiela, 2017; Sala et al., 2018) due to their
ability to represent hierarchical data with high fidelity in low
dimensions (Sarkar, 2011). Many real-world datasets ex-
hibit hierarchical structures, and hyperbolic embeddings
have led to state-of-the-art results in applications such
as question answering (Tay et al., 2018), node classifica-
tion (Chami et al., 2019), link prediction (Balazevic et al.,
2019; Chami et al., 2020b) and word embeddings (Tifrea
et al., 2018). These developments motivate the need for
algorithms that operate in hyperbolic spaces such as nearest
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neighbor search (Krauthgamer & Lee, 2006; Wu & Charikar,
2020), hierarchical clustering (Monath et al., 2019; Chami
et al., 2020a), or dimensionality reduction which is the focus
of this work.

Euclidean Principal Component Analysis (PCA) is a fun-
damental dimensionality reduction technique which seeks
directions that best explain the original data. PCA is an
important primitive in data analysis and has many important
uses such as (i) dimensionality reduction (e.g. for mem-
ory efficiency), (ii) data whitening and pre-processing for
downstream tasks, and (iii) data visualization.

Here, we seek a generalization of PCA to hyperbolic geom-
etry. Given a core notion of directions, PCA involves the
following ingredients:

1. A nested sequence of affine subspaces (flags) spanned
by a set of directions.

2. A projection method which maps points to these sub-
spaces while preserving information (e.g. dot-product)
along each direction.

3. A variance objective to help choose the best directions.

The PCA algorithm is then defined as combining these prim-
itives: given a dataset, it chooses directions that maximize
the variance of projections onto a subspace spanned by
those directions, so that the resulting sequence of directions
optimally explains the data. Crucially, the algorithm only de-
pends on the directions of the affine subspaces and not their
locations in space (Fig. 1a). Thus, in practice we can assume
that they all go through the origin (and hence become linear
subspaces), which greatly simplifies computations.

Generalizing PCA to manifolds is a challenging problem
that has been studied for decades, starting with Principal
Geodesic Analysis (PGA) (Fletcher et al., 2004) which pa-
rameterizes subspaces using tangent vectors at the mean of
the data, and maximizes distances from projections to the
mean to find optimal directions. More recently, the Barycen-
tric Subspace Analysis (BSA) method (Pennec, 2018) was
introduced. It finds a more general parameterization of
nested sequences of submanifolds by minimizing the unex-
plained variance. However, both PGA and BSA map points
onto submanifolds using closest-point or geodesic projec-
tions, which do not attempt to preserve information along
principal directions; for example, they cannot isometrically
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(a) Euclidean projections. (b) Hyperbolic geodesic projections. (c) Hyperbolic horospherical projections.

Figure 1: Given datapoints (black dots), Euclidean and horospherical projections preserve distance information across
different subspaces (black lines) pointing towards the same direction or point at infinity, while geodesic projections do not.
(a): Distances between points, and therefore the explained variance, are invariant to translations along orthogonal directions
(red lines). (b): Geodesic projections do not preserve this property: distances between green projections are not the same
as distances between blue projections. (c): Horospherical projections project data by sliding it along the complementary
direction defined by horospheres (red circles) and there exist an isometric mapping between the blue and green projections.

preserve hyperbolic distances between any points and shrink
all path lengths by an exponential factor (Proposition 3.5).

Fundamentally, all previous methods only look for sub-
spaces rather than directions that explain the data, and can
perhaps be better understood as principal subspace analysis
rather than principal component analysis. Like with PCA,
they assume that all optimal subspaces go through a chosen
base point, but unlike in the Euclidean setting, this assump-
tion is now unjustified: “translating” the submanifolds does
not preserve distances between projections (Fig. 1b). Fur-
thermore, the dependence on the base point is sensitive: as
noted above, the shrink factor of the projection depends
exponentially on the distances between the subspaces and
the data. Thus, having to choose a base point increases the
number of necessary parameters and reduces stability.

Here, we propose HOROPCA, a dimensionality reduction
method for data defined in hyperbolic spaces which better
preserves the properties of Euclidean PCA. We show how to
interpret directions using points at infinity (or ideal points),
which then allows us to generalize core properties of PCA:

1. To generalize the notion of affine subspace, we propose
parameterizing geodesic subspaces as the sets spanned
by these ideal points. This yields multiple viable nested
subspaces (flags) (Section 3.1).

2. To maximally preserve information in the original data,
we propose a new projection method that uses horo-
spheres, a generalization of complementary directions for
hyperbolic space. In contrast with geodesic projections,
these projections exactly preserve information – specif-
ically, distances to ideal points – along each direction.
Consequently, they preserve distances between points
much better than geodesic projections (Section 3.2).

3. Finally, we introduce a simple generalization of ex-
plained variance that is a function of distances only

and can be computed in hyperbolic space (Section 3.3).

Combining these notions, we propose an algorithm that
seeks a sequence of principal components that best explain
variations in hyperbolic data. We show that this formula-
tion retains the location-independence property of PCA:
translating target submanifolds along orthogonal directions
(horospheres) preserves projected distances (Fig. 1c). In
particular, the algorithm’s objective depends only on the
directions and not locations of the submanifolds (Section 4).

We empirically validate HOROPCA on real datasets and for
three standard PCA applications. First, (i) we show that it
yields much lower distortion and higher explained variance
than existing methods, reducing average distortion by up to
77%. Second, (ii) we validate that it can be used for data
pre-processing, improving downstream classification by up
to 3.8% in Average Precision score compared to methods
that don’t use whitening. Finally, (iii) we show that the
low-dimensional representations learned by HOROPCA can
be visualized to qualitatively interpret hyperbolic data.

2. Background
We first review some basic notions from hyperbolic ge-
ometry; a more in-depth treatment is available in standard
texts (Lee, 2013). We discuss the generalization of coor-
dinates and directions in hyperbolic space and then review
geodesic projections. We finally describe generalizations of
the notion of mean and variance to non-Euclidean spaces.

2.1. The Poincaré Model of Hyperbolic Space

Hyperbolic geometry is a Riemannian geometry with con-
stant negative curvature −1, where curvature measures de-
viation from flat Euclidean geometry. For easier visualiza-
tions, we work with the d-dimensional Poincaré model of
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Euclidean Hyperbolic

Component Unit vector w Ideal point p
Coordinate Dot product x · w Busemann func. Bp(x)

Table 1: Analogies of components and their corresponding
coordinates, in both Euclidean and hyperbolic space.

hyperbolic space: Hd = {x ∈ Rd : ‖x‖ < 1}, where ‖ · ‖ is
the Euclidean norm. In this model, the Riemannian distance
can be computed in cartesian coordinates by:

dH(x, y) = cosh-1

(
1 + 2

‖x− y‖2
(1− ‖x‖2)(1− ‖y‖2)

)
. (1)

Geodesics Shortest paths in hyperbolic space are called
geodesics. In the Poincaré model, they are represented by
straight segments going through the origin and circular arcs
perpendicular to the boundary of the unit ball (Fig. 2).

Geodesic submanifolds A submanifold M ⊂ Hd is
called (totally) geodesic if for every x, y ∈M , the geodesic
line connecting x and y belongs to M . This generalizes
the notion of affine subspaces in Euclidean spaces. In the
Poincaré model, geodesic submanifolds are represented by
linear subspaces going through the origin and spherical caps
perpendicular to the boundary of the unit ball.

2.2. Directions in Hyperbolic space

The notions of directions, and coordinates in a given direc-
tion can be generalized to hyperbolic spaces as follows.

Ideal points As with parallel rays in Euclidean spaces,
geodesic rays in Hd that stay close to each other can be
viewed as sharing a common endpoint at infinity, also called
an ideal point. Intuitively, ideal points represent directions
along which points in Hd can move toward infinity. The
set of ideal points Sd−1∞ , called the boundary at infinity of
Hd, is represented by the unit sphere Sd−1∞ = {‖x‖ = 1}
in the Poincaré model. We abuse notations and say that a
geodesic submanifold M ⊂ Hd contains an ideal point p if
the boundary of M in Sd−1∞ contains p.

Busemann coordinates In Euclidean spaces, each direc-
tion can be represented by a unit vector w. The coordinate
of a point x in the direction of w is simply the dot product
w · x. In hyperbolic geometry, directions can be repre-
sented by ideal points but dot products are not well-defined.
Instead, we take a ray-based perspective: note that in Eu-
clidean spaces, if we shoot a ray in the direction of w from
the origin, the coordinate w ·x can be viewed as the normal-
ized distance to infinity in the direction of that ray. In other
words, as a point y = tw, (t > 0) moves toward infinity in
the direction of w:

w · x = lim
t→∞

(d(0, tw)− d(x, tw)) .

This approach generalizes to other geometries: given a unit-
speed geodesic ray γ(t), the Busemann function Bγ(x) of
γ is defined as:1

Bγ(x) = lim
t→∞

(d(x, γ(t))− t) .

Up to an additive constant, this function only depends on
the endpoint at infinity of the geodesic ray, and not the
starting point γ(0). Thus, given an ideal point p, we define
the Busemann function Bp(x) of p to be the Busemann
function of the geodesic ray that starts from the origin of the
unit ball model and has endpoint p. Intuitively, it represents
the coordinates of x in the direction of p. In the Poincaré
model, there is a closed formula:

Bp(x) = ln
‖p− x‖2
1− ‖x‖2 .

Horospheres The level sets of Busemann functionsBp(x)
are called horospheres centered at p. In this sense, they
resemble spheres, which are level sets of distance func-
tions. However, intrinsically as Riemannian manifolds,
horospheres have curvature zero and thus also exhibit many
properties of planes in Euclidean spaces.

Every geodesic with endpoint p is orthogonal to every horo-
sphere centered at p. Given two horospheres with the same
center, every orthogonal geodesic segment connecting them
has the same length. In this sense, concentric horospheres re-
semble parallel planes in Euclidean spaces. In the Poincaré
model, horospheres are Euclidean spheres that touch the
boundary sphere Sd−1∞ at their ideal centers (Fig. 2). Given
an ideal point p and a point x in Hd, there is a unique horo-
sphere S(p, x) passing through x and centered at p.

2.3. Geodesic Projections

PCA uses orthogonal projections to project data onto sub-
spaces. Orthogonal projections are usually generalized to
other geometries as closest-point projections. Given a tar-
get submanifold M , each point x in the ambient space is
mapped to the closest-point to it in M :

πG
M (x) = argmin

y∈M
dM (x, y).

One could view πG
M (·) as the map that pushes each point x

along an orthogonal geodesic until it hitsM . For this reason,
it is also called geodesic projection. In the Poincaré model,
these can be computed in closed-form (see Appendix C).

2.4. Manifold Statistics

PCA relies on data statistics which do not generalize easily
to hyperbolic geometry. One approach to generalize the

1Note that compared to the above formula, the sign convention
is flipped due to historical reasons.
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Ideal Point

Ideal Point

Figure 2: Hyperbolic geodesics (black lines) going through
an ideal point (in red), and horospheres (red circles) centered
at that same ideal point. The hyperbolic lengths of geodesic
segments between two horospheres are equal.

arithmetic mean is to notice that it is the minimizer of the
sum of squared distances to the inputs. Motivated by this,
the Fréchet mean (Fréchet, 1948) of a set of points S in a
Riemannian manifold (M,dM ) is defined as:

µM (S) := argmin
y∈M

∑
x∈S

dM (x, y)2.

This definition only depends on the intrinsic distance of the
manifold. For hyperbolic spaces, since squared distance
functions are convex, µ(S) always exists and is unique.2

Analogously, the Fréchet variance is defined as:

σ2
M (S) :=

1

|S|
N∑
x∈S

dM (x, µ(S))2. (2)

We refer to (Huckemann & Eltzner, 2020) for a discussion
on different intrinsic statistics in non-Euclidean spaces, and
a study of their asymptotic properties.

3. Generalizing PCA to the Hyperbolic Space
We now describe our approach to generalize PCA to hyper-
bolic spaces. The starting point of HOROPCA is to pick
1 ≤ K ≤ d ideal points p1, . . . , pK ∈ Sd−1∞ to represent K
directions in hyperbolic spaces (Section 2.2). Then, we gen-
eralize the core concepts of Euclidean PCA. In Section 3.1,
we show how to generalize flags. In Section 3.2, we show
how to project points onto the lower-dimensional submani-
fold spanned by a given set of directions, while preserving
information along each direction. In Section 3.3, we intro-
ducing a variance objective to optimize and show that it is a
function of the directions only.

3.1. Hyperbolic Flags

In Euclidean spaces, one can take the linear spans of more
and more components to define a nested sequence of linear

2For more general geometries, existence and uniqueness hold
if the data is well-localized (Kendall, 1990).

subspaces, called a flag. To generalize this to hyperbolic
spaces, we first need to adapt the notion of linear/affine
spans. Recall that geodesic submanifolds are generalizations
of affine subspaces in Euclidean spaces.
Definition 3.1. Given a set of points S (that could be inside
Hd or on the boundary sphere Sd−1∞ ), the smallest geodesic
submanifold of Hd that contains S is called the geodesic
hull of S and denoted by GH(S).

Thus, given K ideal points p1, p2, . . . , pK and a base point
b ∈ Hd, we can define a nested sequence of geodesic
submanifolds GH(b, p1) ⊂ GH(b, p1, p2) ⊂ · · · ⊂
GH(b, p1, . . . , pK). This will be our notion of flags.
Remark 3.2. The base point b is only needed here for tech-
nical reasons, just like an origin o is needed to define linear
spans in Euclidean spaces. We will see next that it does not
affect the projection results or objectives (Theorem 4.1).
Remark 3.3. We assume that none of b, p1, . . . , pK are in
the geodesic hull of the other K points. This is analogous
to being linearly independent in Euclidean spaces.

3.2. Projections via Horospheres

In Euclidean PCA, points are projected to the subspaces
spanned by the given directions in a way that preserves
coordinates in those directions. We seek a projection method
in hyperbolic spaces with a similar property.

Recall that coordinates are generalized by Busemann func-
tions (Table 1), and that horospheres are level sets of Buse-
mann functions. Thus, we propose a projection that pre-
serves coordinates by moving points along horospheres. It
turns out that this projection method also preserves distances
better than the traditional geodesic projection.

As a toy example, we first show how the projection is defined
in the K = 1 case (i.e. projecting onto a geodesic) and why
it tends to preserve distances well. We will then show how
to use K ≥ 1 ideal points simultaneously.

3.2.1. PROJECTING ONTO K = 1 DIRECTIONS

For K = 1, we have one ideal point p and base point b, and
the geodesic hull GH(b, p) is just a geodesic γ. Our goal is
to map every x ∈ Hd to a point πH

b,p(x) on γ that has the
same Busemann coordinate in the direction of p:

Bp(x) = Bp(π
H
b,p(x)).

Since level sets of Bp(x) are horospheres centered at p,
the above equation simply says that πH

b,p(x) belongs to the
horosphere S(p, x) centered at p and passing through x.
Thus, we define:

πH
b,p(x) := γ ∩ S(p, x). (3)

Another important property that πH
b,p(·) shares with orthog-

onal projections in Euclidean spaces is that it preserves
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Figure 3: x′, y′ are horospherical (green) projections of x, y.
Proposition 3.4 shows dH(x′, y′) = dH(x, y). The distance
between the two geodesic (blue) projections is smaller.

distances along a direction – lengths of geodesic segments
that point to p are preserved after projection (Fig. 3):
Proposition 3.4. For any x ∈ Hd, if y ∈ GH(x, p) then:

dH(πH
b,p(x), πH

b,p(y)) = dH(x, y).

Proof. This follows from the remark in Section 2.2 about
horospheres: every geodesic going through p is orthogonal
to every horosphere centered at p, and every orthogonal
geodesic segment connecting concentric horospheres has
the same length (Fig. 2). In this case, the segments from
x to y and from πH

b,p(x) to πH
b,p(y) are two such segments,

connecting S(p, x) and S(p, y).

3.2.2. PROJECTING ONTO K > 1 DIRECTIONS

We now generalize the above construction to projections
onto higher-dimensional submanifolds. We describe the
main ideas here; Appendix A contains more details, includ-
ing an illustration in the case K = 2 (Fig. 5).

Fix a base point b ∈ Hd and K > 1 ideal points
{p1, . . . , pK}. We want to define a map from Hd to
M := GH(b, p1, . . . , pK) that preserves the Busemann co-
ordinates in the directions of p1, . . . , pK , i.e.:

Bpj (x) = Bpj
(
πH
b,p1,...,pK (x)

)
for every j = 1, . . . ,K.

As before, the idea is to take the intersection with the horo-
spheres centered at pj’s and passing through x:

πH
b,p1,...,pK : Hd →M

x 7→M ∩ S(p1, x) ∩ · · · ∩ S(pK , x).

It turns out that this intersection generally consists of two
points instead of one. When that happens, one of them
will be strictly closer to the base point b, and we define
πH
b,p1,...,pK

(x) to be that point.

As with Proposition 3.4, πH
b,p1,...,pK

(·) preserves distances
along K-dimensional manifolds (Corollary A.10). In con-
trast, geodesic projections in hyperbolic spaces never pre-
serve distances (except between points already in the target):

Proposition 3.5. Let M ⊂ Hd be a geodesic submanifold.
Then every geodesic segment of distance at least r from
M gets at least cosh(r) times shorter under the geodesic
projection πG

M (·) to M :

length(πG
M (I)) ≤ 1

cosh(r)
length(I).

In particular, the shrink factor grows exponentially as the
segment I moves away from M .

The proof is in Appendix B.

Computation Interestingly, horosphere projections can
be computed without actually computing the horospheres.
The key idea is that if we let P = GH(p1, . . . , pK) be the
geodesic hull of the horospheres’ centers, then the intersec-
tion S(p1, x)∩· · ·∩S(pK , x) is simply the orbit of x under
the rotations around P . (This is true for the same reason that
spheres whose centers lie on the same axis must intersect
along a circle around that axis). Thus, πH

b,p1,...,pK
(·) can be

viewed as the map that rotates x around until it hits M . It
follows that it can be computed by:

1. Find the geodesic projection c = πG
P (x) of x onto P .

2. Find the geodesic α on M that is orthogonal to P at c.
3. Among the two points on α whose distance to c equals
dH(x, c), returns the one closer to b.

The detailed computations and proof that this recovers horo-
spherical projections are provided in Appendix A.

3.3. Intrinsic Variance Objective

In Euclidean PCA, directions are chosen to maximally pre-
serve information from the original data. In particular, PCA
chooses directions that maximize the Euclidean variance of
projected data. To generalize this to hyperbolic geometry,
we define an analog of variance that is intrinsic, i.e. depen-
dent only on the distances between data points. As we will
see in Section 4, having an intrinsic objective helps make
our algorithm location (or base point) independent.

The usual notion of Euclidean variance is the squared sum
of distances to the mean of the projected datapoints. Gen-
eralizing this is challenging because non-Euclidean spaces
do not have a canonical choice of mean. Previous works
have generalized variance either by using the unexplained
variance or Fréchet variance. The former is the squared
sum of residual distances to the projections, and thus avoids
computing a mean. However, it is not intrinsic. The latter
is intrinsic (Fletcher et al., 2004) but involves finding the
Fréchet mean, which is not necessarily a canonical notion
of mean and can only be computed by gradient descent.

Our approach uses the observation that in Euclidean space:

σ2(S) =
1

n

∑
x∈S
‖x− µ(S)‖2 =

1

n2

∑
x,y∈S

‖x− y‖2.
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Thus, we propose the following generalization of variance:

σ2
H(S) =

1

n2

∑
x,y∈S

dH(x, y)2. (4)

This function agrees with the usual variance in Euclidean
space, while being a function of distances only. Thus it is
well defined in non-Euclidean space, is easily computed,
and, as we will show next, has the desired invariance due to
isometry properties of horospherical projections.

4. HOROPCA
Section 3 formulated several simple primitives – including
directions, flags, projections, and variance – in a way that
is generalizable to hyperbolic geometry. We now revisit
standard PCA, showing how it has a simple definition that
combines these primitives using optimization. This directly
leads to the full HOROPCA algorithm by simply using the
hyperbolic analogs of these primitives.

Euclidean PCA Given a dataset S and a target dimen-
sion K, Euclidean PCA greedily finds a sequence of prin-
cipal components p1, . . . , pK that maximizes the variance
of orthogonal projections πE

o,p1,...,pk
(·) onto the linear 3

subspaces spanned by these components:

p1 = argmax
||p||=1

σ2(πE
o,p(S))

and pk+1 = argmax
||p||=1

σ2(πE
o,p1,...,pk,p

(S)).

Thus, for each 1 ≤ k ≤ K, {p1, . . . , pk} is the optimal set
of directions of dimension k.

HOROPCA Because we have generalized the notions of
flag, projection, and variance to hyperbolic geometry, the
HOROPCA algorithm can be defined in the same fashion.
Given a dataset S in Hd and a base point b ∈ Hd, we seek
a sequence of K directions that maximizes the variance of
horosphere-projected data:

p1 = argmax
p∈Sd−1
∞

σ2
H(πH

b,p(S))

and pk+1 = argmax
p∈Sd−1
∞

σ2
H(πH

b,p1,...,pk,p
(S)).

(5)

Base point independence Finally, we show that algo-
rithm (5) always returns the same results regardless of the
choice of a base point b ∈ Hd. Since our variance objective
only depends on the distances between projected data points,
it suffices to show that these distances do not depend on b.

3Here o denotes the origin, and πE
o,p1,...,pk (·) denotes the pro-

jection onto the affine span of {o, p1, . . . , pk}, which is equivalent
to the linear span of {p1, . . . , pk}.

Theorem 4.1. For any b, b′ and any x, y ∈ Hd, the two
projected distances dH(πH

b,p1,...,pK
(x), πH

b,p1,...,pK
(y)) and

dH(πH
b′,p1,...,pK

(x), πH
b′,p1,...,pK

(y)) are equal.

The proof is included in Appendix A. Thus, HOROPCA
retains the location-independence property of Euclidean
PCA: only the directions of target subspaces matter; their
exact locations do not (Fig. 1). Therefore, just like in the
Euclidean setting, we can assume without loss of generality
that b is the origin o of the Poincaré model. This:

1. alleviates the need to use d extra parameters to search
for an appropriate base point, and

2. simplifies computations, since in the Poincaré model,
geodesics submanifolds that go through the origin are
simply linear subspaces, which are easier to deal with.

After computing the principal directions which span the tar-
get M = GH(o, p1, . . . , pK), the reduced dimensionality
data can be found by applying an Euclidean rotation that
sendsM to HK , which also preserves hyperbolic distances.

5. Experiments
We now validate the empirical benefits of HOROPCA
on three PCA uses. First, for dimensionality reduction,
HOROPCA preserves information (distances and variance)
better than previous methods which are sensitive to base
point choices and distort distances more (Section 5.2). Next,
we validate that our notion of hyperbolic coordinates cap-
tures variation in the data and can be used for whitening
in classification tasks (Section 5.3). Finally, we visualize
the representations learned by HOROPCA in two dimen-
sions (Section 5.4).

5.1. Experimental Setup

Baselines We compare HOROPCA to several dimension-
ality reduction methods, including: (1) Euclidean PCA,
which should perform poorly on hyperbolic data, (2) Ex-
act PGA, (3) Tangent PCA (tPCA), which approximates
PGA by moving the data in the tangent space of the Fréchet
mean and then solves Euclidean PCA, (4) BSA, (5) Hy-
perbolic Multi-dimensional Scaling (hMDS) (Sala et al.,
2018), which takes a distance matrix as input and recov-
ers a configuration of points that best approximates these
distances, (6) Hyperbolic autoencoder (hAE) trained with
gradient descent (Ganea et al., 2018; Hinton & Salakhutdi-
nov, 2006). To demonstrate their dependence on base points,
we also include two baselines that perturb the base point in
PGA and BSA. We open-source our implementation4 and
refer to Appendix C for implementation details on how we
implemented all baselines and HOROPCA.

4https://github.com/HazyResearch/HoroPCA

https://github.com/HazyResearch/HoroPCA
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Balanced Tree Phylo Tree Diseases CS Ph.D.
distortion (↓) variance (↑) distortion (↓) variance (↑) distortion (↓) variance (↑) distortion (↓) variance (↑)

PCA 0.84 0.34 0.94 0.40 0.90 0.26 0.84 1.68
tPCA 0.70 1.16 0.63 14.34 0.63 3.92 0.56 11.09
PGA 0.63 ± 0.07 2.11 ± 0.47 0.64 ± 0.01 15.29 ± 0.51 0.66 ± 0.02 3.16 ± 0.39 0.73 ± 0.02 6.14 ± 0.60
PGA-Noise 0.87 ± 0.08 0.29 ± 0.30 0.64 ± 0.02 15.08 ± 0.77 0.88 ± 0.04 0.53 ± 0.19 0.79 ± 0.03 4.58 ± 0.64
BSA 0.50 ± 0.00 3.02 ± 0.01 0.61 ± 0.03 18.60 ± 1.16 0.52 ± 0.02 5.95 ± 0.25 0.70 ± 0.01 8.15 ± 0.96
BSA-Noise 0.74 ± 0.12 1.06 ± 0.67 0.68 ± 0.02 13.71 ± 0.72 0.80 ± 0.11 1.62 ± 1.30 0.79 ± 0.02 4.41 ± 0.59
hAE 0.26 ± 0.00 6.91 ± 0.00 0.32 ± 0.04 45.87 ± 3.52 0.18 ± 0.00 14.23 ± 0.06 0.37 ± 0.02 22.12 ± 2.47
hMDS 0.22 7.54 0.74 40.51 0.21 15.05 0.83 19.93
HOROPCA 0.19 ± 0.00 7.15 ± 0.00 0.13 ± 0.01 69.16 ± 1.96 0.15 ± 0.01 15.46 ± 0.19 0.16 ± 0.02 36.79 ± 0.70

Table 2: Dimensionality reduction results on 10-dimensional hyperbolic embeddings reduced to two dimensions. Results
are averaged over 5 runs for non-deterministic methods. Best in bold and second best underlined.

Datasets For dimensionality reduction experiments, we
consider standard hierarchical datasets previously used to
evaluate the benefits of hyperbolic embeddings. More
specifically, we use the datasets in (Sala et al., 2018) includ-
ing a fully balanced tree, a phylogenetic tree, a biological
graph comprising of diseases’ relationships and a graph of
Computer Science (CS) Ph.D. advisor-advisee relationships.
These datasets have respectively 40, 344, 516 and 1025
nodes, and we use the code from (Gu et al., 2018) to embed
them in the Poincaré ball. For data whitening experiments,
we reproduce the experimental setup from (Cho et al., 2019)
and use the Polbooks, Football and Polblogs datasets which
have 105, 115 and 1224 nodes each. These real-world net-
works are embedded in two-dimensions using Chamberlain
et al. (2017)’s embedding method.

Evaluation metrics To measure distance-preservation af-
ter projection, we use average distortion. If π(·) denotes a
mapping from high- to low-dimensional representations, the
average distortion of a dataset S is computed as:

1(|S|
2

) ∑
x6=y∈S

|dH(π(x), π(y))− dH(x, y)|
dH(x, y)

.

We also measure the Fréchet variance in Eq. (2), which is the
analogue of the objective that Euclidean PCA optimizes5.
Note that the mean in Eq. (2) cannot be computed in closed-
form and we therefore compute it with gradient-descent.

5.2. Dimensionality Reduction

We report metrics for the reduction of 10-dimensional em-
beddings to two dimensions in Table 2, and refer to Ap-
pendix C for additional results, such as more component
and dimension configurations. All results suggest that
HOROPCA better preserves information contained in the
high-dimensional representations.

On distance preservation, HOROPCA outperforms all meth-

5All mentioned PCA methods, including HOROPCA, optimize
for some forms of variance but not Fréchet variance or distortion.

ods with significant improvements on larger datasets. This
supports our theoretical result that horospherical projections
better preserve distances than geodesic projections. Further-
more, HOROPCA also outperforms existing methods on
the explained Fréchet variance metric on all but one dataset.
This suggests that our distance-based formulation of the
variance (Eq. (4)) effectively captures variations in the data.
We also note that as expected, both PGA and BSA are sensi-
tive to base point choices: adding Gaussian noise to the base
point leads to significant drops in performance. In contrast,
HOROPCA is by construction base-point independent.

5.3. Hyperbolic Data Whitening

An important use of PCA is for data whitening, as it al-
lows practitioners to remove noise and decorrelate the data,
which can improve downstream tasks such as regression
or classification. Recall that standard PCA data whitening
consists of (i) finding principal directions that explain the
data, (ii) calculating the coordinates of each data point along
these directions, and (iii) normalizing the coordinates for
each direction (to have zero mean and unit variance).

Because of the close analogy between HOROPCA and Eu-
clidean PCA, these steps can easily map to the hyperbolic
case, where we (i) use HOROPCA to find principal direc-
tions (ideal points), (ii) calculate the Busemann coordinates
along these directions, and (iii) normalize them as Euclidean
coordinates. Note that this yields Euclidean representations,
which allow leveraging powerful tools developed specifi-
cally for learning on Euclidean data.

We evaluate the benefit of this whitening step on a simple
classification task. We compare to directly classifying the
data with Euclidean Support Vector Machine (eSVM) or
its hyperbolic counterpart (hSVM), and also to whitening
with tPCA. Note that most baselines in Section 5.1 are
incompatible with data whitening: hMDS does not learn
a transformation that can be applied to unseen test data,
while methods like PGA and BSA do not naturally return
Euclidean coordinates for us to normalize. To obtain another
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Polbooks Football Polblogs

eSVM 69.9± 1.2 20.7 ± 3.0 92.3 ± 1.5
hSVM 68.3 ± 0.6 20.9 ± 2.5 92.2 ± 1.6
tPCA+eSVM 68.5 ± 0.9 21.2 ± 2.2 92.4 ± 1.5
PGA+eSVM 64.4 ± 4.1 21.7 ± 2.2 82.3 ± 1.2
HOROPCA+eSVM 72.2 ± 2.8 25.0 ± 1.0 92.8 ± 0.9

Table 3: Data whitening experiments. We report classifi-
cation accuracy averaged over 5 embedding configurations.
Best in bold and second best underlined.

baseline, we use a logarithmic map to extract Euclidean
coordinates from PGA.

We reproduce the experimental setup from (Cho et al., 2019)
who split the datasets in 50% train and 50% test sets, run
classification on 2-dimensional embeddings and average re-
sults over 5 different embedding configurations as was done
in the original paper (Table 3). 6 HOROPCA whitening
improves downstream classification on all datasets com-
pared to eSVM and hSVM or tPCA and PGA whitening.
This suggests that HOROPCA can be leveraged for hyper-
bolic data whitening. Further, this confirms that Busemann
coordinates do capture variations in the original data.

5.4. Visualizations

When learning embeddings for ML applications (e.g. clas-
sification), increasing the dimensionality can significantly
improve the embeddings’ quality. To effectively work with
these higher-dimensional embeddings, it is useful to visu-
alize their structure and organization, which often requires
reducing their representations to two or three dimensions.
Here, we consider embeddings of the mammals subtree
of the Wordnet noun hierarchy learned with the algorithm
from (Nickel & Kiela, 2017). We reduce embeddings to two
dimensions using PGA and HOROPCA and show the results
in Fig. 4. We also include more visualizations for PCA and
BSA in Fig. 8 in the Appendix. As we can see, the reduced
representations obtained with HOROPCA yield better vi-
sualizations. For instance, we can see some hierarchical
patterns such as “feline hypernym of cat” or “cat hypernym
of burmese cat”. These patterns are harder to visualize for
other methods, since these do not preserve distances as well
as HOROPCA, e.g. PGA has 0.534 average distortion on
this dataset compared to 0.078 for HOROPCA.

6. Related Work
PCA methods in Riemannian manifolds We first review
some approaches to extending PCA to general Riemannian
geometries, of which hyperbolic geometry is a special case.

6Note that the results slightly differ from (Cho et al., 2019)
which could be because of different implementations or data splits.

For a more detailed discussion, see Pennec (2018). The
simplest such approach is tangent PCA (tPCA), which maps
the data to the tangent space at the Fréchet mean µ using the
logarithm map, then applies Euclidean PCA. A similar ap-
proach, Principal Geodesic Analysis (PGA) (Fletcher et al.,
2004), seeks geodesic subspaces at µ that minimize the sum
of squared Riemannian distances to the data. Compared to
tPCA, PGA searches through the same subspaces but uses a
more natural loss function.

Both PGA and tPCA project on submanifolds that go
through the Fréchet mean. When the data is not well-
centered, this may be sub-optimal, and Geodesic PCA
(GPCA) was proposed to alleviate this issue (Huckemann &
Ziezold, 2006; Huckemann et al., 2010). GPCA first finds a
geodesic γ that best fits the data, then finds other orthogonal
geodesics that go through some common point b on γ. In
other words, GPCA removes the constraint of PGA that b is
the Fréchet mean. Extensions of GPCA have been proposed
such as probabilistic methods (Zhang & Fletcher, 2013) and
Horizontal Component Analysis (Sommer, 2013).

Pennec (2018) proposes a more symmetric approach. In-
stead of using the exponential map at a base point, it param-
eterizes K-dimensional subspaces as the barycenter loci of
K + 1 points. Nested sequences of subspaces (flags) can
be formed by simply adding more points. In hyperbolic
geometry, this construction coincides with the one based on
geodesic hulls that we use in Section 3, except that it applies
to points inside Hd instead of ideal points and thus needs
more parameters to parameterize a flag (see Remark A.8).

By considering a more general type of submanifolds,
Hauberg (2016) gives another way to avoid the sensitive
dependence on Fréchet mean. However, its bigger search
space also makes the method computationally expensive,
especially when the target dimension K is bigger than 1.

In contrast with all methods so far, HOROPCA relies on
horospherical projections instead of geodesic projections.
This yields a generalization of PCA that depends only on
the directions and not specific locations of the subspaces.

Dimension reduction in hyperbolic geometry We now
review some dimension reduction methods proposed specif-
ically for hyperbolic geometry. Cvetkovski & Crovella
(2011) and Sala et al. (2018) are examples of hyperbolic mul-
tidimensional scaling methods, which seek configurations
of points in lower-dimensional hyperbolic spaces whose
pairwise distances best approximate a given dissimilarity
matrix. Unlike HOROPCA, they do not learn a projection
that can be applied to unseen data.

Tran & Vu (2008) constructs a map to lower-dimensional
hyperbolic spaces whose preimages of compact sets are
compact. Unlike most methods, it is data-agnostic and does
not optimize any objective.



Hyperbolic Dimensionality Reduction

mammal

cat
common zebra

caninecat

monkey
gorilla

horse

rat

manchester terrier

cetacean
bottlenose dolphin

bat

mouse

male horse

wild sheep
spaniel

racehorse

beef

mountain sheep

guide dog

ape

yorkshire terrierkitty

german shepherd

feline
ungulate

carnivore

rodent

canine

squirrel

two-toed sloth

sea otter

burmese cat

seal wild horse

african elephant

bulldog pekinese

(a) PGA (average distortion: 0.534)
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Figure 4: Visualization of embeddings of the WordNet mammal subtree computed by reducing 10-dimensional Poincaré embed-
dings (Nickel & Kiela, 2017).

Benjamini & Makarychev (2009) adapt the Euclidean John-
son–Lindenstrauss transform to hyperbolic geometry and
obtain a distortion bound when the dataset size is not too
big compared to the target dimension. They do not seek an
analog of Euclidean directions or projections, but neverthe-
less implicitly use a projection method based on pushing
points along horocycles, which shares many properties with
our horospherical projections. In fact, the latter converges
to the former as the ideal points get closer to each other.

From hyperbolic to Euclidean Liu et al. (2019) use “dis-
tances to centroids” to compute Euclidean representations
of hyperbolic data. The Busemann functions we use bear
resemblances to these centroid-based functions but are bet-
ter analogs of coordinates along given directions, which is a
central concept in PCA, and have better regularity properties
(Busemann, 1955). Recent works have also used Busemann
functions for hyperbolic prototype learning (Keller-Ressel,
2020; Wang, 2021). These works do not define projec-
tions to lower-dimensional hyperbolic spaces. In contrast,
HOROPCA naturally returns both hyperbolic representa-
tions (via horospherical projections) and Euclidean represen-
tations (via Busemann coordinates). This allows leveraging
techniques in both settings.

7. Conclusion
We proposed HOROPCA, a method to generalize PCA to hy-
perbolic spaces. In contrast with previous PCA generaliza-
tions, HOROPCA preserves the core location-independence
PCA property. Empirically, HOROPCA significantly out-

performs previous methods on the reduction of hyperbolic
data. Future extensions of this work include deriving a
closed-form solution, analyzing the stability properties of
HOROPCA, or using the concepts introduced in this work to
derive efficient nearest neighbor search algorithms or neural
network operations.
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