
Goal-Conditioned Reinforcement Learning with Imagined Subgoals

A. High-level Policy Derivation
The following derivation is similar to (Abdolmaleki et al., 2018b) and (Nair et al., 2020). We consider the subgoal advantage
function Aπ

H

, some distribution over valid states ps(s) and the distribution over states and goals µ(s, g) given by previously
collected experience and experience relabelling. During high-level policy improvement, we maximize the following objective
function, where expectations have been replaced by integrals:

πHk+1 = arg max
π

∫∫
µ(s, g)

∫
πH(sg|s, g)Aπ

H

(sg|s, g)dsgdsdg

s.t.
∫∫

µ(s, g)DKL

(
πH(.|s, g) || ps(.)

)
dsdg ≤ ε,

∫∫
µ(s, g)

∫
πH(sg|s, g)dsgdsdg = 1

(11)

The Lagrangian is:

L(πH , λ, η) =

∫∫
µ(s, g)

∫
πH(sg|s, g)Aπ

H

(sg|s, g)dsgdsdg

+ λ

(
ε−

∫∫
µ(s, g)

∫
πH(sg|s, g) log

πH(sg|s, g)

ps(sg)
dsgdsdg

)
+ η

(
1−

∫∫
µ(s, g)

∫
πH(sg|s, g)dsgdsdg

)
.

(12)

Differentiating with respect to πH yields

∂L
∂πH

= Aπ
H

(sg|s, g)− λ log πH(sg|s, g) + λ log ps(sg) + η − λ. (13)

Setting this expression to zero, we get

πH(sg|s, g) = ps(sg) exp

(
Aπ

H

(sg|s, g)

λ

)
exp

(
−λ− η

λ

)
. (14)

As the second constraint in (11) must sum to 1, the last exponential is a normalizing factor. This gives the closed form
solution:

πH? (sg|s, g) =
1

Z(s, g)
ps(sg) exp

(
Aπ

H

(sg|s, g)

λ

)
(15)

with the normalizing partition function

Z(s, g) =

∫
ps(sg) exp

(
1

λ
Aπ

H

(sg|s, g)

)
dsg. (16)

We next project the closed form solution into the space of parametric policies by minimizing the reverse KL divergence
between our parametric high-level policy πHψ and the optimal non-parametric solution πH? :

πHψk+1
= arg min

ψ
E(s,g)∼µ(.)

[
DKL

(
πH? (.|s, g) ||πHψ (.|s, g)

)]
= arg max

ψ
E(s,g)∼µ(.)Esg∼πH? (.|s,g)

[
log πHψ (sg|s, g)

]
= arg max

ψ
E(s,g)∼µ(.),sg∼ps(.)

[
log πHψ (sg|s, g)

1

Z(s, g)
exp

(
1

λ
Aπ

H

(sg|s, g)

)] (17)

We choose ps to be the distribution of states given by experience collected in the replay buffer D, such that high-level policy
improvement corresponds to a weighted maximum-likelihood where subgoal candidates sg are randomly sampled from D
among states visited by the agent in previous episodes.

Goal-Conditioned Reinforcement Learning with Imagined Subgoals

B. Implementation Details
Actor-Critic. Our implementation of the actor-critic algorithm is based on Soft Actor-Critic (Haarnoja et al., 2018b),
where we remove the entropy term during policy evaluation and replace the entropy term by the KL divergence between
policy and our prior policy during policy improvement. The policy is a neural network that parametrizes the mean and
diagonal covariance matrix of a squashed Gaussian distribution πθ(.|s, g) = tanhN (µθ(s, g),Σθ(s, g)). We train two
seperate Q-networks with target networks and take the minimum over the two target values to compute the bootstrap value.
The target networks are updated using an exponential moving average of the online Q parameters: φ′k+1 = τφk + (1− τ)φ′k.

High-level policy training. The high-level policy is a neural network that outputs the mean and diagonal covariance matrix
of a Laplace distribution πHψ (.|s, g) = Laplace(µψ(s, g),Σψ(s, g)). Following (Nair et al., 2020), instead of estimating the
normalizing factor Z(s, g) in (17), we found that computing the weights as softmax of the advantages over the batch leads
to good results in practice. During the high-level policy improvement, we found that clipping the value function between
−100 and 0, which corresponds to the expected bounds given our choice of reward function and discount factor, stabilizes
the training slightly.

KL divergence estimation. We use an exponentially moving average of the policy weights instead of the weights of the
current policy to construct the prior policy πprior: θ′k+1 = τθk + (1− τ)θ′k with the same smoothing coefficient τ as the
one used for the Q function. We estimate the prior density using the following Monte-Carlo estimate:

log πprior(a|s, g) ≈ log

[
1

I

∑
i

πθ′(a|s, sig) + ε

]
, (sig) ∼ πHψ (.|s, g), (18)

where ε > 0 is a small constant to avoid large negative values of the prior log-density. We use I = 10 samples to estimate
πprior(a|s, g). We also use a Monte-Carlo approximation to estimate the KL-divergence term in Equation (9) of the
submission:

DKL

(
πθ(.|s, g) ||πprior(.|s, g)

)
= Ea∼π(.|s,g)[log πθ(a|s, g)− log πprior(a|s, g)]

≈ 1

N

∑
n

[
log πθ(an|s, g)− log πprior(an|s, g)

]
with (an)n=1,..,N ∼ πθ(.|s, g).

(19)

Following SAC (Haarnoja et al., 2018a), we use N = 1, plug the estimate (18) and use the reparametrization trick to
backpropagate the KL divergence term to the policy weights (Haarnoja et al., 2018a).

Experience relabelling. In all of our experiments we use Hindsight Experience Replay (Andrychowicz et al., 2017). We
use the same relabelling strategy as (Nair et al., 2018) and (Nasiriany et al., 2019) and relabel the goals in our minibatches
as follows:

• 20%: original goals from collected trajectories,
• 40%: randomly sampled states from the replay buffer, trajectories,
• 40%: future states along the same collected trajectory.

Vision based environments On the vision-based robotic manipulation tasks, input images are passed through an image
encoder shared between the policy, high-level policy and Q-function. Both states, goals and subgoals are encoded using the
same encoder network. The encoder is updated during policy evaluation, where we only update the representation of the
current state images whereas the representations of desired goal images, next state images and subgoal image candidates are
kept fixed. We augment the observations with random translations by translating the 84× 84 image within a 100× 100
empty frame (Laskin et al., 2020; Kostrikov et al., 2020).

C. Environments
We adopt Ant Navigation environments provided by the code repository of (Nasiriany et al., 2019). In these environments, a
4-legged ant robot must learn to navigate in various mazes. The state includes the position, orientation, the joint angles

Goal-Conditioned Reinforcement Learning with Imagined Subgoals

and the velocities of these components. The ant has a radius of roughly 0.75 units. We consider that the goal is reached
if the x-y position of the ant is within 0.5 units of its desired location in Euclidean distance. The agent receives a reward
r(s, a, g) = −1 for all actions until the goal is reached. The dimensions of the space for the U-shaped maze are 7.5× 18
units. For the S-shaped maze, the dimensions are 12 × 12. For the Π-shaped and ω-shaped mazes, the dimensions are
16× 16 units. The walls are 1.5 units thick. During training, initial states and goals are uniformly sampled anywhere in the
empty space of the environment. At test time, we evaluate the agent on challenging configurations that require temporally
extended reasoning, as illustrated in Figure 6 of the submission.

For the robotic manipulation task, we use the same image-based environment as in (Nasiriany et al., 2019). In this task, the
agent operates an arm robot via 2D position control and must manipulate a puck. The agent observes a 84× 84 RGB image
showing a top-down view of the scene. The dimension of the workspace are 40cm× 20cm and the puck has a radius of 4cm.
We consider that the goal is achieved if both the arm and the puck are within 5cm of their respective target positions. During
training, the initial arm and puck positions and their respective desired positions are uniformly sampled in the workspace.
At test time, we evaluate the policy on a hard configuration which requires temporally extended reasoning: the robot must
reach across the table to a corner where the puck is located, move its arm around the puck, pull the puck to a different corner
of the table, and reach again the opposite corner.

D. Hyperparameters
Table 1 lists the hyperparameters used for the RIS. We use Adam optimizer and report results after one million interactions
with the environment. For SAC, following (Haarnoja et al., 2018b), we automatically tune the entropy of the policy to match
the target entropy of − dim(A).

Table 1. Hyper-parameters for RIS and SAC.

Hyper-parameter Ant Navigation Robotic Manipulation

Q hidden sizes [256, 256] [256, 256]
Policy hidden sizes [256, 256] [256, 256]
High-level policy hidden sizes [256, 256] [256, 256]
Hidden activation functions ReLU ReLU
Batch size 2048 256
Training batches per environment step 1 1
Replay buffer size 1× 106 1× 105

Discount factor γ 0.99 0.99
polyak for target networks τ 5× 10−3 5× 10−3

ε 1× 10−16 1× 10−4

Critic learning rate 1× 10−3 1× 10−3

Policy learning rates 1× 10−3 1× 10−4

High-level policy learning rate 1× 10−4 1× 10−4

α 0.1 0.1
λ 0.1 0.1

In the vision based environment, our image encoder is a serie of convolutional layers with kernel sizes [3, 3, 3, 3], strides
[2, 2, 2, 1], channel sizes [32, 32, 32, 32] and ReLU activation functions followed by a fully-connected layer with output
dimension 16.

Table 2. Environment specific hyper-parameters for LEAP

Hyperparameter U-shaped maze S-shaped maze Π-shaped maze ω-shaped Maze Robotic Manipulation

TDM policy horizon 50 50 75 100 25
Number of subgoals 11 11 11 11 3

For LEAP, we re-implemented (Nasiriany et al., 2019) and train TDM (Pong et al., 2018) policies and Q networks with
hidden layers of size [400, 300] and ReLU activation functions. In the ant navigation environments, we pretrain VAEs with
mean squared reconstruction error loss and hidden layers of size [64, 128, 64], ReLU activation functions and representation

Goal-Conditioned Reinforcement Learning with Imagined Subgoals

size of 8 for the encoders and the decoders. In the vision based robotic manipulation environment, we pretrain VAEs with
mean squared error reconstruction loss and convolutional layers with encoder kernel of sizes [5, 5, 5], encoder strides of
sizes [3, 3, 3], encoder channels of sizes [16, 16, 32], decoder kernel sizes of sizes [5, 6, 6], decoder strides of sizes [3, 3, 3],
and decoder channels of sizes [32, 32, 16], representation size of 16 and ReLU activation functions. Table 2 reports the
policy horizon used for each environment as well as the number of subgoals in the test configuration for the results in Figure
6 of the submission. For the results presented in Figure 7 of the submission, we adapted the number of subgoals according
to the difficulty of each configuration.

E. Additional Results
In Figure 10, we provide image reconstructions of imagined subgoals on additional configurations of the vision-based
robotic manipulation environment.

Figure 10. Image reconstruction of imagined subgoals (middle column) given current states (left column) and desired goals (right column)
for different random configurations in the vision-based robotic manipulation environment.

