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Abstract
We provide an approximation algorithm for k-
means clustering in the one-round (aka non-
interactive) local model of differential privacy
(DP). This algorithm achieves an approximation
ratio arbitrarily close to the best non private ap-
proximation algorithm, improving upon previ-
ously known algorithms that only guarantee large
(constant) approximation ratios. Furthermore,
this is the first constant-factor approximation al-
gorithm for k-means that requires only one round
of communication in the local DP model, pos-
itively resolving an open question of Stemmer
(2020). Our algorithmic framework is quite flex-
ible; we demonstrate this by showing that it also
yields a similar near-optimal approximation al-
gorithm in the (one-round) shuffle DP model.

1. Introduction
The vast amounts of data collected for use by modern
machine learning algorithms, along with increased public
awareness for privacy risks, have stimulated intense re-
search into privacy-preserving methods. Recently, differ-
ential privacy (DP) (Dwork et al., 2006b;a) has emerged
as a popular definition, due to its mathematical rigor and
strong guarantees. This has translated into several prac-
tical deployments within government agencies (Abowd,
2018) and the industry (Erlingsson et al., 2014; Shankland,
2014; Greenberg, 2016; Apple Differential Privacy Team,
2017; Ding et al., 2017), and integration into widely-used
libraries such as TensorFlow (Radebaugh and Erlingsson,
2019) and PyTorch (Testuggine and Mironov, 2020).

Among unsupervised machine learning tasks, clustering
in general and k-means clustering in particular are one
of the most basic and well-studied from both theoretical
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and practical points of view. The research literature on k-
means is extensive, with numerous applications not only in
machine learning but also well beyond computer science.
Computationally, finding optimal k-means cluster centers
is NP-hard (e.g., Aloise et al., 2009) and the best known
polynomial-time algorithm achieves an approximation ra-
tio of 6.358 (Ahmadian et al., 2020).

A natural question is to study clustering and k-means
with DP guarantees. There is a growing literature on this
topic (Blum et al., 2005; Nissim et al., 2007; Feldman et al.,
2009; Gupta et al., 2010; Mohan et al., 2012; Wang et al.,
2015; Nissim et al., 2016; Nock et al., 2016; Su et al., 2016;
Feldman et al., 2017; Balcan et al., 2017; Nissim and Stem-
mer, 2018; Huang and Liu, 2018; Nock et al., 2016; Nissim
and Stemmer, 2018; Stemmer and Kaplan, 2018; Stemmer,
2020; Ghazi et al., 2020b; Jones et al., 2021; Chaturvedi
et al., 2021). In contrast to non-private k-means, additive
errors are necessary in this case, and a recent line of work
has obtained increasingly tighter approximation ratios, cul-
minating with the work of Ghazi et al. (2020b), which
comes arbitrarily close to the smallest possible non-private
approximation ratio (currently equal to 6.358 as mentioned
above). However, this last result only holds in the central
model of DP where a curator is entrusted with the raw data
and is required to output private cluster centers.

The lack of trust in a central curator has led to extensive
study of distributed models of DP, the most prominent of
which is the local setting where the sequence of messages
sent by each user is required to be DP. The state-of-the-art
local DP k-means algorithm is due to Stemmer (2020); it
achieves a constant (that is at least 100 by our estimate)
approximation ratio in a constant (at least five) number of
rounds of interaction. In fact, all (non-trivial) known local
DP k-means algorithms are interactive, meaning that the
analyzer proceeds in multiple stages, each of which using
the (private) outcomes from the previous stages. This begs
the question, left open by Stemmer (2020): is there a non-
interactive local DP approximation algorithm for k-means
and can it attain the non-private approximation ratio?

1.1. Our Contributions

We resolve both open questions above by showing that
there is a DP algorithm in the non-interactive local model
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with an approximation ratio that is arbitrarily close to that
of any non-private algorithm, as stated below1.

Theorem 1. Suppose that there is a (not necessarily
private) polynomial-time approximation algorithm for k-
means with approximation ratio . For any ↵ > 0, there is
a one-round ✏-DP ((1+↵), k

O↵(1) ·
p
nd ·polylog(n)/✏)-

approximation algorithm for k-means in the local DP
model. The algorithm runs in time poly(n, d, k).

Here and throughout, we assume that the users and the an-
alyzer have access to shared randomness. We further dis-
cuss the question of obtaining similar results using only
private randomness in Section 6. Furthermore, we assume
throughout that 0 < ✏  O(1) and will not state this as-
sumption explicitly in the formal statements.

The dependency on n in the additive error above is also es-
sentially tight, as Stemmer (2020) proved a lower bound
of ⌦(

p
n) on the additive error. Our bound also improves

upon his protocol, where the additive error grows with
n
1/2+a for an arbitrary small positive constant a.

In addition to the local model, our approach can be easily
adapted to other distributed privacy models. To demon-
strate this, we give an algorithm in the shuffle model (Bit-
tau et al., 2017; Erlingsson et al., 2019; Cheu et al., 2019)2

with a similar approximation ratio but with a smaller addi-
tive error of Õ(k

O↵(1) ·
p
d/✏).

Theorem 2. Suppose that there is a (not necessarily
private) polynomial-time approximation algorithm for k-
means with approximation ratio . For any ↵ > 0,
there is a one-round (✏, �)-DP ((1 + ↵), k

O↵(1) ·
p
d ·

polylog(nd/�)/✏)-approximation algorithm for k-means
in the shuffle DP model. The algorithm runs in time
poly(n, d, k, log(1/�)).

To the best of our knowledge, this is the first k-means algo-
rithm in the one-round shuffle model with (non-trivial) the-
oretical guarantees. Furthermore, we remark that the above
guarantees essentially match those of the central DP algo-
rithm of Ghazi et al. (2020b), while our algorithm works
even in the more restrictive shuffle DP model.

The main new ingredient in our framework is the use of a
hierarchical data structure called a net tree (Har-Peled and
Mendel, 2006) to construct a private coreset3 of the input
points. The decoder can then simply run any (non-private)
approximation algorithm on this private coreset.

The net tree (Har-Peled and Mendel, 2006) is built as fol-
1An algorithm achieves a (, t)-approximation if its output

cost is no more than  times the optimal cost plus t, i.e.,  is the
approximation ratio and t is the additive error (see Section 2.1).

2The shuffle model of DP is a middle ground between the cen-
tral and local models. Please see Appendix C for more details.

3See Section 2.1 for the definition of coresets.

lows. Roughly speaking, each input point can be assigned
to its “representative” leaf of a net tree; the deeper the tree
is, the closer this representative is to the input point. To
achieve privacy, noise needs to be added to the number of
nodes assigned to each leaf. This creates a natural tension
when building such a tree: if the tree has few leaves, the
representatives are far from the actual input points whereas
if the tree has too many leaves, it suffers a larger error intro-
duced by the noise. Our main technical contribution is an
algorithm for constructing a net tree that balances between
these two errors, ensuring that neither affects the k-means
objective much. We stress that this algorithm works in the
non-interactive local model, as each user can encode all
possible representatives of their input point without requir-
ing any interaction.

Organization. In Section 2, we provide background on
k-means and a description of the tools we need for our al-
gorithm. In Section 3, we describe and analyze net trees,
which are sufficient to solve private k-means in low di-
mensions. In Section 4, we use dimensionality reduction
to extend our results to the high-dimensional case. In Sec-
tion 5, we present some empirical evaluation of our algo-
rithm. Section 6 contains the concluding remarks.

All the missing proofs and the results for the shuffle DP
model are in the Supplementary Material.

2. Preliminaries
We use kxk to denote the Euclidean norm of a vector x.
We use Bd

(x, r) to denote the closed radius-r ball around
x, i.e., Bd

(x, r) = {y 2 Rd | kx � yk  r}. Let Bd
=

Bd
(0, 1), the unit ball. For every pair T, T 0 ✓ Rd of sets,

we use d(T, T 0
) as a shorthand for minx2T,x02T 0 kx�x

0k.

For every m 2 N, we use [m] as a shorthand
for {1, . . . ,m}. For real numbers a1, . . . , at, we use
bottomm(a1, . . . , at) to denote the sum of the smallest m
numbers among a1, . . . , at, where t � m.

We will be working with a generalization of multisets,
where each element can have a weight associated with it.
Definition 3 (Weighted Point Set). A weighted point set S
on a domain D is a finite set of tuples (x,wS(x)) where
x 2 D and wS(x) 2 R�0 denotes its weight; each x

should not be repeated in S. It is useful to think of S
as the function wS : D ! R�0; this extends naturally
(as a measure) to any subset T ✓ D for which we define
wS(T ) =

P
x2T

wS(x). We say that wS(D) is the total
weight of S and we abbreviate it as |S|. The average of S
is defined as µ(S) :=

P
x2Bd wS(x) · x/|S|.

Throughout the paper, we alternatively view a multiset X
as a weighted point set, where wX(x) denotes the (possibly
fractional) number of times x appears in X.



Locally Private k-Means in One Round

For an algorithm A, we use t(A) to denote its running time.

2.1. k-means and coresets

Let X ✓ Bd be an input multiset and let n = |X|.
Definition 4 (k-means). The cost of a set C of centers
with respect to an input multiset X ✓ Bd is defined as
costX(C) :=

P
x2X (minc2C kx� ck)2. The k-means

problem asks, given X and k 2 N, to find C of size k that
minimizes costX(C); the minimum cost is denoted OPT

k

X.

For a weighted point set S on Bd, we define costS(C) :=P
x2Bd wS(x) · (minc2C kx� ck)2, and let OPT

k

S :=

min|C|=k costS(C).

A set C of size k is a (, t)-approximate solution for input
S if costS(C)   ·OPT

k

S +t.

It is also useful to define cost with respect to partitions, i.e.,
the mapping of points to the centers.

Definition 5 (Partition Cost). For a given partition � :

S ! [k] where S is a weighted point set and an or-
dered set C = (c1, . . . , ck) of k candidate centers, we
define the cost of � with respect to C as costS(�,C) :=P

x2Bd wS(x) · kx � c�(x)k2. Furthermore, we define the
cost of � as costS(�) := minC2(Rd)k costS(�,C).

Note that a minimizer for the term
minC2(Rd)k costS(�,C) above is ci = µ(Si) where
Si denotes the weighted point set corresponding to

partition i, i.e., wSi(x) =

(
wS(x) if �(x) = i,

0 otherwise.

Coresets. In our algorithm, we will produce a weighted set
that is a good “approximation” to the original input set. To
quantify how good is the approximation, it is convenient to
use the well-studied notion of coresets (see, e.g., Har-Peled
and Mazumdar, 2004), which we recall below.

Definition 6 (Coreset). A weighted point set S0 is a
(k, �, t)-coreset of a weighted point set S if for every set
C ✓ Bd of k centers, it holds that (1��) · costS(C)� t 
costS0(C)  (1 + �) · costS(C) + t. When k is clear from
context, we refer to such an S0 as just a (�, t)-coreset of X.

2.2. (Generalized) Monge’s Optimal Transport

Another tool that will facilitate our proof is (a generaliza-
tion of) optimal transport (Monge, 1781). Roughly speak-
ing, in Monge’s Optimal Transport problem, we are given
two measures on a metric space and we would like to find a
map that “transports” the first measure to the second mea-
sure, while minimizing the cost, which is often defined in
terms of the total mass moved times some function of the
distance. This problem can be ill-posed as such a mapping
may not exist, e.g., when the total masses are different. (We

will often encounter this issue as we will be adding noise
for differential privacy, resulting in unequal masses.) To
deal with this, we use a slightly generalized version of op-
timal transport where the unmatched mass is allowed but
penalized by the L1 difference,4 defined next.
Definition 7 (Generalized L

2
2 Transport Cost). Let S,S0 be

weighted point sets on Bd. Their generalized (L2
2) Monge’s

transport cost of a mapping  : Bd ! Bd is defined as
mt( ,S,S0

) :=

X

y2Bd

wS(y) · k (y)� yk2

+

X

x2Bd

|wS( 
�1

(x))� wS0(x)|. (1)

Finally, we define the optimal generalized (L2
2) Monge’s

transport cost from S to S0 as
mt(S,S0

) = min
 :Bd!Bd

mt( ,S,S0
). (2)

We remark that the minimizer  always exists because our
weighted sets S,S0 have finite supports. A crucial prop-
erty of optimal transport we will use is that if the optimal
transport cost between S,S0 is small relative to the optimal
k-means objective, then S0 is a good coreset for S. This is
encapsulated in the following lemma.
Lemma 8. For any ⇠ 2 (0, 1), any weighted point sets
S,S0 over Bd, if mt(S,S0

)  ⇠

8(1+2/⇠) ·OPT
k

S +t for some
t � 0, then S0 is a (⇠, 4(1 + 2/⇠)t)-coreset of S.

We also use a slightly more refined bound stated below. It is
worth to note that the first inequality below is very explicit
as it also gives the mapping for S; we will indeed need
such an additional property in our analysis when applying
dimensionality reduction.
Lemma 9. For any ⇠ 2 (0, 1], weighted point sets S,S0

over Bd, C 2 (Bd
)
k, � : Bd ! [k] and  : Bd ! Bd,

costS(� � ,C)  (1 + ⇠) · costS0(�,C)

+ 4(1 + 1/⇠) ·mt( ,S,S0
), and

costS0(C)  (1 + ⇠) · costS(C)

+ 4(1 + 1/⇠) ·mt( ,S,S0
).

The proofs of both lemmas are deferred to Appendix A.1

2.3. Efficiently Decodable Nets

Let L ✓ Bd be a finite set. Its covering radius, denoted
⇢(L), is defined as maxx2Bd miny2L kx � yk. Its packing
radius, denoted �(L), is defined as the largest � such that
the open balls around each point of L of radius � are dis-
joint. We say L is a (⇢, �)-net if ⇢(L)  ⇢ and �(L) � �.

Using known results on lattices (Rogers, 1959; Miccian-
cio, 2004; Micciancio and Voulgaris, 2013), Ghazi et al.

4Several works have defined similar but slightly different no-
tions (see, e.g., Benamou, 2003; Piccoli and Rossi, 2014).
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(2020b) show that there exist nets with � = ⌦(⇢) that are
“efficiently decodable”, i.e., given any point we can find
points in L close to it in exp(O(d)) time.
Lemma 10 ((Micciancio, 2004; Ghazi et al., 2020b)). For
any given ⇢ > 0, there exists a (⇢, ⇢/3)-net L such that,
for any given point x 2 Bd and any r � ⇢, we can find all
points in Bd

(x, r) \ L in time (1 + r/⇢)
O(d).

2.4. (Generalized) Histogram and Vector Summation

Finally, we need a few fundamental protocols as building
blocks. We first introduce a general aggregation problem.
Definition 11 (Generalized Bucketized Vector Summa-
tion). In the generalized bucketized vector summation
problem, each user holds a set Yi ✓ Y of T buckets and a
vector vi 2 Bd. The goal is to determine, for a given y 2
Y , the vector sum of bucket y, which is vy :=

P
i2[n]
y2Yi

vi.
An approximate generalized vector sum oracle ṽ is said to
be ⌘-accurate at y if we have kvy � ṽyk < ⌘.

The setting in this problem—each user holds a d-
dimensional vector and contributes to T buckets—
generalizes many well-studied problems including (i) the
histogram problem where T = d = 1 and the (scalar) sum
of a bucket is the frequency, (ii) the generalized histogram
problem where d = 1 but T can be more than one, and (iii)
the bucketized vector summation problem where T = 1 but
d can be more than one.

2.5. Privacy Models

We first recall the formal definition of differential privacy
(DP). For ✏ > 0 and � 2 [0, 1], a randomized algorithm A
is (✏, �)-DP if for every pair X,X

0 of inputs that differ on
one point and for every subset S of the algorithm’s possible
outputs, it holds that Pr[A(X) 2 S]  e

✏ · Pr[A(X
0
) 2

S] + �. When � = 0, we simply say the algorithm is ✏-DP.

Let n be the number of users, let X = {x1, . . . xn} and
let the input xi be held by the ith user. An algorithm
in the local DP model consists of (i) an encoder whose
input is the data held by one user and whose output is
a sequence of messages and (ii) a decoder, whose in-
put is the concatenation of the messages from all the en-
coders and whose output is the output of the algorithm.
A pair (Enc,Dec) is (✏, �)-DP in the local model if for
any input X = (x1, . . . , xn), the algorithm A(X) :=

(Enc(x1), . . . ,Enc(xn)) is (✏, �)-DP.

For any generalized bucketized vector summation problem
⇧, we say that the pair (Enc,Dec) is an (⌘,�)-accurate
(✏, �)-DP algorithm (in a privacy model) if:

• Enc
⇧
(✏,�) is an (✏, �)-DP algorithm that takes in the in-

put and produces a randomized output,
• Dec

⇧
(✏,�) takes in the randomized output, a target

bucket y and produces an estimate vector sum for y,
• For each y 2 Y , the above oracle is ⌘-accurate at y

with probability 1� �.

For the local DP model, the following generalized his-
togram guarantee is a simple consequence of the result
of Bassily et al. (2020):
Theorem 12 ((Bassily et al., 2020)). There is an
(O(
p

nT 3 log(|Y |/�)/✏),�)-accurate ✏-DP algorithm for
generalized histogram in the local model. The encoder and
the decoder run in time poly(nT/✏, log |Y |).

Using the technique of Bassily et al. (2020) together with
that of Duchi et al. (2013), we can obtain the following
guarantee for generalized bucketized vector summation:
Lemma 13. There is an (O(

p
ndT 3 log(|Y |/�)/✏),�)-

accurate ✏-DP algorithm for generalized bucketized vector
summation in the local model. The encoder and the de-
coder run in time poly(ndT/✏, log |Y |).

The derivations of the above two bounds are explained in
more detail in Appendix B.

3. Net Trees
In this section, we describe net trees (Har-Peled and
Mendel, 2006), which are data structures that allow us to
easily construct coresets of the inputs when the dimension
is small. We remark that, although the main structure of net
trees we use is similar to that of (Har-Peled and Mendel,
2006), there are several differences, the main one being the
construction algorithm which in our case has to be done via
(noisy) oracles, leading to considerable challenges.

3.1. Description and Notation

Let L1, . . . ,LT ✓ Bd be a family of efficiently decodable
nets, where Li has covering radius5

⇢i := 1/2
i and packing

radius �i := �/2
i. Furthermore, let L0 = {0}, ⇢0 = �0 =

1. For convenience, we assume that L0,L1, . . . ,LT are
disjoint; this is w.l.o.g. as we can always “shift” each net
slightly so that their elements are distinct.

For i 2 {0, . . . , T}, let  i : Bd ! Li denote the map from
any point to its closest point in Li (ties broken arbitrarily).

Complete Net Tree. Given a family of nets L1, . . . ,LT ,
the complete net tree is defined as a tree with (T+1) levels.
For i 2 {0, . . . , T}, the nodes in level i are exactly the
elements of Li. Furthermore, for i 2 [T ], the parent of
node z 2 Li is  i�1(z) 2 Li�1. We use children(z) to
denote the set of all children of z in the complete net tree.

Net Tree. A net tree T is a subtree of the complete net
5The 2i term here can be replaced by �

i for any � 2 (0, 1);
we use 2i to avoid introducing yet another parameter.
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tree rooted at 0, where each node z is either a leaf or all of
children(z) must be present in the tree T .

We will also use the following additional notation. For each
i 2 {0, . . . , T}, let Ti be the set of all nodes at level i of
tree T . Moreover, we use leaves(T ) to denote the set of all
leaves of T and leaves(Ti) to denote the set of all leaves at
level i. For a node z 2 T , we use level(z) 2 {0, . . . , T} to
denote its level and children(z) to denote its children.

Representatives. Given a point x 2 Bd, its
potential representatives are the T + 1 nodes
 T (x), T�1( T (x)), . . . , 0(· · · ( T (x)) · · · ) in
the complete net tree. The representative of x in a net
tree T , denoted by  T (x), is the unique leaf of T that is
a potential representative of x. Note that  T : Bd ! T
induces a partition of points in Bd based on the leaves
representing them.

For a weighted point set S, its frequency at a leaf z of T ,
denoted by fz , is defined as the total weights of points in S
whose representative is z, i.e., fz = wS( 

�1
T (z)).

Representative Point Set. Let f̃ be a frequency oracle on
domain L1[· · ·[Lt. The above partitioning scheme yields
a simple way to construct a weighted point set from a net
tree T . Specifically, the representative point set of a tree T
(and frequency oracle f̃ ), denoted by ST , is the weighted
point set where each leaf z 2 leaves(T ) receives a weight
of f̃z . We stress that ST depends on the frequency oracle;
however we discard it in the notation for readability.

3.2. Basic Properties of Net Trees

Before we proceed, we list a few important properties of
net trees that both illustrate their usefulness and will guide
our algorithms. The first property is that the potential rep-
resentation of point x at level i cannot be too far from x:

Lemma 14 (Distance Property). For any x 2 Bd and i 2
{0, . . . , T}, we have kx� i(· · · ( T (x)) · · · )k  2

1�i.

Proof. Using the triangle inequality, we can bound
kx �  i(· · · ( T (x)) · · · )k above by k T (x) � xk +P

T�1
j=i
k j(· · · ( T (x)) · · · ) �  j+1(· · · ( T (x)) · · · )k

Since the covering radius of Lj is 2
�j , this latter term is

at most 2�T
+
P

T�1
j=i

2
�j  2

1�i as desired.

Second, we show that the number of children is small.

Lemma 15 (Branching Factor). For any z 2 L0 [ · · · [
LT�1, we have | children(z)|  B := (1 + 2/�)

d.

Proof. Let i = level(z). Since each z
0 2 children(z) has

z as its closest point in Li, we have kz0 � zk  2
�i. Fur-

thermore, since children(z) ✓ Li+1, children(z) form a

(� · 2�i�1
)-packing. As a result, a standard volume argu-

ment implies that

| children(z)| 
✓
1 +

2
�i

� · 2�i�1

◆d

= (1 + 2/�)
d
.

We note that when applying dimensionality reduction in
the next section, we will have6

d = O(log k), meaning
B = k

O(1).

The last property is an upper bound on the optimal trans-
port cost from a given weighted point set to a representative
point set created via a net tree T . Recall from Lemma 8 that
this implies a certain coreset guarantee for the constructed
representative point set, a fact we will repeatedly use in the
subsequent steps of the proof. The bound on the transport
cost is stated in its general form below.
Lemma 16. For a weighted point set S and a net tree T ,
let fz denote the frequency of S on a leaf z 2 leaves(T ),
i.e., fz = wS( 

�1
T (z)). Let ST denote the representative

point set constructed from T and frequency oracle f̃ . Then,

mt( T ,S,ST ) 
X

z2leaves(T )

⇣
fz · (4⇢2level(z)) + |fz � f̃z|

⌘
.

Proof. Recall by definition that mt( T ,S,ST ) is equal toP
z2leaves(T ) |wS( 

�1
T (z)) � wST (z)| +

P
y2Bd wS(y) ·

k T (y) � yk2. By construction of ST , the first term is
equal to

P
z2leaves(T ) |fz � f̃z|. Using Lemma 14, the sec-

ond term is bounded above byX

z2leaves(T )

X

y2 �1
T (z)

wS(y) · (2⇢level(z))2

=

X

z2leaves(T )

fz · (4⇢2level(z)).

Combining the two bounds completes the proof.

3.3. Building the Net Tree

Although we have defined net trees and shown several of
their main properties, we have not addressed how a net
tree should be constructed from a given (approximate) fre-
quency oracle (on L0 [ · · · [ LT ). Lemma 16 captures the
tension arising when constructing the tree: if we decide to
include too many nodes in the tree, then all of the nodes
contribute to the additive error, i.e., the second term in the
bound. On the other hand, if we include too few nodes, then
many leaves will be at a small level, resulting in a large first
term. In this section, we give a tree building algorithm that
balances these two errors, and prove its guarantees.

We assume that each approximate frequency f̃z is non-
negative.7 The tree construction (Algorithm 1) itself is

6Since we will pick � > 0 to be a constant, we hide its depen-
dency in asymptotic notations throughout this section.

7This is w.l.o.g. as we can always take max(f̃z, 0) instead.
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simple; we build the tree in a top down manner, starting
with small levels and moving on to higher levels. At each
level, we compute a threshold ⌧ on the number of nodes
to expand. We then only expand ⌧ nodes with maximum
approximate frequencies. The algorithm for computing
this threshold ⌧ (COMPUTETHRESHOLD) and its proper-
ties will be stated next.

Algorithm 1 Building the Net Tree.

Oracle Access: Frequency oracle f̃ on L0 [ · · · [ LT

Parameters: k, a,� 2 N
1: procedure BUILDTREEf̃

2: T  root node z = 0 at level 0
3: for i = 0, . . . , T � 1

4: z
1
i
, . . . , z

mi
i

 level-i nodes sorted in non-
decreasing order of f̃z

5: ⌧i  COMPUTETHRESHOLDf̃

k,a,�(z
1
i
, . . . , z

mi
i

)

6: for j = 0, . . . , ⌧i � 1

7: Add children(z
mi�j

i
) to T

8: return T

Computing the Threshold. Before we describe the thresh-
old computation algorithm, we provide some intuition. Re-
call Lemma 16, which gives an upper bound on the optimal
transport cost and Lemma 8, which relates this quantity to
the quality of the coreset. At a high level, these two lem-
mas allow us to stop branching as soon as the bound in
Lemma 16 becomes much smaller than OPT

k

S. Of course,
the glaring issue in doing so is that we do not know OPT

k

S!
It turns out however that we can give a lower bound on
OPT

k

S based on the tree constructed so far. To state this
lower bound formally, we first state a general lower bound
on the k-means cost, without any relation to the tree.

Lemma 17. Let a, b, k 2 N and r 2 R�0. Let S be a
weighted point set, and T1, . . . , Tka+b ✓ Rd be any ka+ b

disjoint sets such that for any point c 2 Rd it holds that
|{i 2 [ka + b] | Bd

(c, r) \ Ti 6= ;}|  a. Then, OPT
k

S �
r
2 · bottomb(wS(T1), . . . , wS(Tka+b)).

Proof. Consider any set C of k candidate centers. From
the assumption, there must be at least b subsets Ti’s
such that d(C, Ti) � r; for such a subset, its contri-
bution to the k-means objective is at least r

2 · wS(Ti).
As a result, the total k-means objective is at least r

2 ·
bottomb(wS(T1), . . . , wS(Tka+b)).

This lets us prove a lower bound on the k-means objective
for net trees:

Corollary 18. For any ✓ > 0, let r = ✓ · 2�i and
a = d(1 + (2 + ✓)/�)

de. Let b 2 N. Suppose that there
exist (ka + b) level-i nodes z̃

1
, . . . , z̃

ka+b in a net tree

T . Furthermore, let S be any multiset and f the fre-
quency of S. Then, we have OPT

k

S\ �1
T ({z̃1,...,z̃ka+b}) �

r
2 · bottomb (fz̃1 , . . . , fz̃ka+b).

Proof. Consider any center c 2 Rd. Recall from
Lemma 14 that  �1

T (z̃
j
) ✓ Bd

(z̃
j
, 2

1�i
). In other words,

if Bd
(c, r) \ (S \ �1

T (z̃
j
)) 6= ;, we must have

kc� z̃
jk  r + 2

1�i
= (2 + ✓)2

�i
, (3)

implying that Bd
(z̃

j
, � ·2�i

) ✓ Bd
(c, (2+✓)2

�i
+� ·2�i

).

Furthermore, since z̃
1
, . . . , z̃

ka+b ✓ Li form a (� · 2�i
)-

packing, the balls Bd
(z̃

j
, � · 2�i

) are disjoint. This means
that any point c satisfies (3) for at most

✓
1 +

(2 + ✓) · 2�i

� · 2�i

◆d

 a.

many j’s. Applying Lemma 17 completes the proof.

Thus, we can use r2 · bottomb (fz̃1 , . . . , fz̃ka+b) as a “run-
ning lower bound” on OPT

k

S. Still, we have to be care-
ful as the additive error introduced will add up over all the
levels of the tree; this can be an issue since we will se-
lect the number of levels to be as large as ⇥(log n). To
overcome this, we make sure that the additive error intro-
duced at each level is only “charged” to the optimum of
the weighted point set corresponding to leaves in that level.
This ensures that there is no double counting in the error.

Below we formalize our cutoff threshold computation algo-
rithm and prove its main property, which will be used later
to provide the guarantees on the tree construction.

Algorithm 2 Computing the Threshold.

Oracle Access: Frequency oracle f̃ on L0 [ · · · [ LT

Parameters: k, a,� 2 N
Inputs: Nodes z1, . . . , zm from the same level of a net tree

1: procedure COMPUTETHRESHOLDf̃

k,a,�
2: for j 2 [min{�, bm/kac}]
3: if

P
m�(j�1)ka
i=1 fzi  2 ·

P
m�jka

i=1 fzi

4: return (j � 1)ka

5: return min{m,�ka}

Lemma 19. Suppose that f̃ is ⌘-accurate at each of
z
1
, . . . , z

m and suppose f̃z1  · · ·  f̃zm . Then, COM-
PUTETHRESHOLDf̃

a,�(z
1
, . . . , z

m
) outputs ⌧ satisfying

m�⌧X

i=1

f̃zi  2 ·
 

m�⌧�kaX

i=1

f̃zi

!
+

n+m⌘

2�
.

Proof. If the algorithm returns on line 4, then the inequality
trivially holds due to the check on line 3 before. Further-
more, the inequality also trivially holds if ⌧ = m, as the
left hand side is simply zero. As a result, we may assume
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that the algorithm returns ⌧ = �ka < m. This means the
condition on line 3 does not hold for all j 2 [�]. From this,
we can conclude that

f̃z1 + · · ·+ f̃zm > 2

⇣
f̃z1 + · · ·+ f̃zm�ka

⌘
> · · ·

> 2
�
⇣
f̃z1 + · · ·+ f̃zm��ka

⌘
.

Finally, since the frequency oracle is ⌘-accurate at each of
z
1
, . . . , z

m, we have
f̃z1 + · · ·+ f̃zm  m⌘ + fz1 + · · ·+ fzm  m⌘ + n,

where the latter inequality follows since each input point
is mapped to at most one node at level i. Combining the
above two inequalities yields the desired bound.

We remark that f̃z1 + · · · + f̃zm�⌧ is the approximate fre-
quency of points that will be mapped to the leaves at this
level, which in turn gives the upper bound on the transport
cost (in Lemma 16); whereas f̃z1 + · · ·+ f̃zm�⌧�ka indeed
governs the lower bound on the optimum k-means objec-
tive in Corollary 18. Intuitively, Lemma 19 thus allows
us to “charge” the transport cost at each level to the lower
bound on the optimum of the leaves at that level as desired.
These arguments will be formalized in the next subsection.

Putting it Together. The main property of a net tree T
output by our tree construction algorithm is that its repre-
sentative point set is a good coreset of the underlying input.
This, plus some additional properties, are stated below.

Theorem 20. Let ⇠ 2 (0, 1). Suppose that the frequency
oracle f̃ is ⌘-accurate on every element queried by the al-
gorithm. Let T be the tree output by Algorithm 1 where
� = dlog ne, T = d0.5 log ne, ✓ = 8

q
1+2/⇠

⇠
, and a be as

in Corollary 18. Let NT = 2
O⇠(d) · k · (log2 n). Then,

• The number of nodes in T is NT . Furthermore, this
holds regardless of the frequency oracle accuracy.

• mt( T ,S,ST )  ⇠

8(1+2/⇠) ·OPT
k

S +⌘ ·O(NT ).
• ST is a (⇠, ⌘ ·O(NT ))-coreset of S.

Moreover, the tree construction algorithm runs in time
poly(NT ) multiplied by the time to query f̃ .

4. From Low to High Dimension
The net tree-based algorithm can already be applied to give
an approximation algorithm for k-means, albeit with an ad-
ditive error of 2

O↵(d) · k · (log2 n) · ⌘. The exponential
dependency on d is undesirable. In this section, we show
how to eliminate this dependency via random projections,
following the approach of Ghazi et al. (2020b) for private
clustering in the central DP model. Specifically, the break-
through work of Makarychev et al. (2019) allows one to
randomly project to d = O(log k) dimensions while main-
taining the objective for any given partition.

Theorem 21 ((Makarychev et al., 2019)). For every 0 <

�̃, ↵̃ < 1 and k 2 N, there exists d0 = O↵̃ (log(k/�)) such
that the following holds. Let P be a random d

0-dimensional
subspace of Rd and ⇧P denote the projection from Rd to
P . With probability 1 � �̃, we have the following for all
partitions � : Bd

0 ! [k]:
1

1 + ↵̃


d · cost⇧P (S)(�)

d0 · costS(� �⇧P )
 1 + ↵̃.

Our encoding algorithm first projects x to x̃ in a given sub-
space P and appropriately scales it to x

0. It then computes
all potential representatives (corresponding to the complete
net tree of the nets L1, . . . ,LT ), and then encodes these
representatives in the generalized histogram and the gen-
eralized bucketized vector summation encoders, the latter
with the input vector x. This is presented more formally
below in Algorithm 3. (Note that we treat x0

i
as a vector in

Bd
0

directly; this is w.l.o.g. as we can rotate to make the
basis of P into the first d0 standard basis vectors.)

Algorithm 3 Encoding Algorithm for k-means.
Input: Point xi 2 Bd of user i.
Parameters: Privacy parameters ✏, �, nets L1, . . . ,LT ,
d
0-dimensional subspace P , and ⇤ > 0.

Subroutines: Encoders Enc
hist

,Enc
vec for generalized

histogram and bucketized vector summation.
1: procedure KMEANSENCODER✏,�,⇤,P,L1,...,LT (xi)

2: x̃i  ⇧P (xi)

3: if kx̃ik  1/⇤

4: x
0
i
= ⇤x̃

5: else
6: x

0
i
= 0

7: y
T

i
 Closest point to x

0
i

in LT

8: for j = T � 1, . . . , 1

9: y
j

i
 Closest point to y

j+1
i

in Lj

10: e
h

i
 Enc

hist
(✏/2,�/2)({y1i , . . . , yTi })

11: e
v

i
 Enc

vec
(✏/2,�/2)({y1i , . . . , yTi }, xi)

12: return (e
h

i
, e

v

i
)

To decode, we first use the encoded histogram to build a
frequency oracle, from which we construct a net tree T
using the algorithm in Section 3. We then run any approx-
imation algorithm A for k-means on the representative set
of T . The output of A gives a partition of the leaves of
T according to which centers are the closest. We then use
the vector summation oracle on these partitions to deter-
mine the k centers in the original (high-dimensional) space.
A pseudo-code of this algorithm is given below as Algo-
rithm 4. We stress here that the approximation algorithm A
need not be private.

A generic guarantee of our algorithm is stated next. As
we will explain below, plugging known histogram/vector
summation algorithms immediately yields our main results.



Locally Private k-Means in One Round

Algorithm 4 Decoding Algorithm for k-means.
Input: Encoded inputs eh1 , ev1, . . . , ehn, evn.
Parameters: Privacy parameters ✏, �, approximation al-
gorithm A for k-means.
Subroutines: Decoders Dec

hist
,Dec

vec for generalized
histogram and bucketized vector summation.

1: procedure KMEANSDECODER✏,�,A(e
h
1 , e

v
1, . . . , e

h
n
, e

v
n
)

2: f̃  frequency oracle from Dec
hist
(✏/2,�/2)(e

h
1 , . . . , e

h
n
)

3: ṽ  vector sum oracle from Dec
vec
(✏/2,�/2)(e

v
1, . . . , e

v
n
)

4: T  BUILDTREEf̃

5: {c01, . . . , c0k} A(ST )
6: �⇤  mapping leaves(T ) ! [k] where �⇤(z) = j

iff c0
j

is closest to z (with ties broken arbitrarily)
7: for j = 1, . . . , k

8: ṽ
j  0

9: ñ
j  0

10: for z 2 �
�1
⇤ (j)

11: ṽ
j  ṽ

j
+ ṽz

12: ñ
j  ñ

j
+ f̃z

13: c̃
j
= ṽ

j
/max{1, ñj}

14: if kc̃jk  1

15: cj  c̃j

16: else
17: cj  c̃j/kc̃jk
18: return {c1, . . . , ck}

Theorem 22. KMEANSENCODER✏,� is (✏, �)-DP. Further-
more, suppose that the following hold:

• A is a -approximation algorithm for k-means.
• d

0 is as in Theorem 21 with �̃ = 0.1�, ↵̃ = 0.1↵, and
⇤ =

q
0.01

log(n/�) ·
d

d0 .

• P is a random d
0-dimensional subspace of Rd.

• The parameters of BUILDTREE are as in Theorem 20
with ⇠ = 0.1↵, and let NT = 2

O↵(d0) · k · (log2 n) be
an upper bound on the number of nodes of T .

• (Enc
hist
(✏/2,�/2),Dec

hist
(✏/2,�/2)) is (⌘, 0.1�/NT )-accurate

for generalized histogram.
• (Enc

vec
(✏/2,�/2),Dec

vec
(✏/2,�/2)) is (⌘̃, 0.1�/NT )-accurate

for generalized bucketized vector summation.

Then, with probability 1 � �, KMEANSDECODER
outputs a

�
(1 + ↵), k

O↵(1)
(log

2
n) (log(n/�) · ⌘ + ⌘̃)

�
-

approximate solution for k-means. Moreover, the encoder
runs in time poly(ndk

O↵(1)
, t(Enchist), t(Encvec)), and

the decoder runs in time poly(ndk
O↵(1), t(A), t(Dec

hist
),

t(Dec
vec

)).

Theorem 22 allows us to easily derive approximation al-
gorithms for k-means in different distributed models of
DP, by simply plugging in the known generalized his-
togram/vector summation guarantees.

4.1. Approximation Algorithm for Local DP

Next we consider the local DP model and prove Theorem 1.

Proof of Theorem 1. Let � = 0.1. From Theorem 12, there
is an (⌘, 0.1�/NT )-accurate 0.5✏-DP algorithm for gener-
alized histogram with

⌘ = O(

p
nT 3 log(NT |L1 [ · · · [ LT |/�)/✏).

Since we set T = O(log n) (in Theorem 20), NT =

k
O↵(1) · poly log n by our choice of parameters, and since

|L1[ · · ·[LT |  exp(O(Td
0
)) by a volume argument, we

get ⌘ = O(
p
npoly log(n)/✏).

Similarly, from Lemma 13, there is an (⌘̃, 0.1�/NT )-
accurate 0.5✏-DP algorithm for generalized histogram with

⌘̃ = O(

p
ndT 3 log(dNT |L1 [ · · · [ LT |/�)/✏),

which as before yields ⌘̃ = O(
p
nd · polylog(n)/✏). Plug-

ging this into Theorem 22, we indeed arrive at a one-
round ✏-local DP ((1+↵), k

O↵(1) ·
p
nd ·polylog(n)/✏)-

approximation algorithm for k-means (with failure prob-
ability 0.1). It is easy to verify that the encoder and the
decoder run in time poly(n, d, k

O↵(1)
).

5. Experiments
Implementation Details. We modify our algorithm in sev-
eral places to make it more practical. First, instead of using
nets we use locality-sensitive hashing (LSH). Specifically,
given LSH g1, . . . , gT , the level-i representation of x is
now zi = (g1(x), . . . , gT (x)). In this sense, our tree bears
a strong resemblance to the so-called LSH forests (Bawa
et al., 2005; Andoni et al., 2017). As for the specific fam-
ily of hashes, we use SimHash (Charikar, 2002) in which a
random vector vi is picked and gi(x) is the sign of hvi, xi.
Since LSH can already be viewed as a dimensionality re-
duction method, we skip the random projection at the be-
ginning of the algorithm. Consequently, we also directly
compute the approximate centers of all the nodes in the
tree and then use a non-private algorithm (in particular, k-
means++ (Arthur and Vassilvitskii, 2007)) to compute the
k centers on this privatized dataset. Details on the choice
of parameters can be found in Appendix D.

Dataset Generation. We use mixtures of Gaussians, which
are generated as follows. For a separation parameter r and
the number k of clusters, first pick k centers uniformly at
random from the sphere of radius slightly less than one (i.e.,
1 � ⇥(r)). Then, for each center, we create n/k points by
adding to the center a Gaussian-distributed vector whose
expected norm is 1/r. Finally, we project any point that is
outside of the unit ball back into it. Note that we run our
algorithm on this dataset using the same value of k.

Although these datasets are relatively easy, we would like
to stress that we are not aware of any prior experiments or
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Figure 1. Normalized k-means objective of the output clusters for varying n, ✏ or k for d = 100, r = 100. Each set of parameters is
run 10 times; the average and the standard deviation of the normalized k-means objectives are included.

implementations of non-interative local DP algorithms.89

Furthermore, we point out that even experiments in the cen-
tral model of Balcan et al. (2017), which uses almost the
same data generation process (including separation param-
eters) as ours, suggest that the datasets are already chal-
lenging for the much more relaxed central DP model.

Results Summary. Figure 1 presents the normalized k-
means objective (i.e., the k-means objective divided by n)
as n, ✏ or k vary. Note that the “trivial” clustering where
we simply use the origin as the center has normalized ob-
jective roughly equal to one. Our clustering algorithm sig-
nificantly improves upon these when n is sufficiently large.
More importantly, as either n or ✏ increases, the normalized
objective decreases, as predicted by theory. Finally, when
the number of clusters k becomes larger, our algorithm suf-
fers larger errors, once again agreeing with theory.

6. Conclusions and Open Questions
We give private approximation algorithms for k-means
clustering whose ratios are essentially the same as those
of non-private algorithms in both the (one-round) local DP
and the (one-round) shuffle DP models. An interesting
open question is to extend this result to other clustering ob-
jectives, such as k-median. While the net trees can also be
applied to k-median with little change, the techniques we
use to handle high dimensions do not directly carry over.
This is due to the fact that, in k-means, it is simple to find a
center of a cluster in one round, by finding the average of all
the points. However, finding a cluster center in k-median
(to the best of our knowledge) requires solving a linear pro-
gram and it seems challenging to do so non-interactively.

8Very recently, (Xia et al., 2020) have reported experimental
results for k-means in the local DP model. However, their algo-
rithm, which is based on Lloyd’s iteration, requires interaction.

9We remark that we also tried some “naive” baseline algo-
rithms, such as noising each point using Gaussian/Laplace noise
and running k-means++ on this noisy dataset. However, they do
not produce any meaningful clustering even for n as large as 106.

Even for the k-means problem itself, there are still several
interesting questions. First, as mentioned in the Introduc-
tion, our algorithm relies crucially on public randomness
in the dimensionality reduction step, where every user has
to project onto the same random subspace P . Can k-means
be approximated almost optimally via a one-round local DP
algorithm that uses only private randomness?

Another direction is to tighten the additive error. In the cen-
tral model, this has recently been investigated in Chaturvedi
et al. (2021); Jones et al. (2021), who achieved essentially
tight additive errors in terms of k (and in certain regimes
d, n). It is a natural question to determine such a tight de-
pendency in the (non-interactive) local model too.
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