Modularity in Reinforcement Learning
via Algorithmic Independence in Credit Assignment

Michael Chang* ! Sidhant Kaushik*' Sergey Levine' Thomas L. Griffiths 2

Abstract

Many transfer problems require re-using previ-
ously optimal decisions for solving new tasks,
which suggests the need for learning algorithms
that can modify the mechanisms for choosing cer-
tain actions independently of those for choosing
others. However, there is currently no formal-
ism nor theory for how to achieve this kind of
modular credit assignment. To answer this ques-
tion, we define modular credit assignment as a
constraint on minimizing the algorithmic mutual
information among feedback signals for different
decisions. We introduce what we call the modu-
larity criterion for testing whether a learning algo-
rithm satisfies this constraint by performing causal
analysis on the algorithm itself. We generalize
the recently proposed societal decision-making
framework as a more granular formalism than the
Markov decision process to prove that for deci-
sion sequences that do not contain cycles, certain
single-step temporal difference action-value meth-
ods meet this criterion while all policy-gradient
methods do not. Empirical evidence suggests that
such action-value methods are more sample ef-
ficient than policy-gradient methods on transfer
problems that require only sparse changes to a
sequence of previously optimal decisions.

It is causality that gives us this modularity, and when
we lose causality, we lose modularity.

Judea Pearl (Ford, 2018)

“Equal contribution 'Department of Computer Science, Uni-
versity of California, Berkeley, USA *Department of Computer
Science, Princeton University, USA. Correspondence to: Michael
Chang <mbchang @berkeley.edu>.

Proceedings of the 38" International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

1. Introduction

Gusteau’s (Bird et al., 2007) taqueria has a great team for
making burritos: Colette heats the tortillas, Remy adds the
meat, and Alfredo wraps the burrito in aluminum foil. But
today customers fell sick from meat contamination and gave
angry reviews. Clearly, Remy should replace meat with
tofu or something else. But should credit assignment from
the reviews affect the others? Intuitively, no: the feedback
signals to the decision of adding meat and to the decisions
of heating tortillas and wrapping aluminum foil should be
independent. Customer dissatisfaction in burritos are not
reflective of the taqueria’s quesadillas, for which Colette’s
tortilla skills and Alfredo’s wrapping skills are useful.

The example above expresses the intuition that modularity,
or the capacity for the mechanisms in a system to be inde-
pendently modified, enables flexible adaptation. However,
using principles of modularity to build flexible learning sys-
tems has been difficult because the traditional formalism for
precisely describing what modularity means was developed
in the context of analyzing static systems — systems whose
mechanisms are assumed fixed. But learning agents are
dynamic systems composed of mechanisms (i.e. learnable
functions) that evolve over the course of learning. Thus, to
even express the hypothesis that modularity enables flexi-
bility in learning agents, let alone test it, we first need (1) a
formalism that defines what modularity means for dynamic

Mean Return

1 2 4 5 6
Steps 1e6 Steps le6

Figure 1: Minimal motivating example. The optimal action
sequence for the training task is A — B — C, and the optimal
sequence for the transfer task differs only in the last time-step. Con-
tinuing to train an optimal policy from the training task on the trans-
fer task with the cloned Vickrey society (CVS) from Chang et al.
(2020) transfers 13.9x more efficiently than with PPO (Schulman
et al., 2017), even though learning efficiency for both on-policy
algorithms during training is comparable. This paper suggests that
this is due to dynamic modularity: the algorithmic independence
among CVS’s learnable mechanisms and among their gradients.

Modularity in Reinforcement Learning via Algorithmic Independence in Credit Assignment

systems, (2) a theory that identifies the conditions under
which independent modification of learnable mechanisms
is even possible, and (3) a practical criterion for determin-
ing when these conditions are met in learning algorithms.
This paper proposes candidate answers to these questions
and applies them to shed new insight on the modularity of
discrete-action reinforcement learning (RL) algorithms. The
takeaway message of this paper is that independent modi-
fication of mechanisms requires both the mechanisms and
the feedback signals that update them to be independent.

Janzing & Scholkopf (2010) proposed to precisely charac-
terize modularity in static systems as the algorithmic inde-
pendence of mechanisms in the computational graph used to
describe the system. In learning systems, the computational
graph in question depicts the forward pass of a learner (e.g. a
neural network), but this graph itself evolves over the course
of learning because the learnable functions — the mecha-
nisms — get modified. For such dynamic systems, we extend
the static notion of modularity to define dynamic modular-
ity as the algorithmic independence of mechanisms in the
current iteration, conditioned on the graph from the previous
iteration of evolution. This addresses question (1).

Modularity matters when the system needs to be modified
for a new context or purpose. In learning systems it is the
credit assignment mechanism that performs this modifica-
tion. Thus dynamic modularity is tied to independence in
feedback: for a gradient-based learner, we show that en-
forcing dynamic modularity requires enforcing gradients to
be algorithmically independent as well, which we call the
modularity constraint. This addresses question (2).

Algorithmic independence is generally incomputable, which
makes the modularity constraint intractable to evaluate. To
make the constraint practical for analyzing learning algo-
rithms, we reconcile the computational graph of execution,
which evaluates learnable mechanisms as functions, with
the computational graph of credit assignment, which mu-
tates them as data, to represent the entire learning process as
one big causal graph, which we call the algorithmic causal
model of learning (ACML). Then the modularity constraint
translates into an easy-to-inspect criterion, the modularity
criterion, on d-separation in ACML that enables us to eval-
uate, without any training, whether a learning algorithm is
exhibits dynamic modularity. This addresses question (3).

Having established a theoretically-grounded formalism for
reasoning about modularity in learning systems, we theoreti-
cally and empirically analyze discrete-action RL algorithms.
The mechanisms of interest are the functions that compute
the “bid” (e.g. action probability or ()-value) for each value
of the action variable. The Markov decision process (MDP)
is too coarse-grained to represent these functions separately,
so we use the societal decision-making framework (SDM)
from Chang et al. (2020), whose computational graph does

treat them separately. We prove that certain single-step
temporal difference methods satisfy the modularity crite-
rion while all policy gradient methods do not. Empirically,
we find that for transfer problems that require only sparse
modifications to a sequence of previously optimal decisions,
implementations of algorithms that exhibit dynamic modu-
larity transfer more efficiently than their counterparts. All
proofs are in the Appendix.

2. Related Work

The hypothesis that modularity could improve flexibility
of learning systems has motivated much empirical work in
designing factorized architectures (Devin et al., 2017; An-
dreas et al., 2016; Chang et al., 2018; Goyal et al., 2019;
Kirsch et al., 2018; Alet et al., 2018; Pathak et al., 2019) and
reinforcement learners (Simpkins & Isbell, 2019; Sprague
& Ballard, 2003; Samejima et al., 2003), but the extent to
which the heuristics used in these methods enforce the learn-
able components to be independently modifiable has yet to
be tested. Conversely, other works begin by defining a multi-
agent system of independently modifiable components and
seek methods to induce their cooperation against a global
objective (Balduzzi, 2014; Baum, 1996; Srivastava et al.,
2013; Chang et al., 2020; Gemp et al., 2020; Balduzzi et al.,
2020), but the precise property of a learning system that
characterizes its modularity has not been discussed in these
works, as far as we are aware. Recent complementary work
has proposed alternative measures of modularity, restricted
to deep networks, based on connectivity strength (Filan
et al., 2021) and functional decomposition (Csordas et al.,
2020). In contrast, our work identifies a general property
that defines the modularity of a learning system as the al-
gorithmic independence of learnable mechanisms and of
their gradients, and presents a practical method for testing
for this property without any training. We build upon the
theoretical foundations from Janzing & Scholkopf (2010)
that have clarified similar notions of “autonomy” and “in-
variance” that underlie axioms of econometrics (Haavelmo,
1944; Aldrich, 1989), causality (Pearl, 2009; Peters et al.,
2017), and computer programming (Abelson & Sussman,
1996). Yu et al. (2020) explored enforcing the linear inde-
pendence of gradients to improve multi-task learning, and
formulating the precise connection between algorithmic and
linear independence would be valuable future work.

3. Background

Our analysis of the modularity of RL algorithms employs
two key ideas: (§3.1) computational graphs can be inter-
preted as causal graphs and (§3.2) a learnable discrete-action
policy can be interpreted as a society of learnable action-
specific functions and a fixed selection mechanism.

Modularity in Reinforcement Learning via Algorithmic Independence in Credit Assignment

3.1. Algorithmic Causality

We begin by reviewing terms from algorithmic information
theory (Kolmogorov, 1965; Li et al., 2008; Solomonoff,
1964)'. We assume that programs are expressed in a lan-
guage L and run on a universal Turing machine. Given bi-
nary strings x, y, and z, we denote conditional algorithmic
independence as © L y | z, equivalently I (z : y | 2) ==
which reads “given z, knowledge of y does not allow for
a stronger compression of z.” I denotes conditional algo-
rithmic mutual information. = denotes equality up to a
constant that depends on L but not the strings on either side
of the equality. Conditional Kolmogorov complexity of
y given x is given by K (y | x), the length of the shortest
program that generates y from z as input.

Janzing & Scholkopf (2010, Post. 6) generalized structural
causal models (Pearl, 1995) to general programs, allowing
us to treat computational graphs as causal graphs.

Definition 1 (computational graph). Define a computa-
tional graph G = (x, £) as a directed acyclic factor graph
(DAG) of variable nodes x = x1, ..., x N and function nodes
£=r' ... N Let each x; be computed by a program £
with length O(1) from its parents {pa;} and possibly an
additional noise input n ;. Assume the noise n; are jointly in-
dependent: n; 1L {n;}. Formally, z; := £/ ({pa;},n;),
meaning that the Turing machine computes x; from the
input {pa;},n; using the additional program £’ and halts.

This DAG represents a probabilistic program (van de Meent
et al., 2018; Goodman et al., 2016; Mansinghka et al., 2009)
in the general case, and either a standard causal model if
some f; takes in a noise variable or a deterministic program
if none do. Henceforth we treat all graphs as computational
graphs. We define a mechanism as the string representation
(i.e. source code) of the program that implements a function
f and data as the string representations of the input/output
variables x of £. The algorithmic causal Markov condi-
tion (Janzing & Scholkopf, 2010, Thm. 4), which states that
d-separation implies conditional independence, generalizes
the standard Markov condition to general programs:

Theorem 1 (algorithmic causal Markov condition). Let
{pa;} and {nd;} respectively represent concatenation of
the parents and non-descendants (except itself) of x; in a
computational graph. ThenVxj, x; 1L {nd;} | {pa,}.

In standard causality it is typical to assume the converse of
the Markov condition, known as faithfulness (Spirtes et al.,
2000). We do the same for algorithmic causality:

Postulate 2 (algorithmic faithfulness). Given sets S, T,
R of nodes in a computational graph, I(S : T|R) £
implies R d-separates S and T'.

!'See the appendix for background.

3.2. Societal Decision-Making

A discrete-action MDP is the standard graph for a sequential
decision problem over states S with N discrete actions A,
defined with state space S, action space {1, ..., N}, tran-
sition function T : § x {1,..., N} — S, reward function
R:S x {1,..., N} — R, and discount factor vv. The MDP
objective is to maximize the return ZtT:O VtR(s¢, az) with
respect to a policy 7 : S — {1,..., N}. We define a deci-
sion as a value a of A. The MDP abstracts over the mecha-
nisms that control each decision with a single edge in the
graph, represented by 7, but to analyze the independence of
different decisions we are interested in representing these
mechanisms as separate edges.

The societal decision-making (SDM) framework (Chang
et al., 2020) offers an alternative graph that does exactly
this: it decomposes a discrete-action policy as a society of
N agents w” that each controls a different decision. Each
agent is a tuple (1%, ¢*) of a bidder ¥ : S — B and a
fixed transformation ¢k : S — S. In §6, we will con-
sider the algorithmic independence of the ¢™. Recovering
a policy m composes two operations: one computes bids
bk := ¥ (s), Vk, and one applies a selection mechanism
s : BN — {1,..,N} on the bids to select decision a.
SDM thus curries the transition and reward functions as
T:{l,.,.N} > [S— S]andR: {1,..,N} = [S = R].

Chang et al. (2020) introduced the cloned Vickrey soci-
ety (CVS) algorithm as an on-policy single-step temporal-
difference action-value method. CVS interprets the Bellman
optimality equation as an economic transaction between
agents seeking to optimize their utilites in a Vickrey auc-
tion (Vickrey, 1961) at each time-step. The Vickrey auction
is the selection mechanism that selects the highest bidding
agent ¢, which receives a utility

U;t (W) = R?(w', 5¢) + 7 - max b’;ﬁ+1 — Iglzi bgt, (D
—— ——

utility revenue, or valuation vs, price

and the rest receive a utility of 0. In CVS each agent bids
twice: the highest and second highest bids are produced
by the same function parameters. The auction incentivizes
each agent to truthfully bid the @-value of its associated
transformation mechanism, independent of the identities
and bidding strategies of other agents.

4. Dynamic Modularity in Learning Systems

This section extends the definition of modularity in static
systems to dynamic systems. We discuss learning algo-
rithms as examples of dynamic systems and the constraints
that must be imposed on the credit assignment mechanism
for the learning algorithm to be exhibit dynamic modularity.

Modularity in Reinforcement Learning via Algorithmic Independence in Credit Assignment

4.1. From Static Modularity to Dynamic Modularity

A system can be described by a computational graph, whose
mechanisms represent the system components (e.g. stars
of a star system) and whose data represent the informa-
tion communicated between components (e.g. forces be-
tween the stars). We describe a dynamic system with a
dynamic graph whose mechanisms symmetrically evolve
through time (e.g. the stars move), processed by a meta-
mechanism that is equivariant to re-indexing of the mecha-
nisms (e.g. physical laws governing stars’ motion are invari-
ant to change reference frame). In this sense, mechanisms in
dynamic graphs can be treated as not only functions but also
variables (with respect to the meta-mechanism), which we
will exploit. A static system, described by a static graph
with fixed mechanisms, represents a snapshot in time of a
dynamic system. Treating mechanisms as fixed is often as-
sumed in standard causal analysis (Pearl, 2009). Modularity
in the static context has been defined as the autonomy (Pearl,
2009, §1.3.1), or more precisely, the algorithmic indepen-
dence (Janzing & Scholkopf, 2010, Post. 7) of mechanisms:

Definition 2 (static modularity).
Vk#4, I(£:8)Zo. 2)

We now add a temporal dimension ¢ to define modularity
for dynamic systems, which we assume are Markovian:

Definition 3 (dynamic modularity).
Vk#j, (e @7 |y f) Lo, (3)

Dynamically modularity essentially considers the static
modularity of a system at a particular snapshot in time,
treating the past iterations as background information.

4.2. Learning Algorithms are Dynamic Systems

We now show that general learning algorithms are examples
of dynamic systems and can be analyzed as such. To do so,
we need to specify the data and mechanisms of the static
computational graph that represents a particular snapshot,
as well as the equivariant meta-mechanism that evolves the
mechanisms from one iteration to the next.

Let the model of execution be the computational graph E
that represents the forward pass of the learner, generating
X as an execution trace (21, ..., ¢, ...,) of the input and
output data of the learnable mechanisms £. For example,
with MDPs, the forward pass is a rollout, the trace records
its states, actions, and rewards, and the mechanisms, which
map parent variables {pa}; = s; to child variables z; =
(at, s¢+1,7¢), are instances of the policy at different steps ¢.

Let the model of credit assignment be the computational
graph C that evolves the mechanisms. Each step represents

the backward pass of the learner. Here the mechanisms are
treated as data for two equivariant meta-mechanisms, the
credit assignment mechanism II(x, £) — & and the update
rule UPDATE(£,d) — £'. C can be viewed as a reward-
less MDP with states £ and actions &, with UPDATE as
the transition function. Then II is a context-conditioned
policy that generates modifications § = (d1,...,d07) to
the functions £ of the learner, given x as context. For a
gradient-based learner, §F is the gradient of the learning
objective with respect to the function £* that participated
at step t of the execution trace (e.g. as we discuss in §6,
8% would be the Bellman error of the decision mechanism
for action k taken at step 7). UPDATE performs the paral-
lel operation UPDATE(£¥,3", 6F) — £* over all mecha-
nisms £*. The choice of optimizer for gradient descent (e.g.
Adam (Kingma & Ba, 2014)) determines the functional form
of UPDATE. Henceforth we assume gradient-based learning,
but our results hold more generally given the assumptions
that UPDATE (1) is algorithmically independent of II and
(2) completely factorizes across k.

4.3. Modularity Constraint on Credit Assignment

The design of a learning algorithm primarily concerns the
credit assignment mechanism II, whereas the choice of
UPDATE is often assumed. We now present the constraint
II must satisfy for dynamic modularity to hold at every iter-
ation of learning. Given trace X and previous mechanisms £,
we define the modularity constraint as that which imposes
that the gradients 41, ..., d7 be jointly independent:

Definition 4 (modularity constraint).

I(81,....00 | x, £) Z0. 4)

A modular credit assignment mechanism is one that sat-
isfies the modularity constraint. If E exhibited statically
modularity (i.e. its functions were independently initialized)
then a modular IT enforces dynamic modularity:

Theorem 3 (modular credit assignment). Dynamic mod-
ularity is enforced at learning iteration 1 if and only if static
modularity holds at iteration i = 0 and the credit assign-
ment mechanism satisfies the modularity constraint.

Initializing different functions with different weights is not
sufficient to guarantee dynamic modularity. The gradients
produced by IT must be independent as well. If IT were not
modular it would be impossible for it to modify a function
without simultaneously inducing a dependence with another,
other than via non-generic instances where §; has a simple
description, i.e. ; = 0, which, unless imposed, are unlikely
to hold over all iterations of learning.

Modularity in Reinforcement Learning via Algorithmic Independence in Credit Assignment

() Algorithmic Causal Model of Learning (b) Modular

| ® 0 o
e @ o o B COmm mm
H — - ol im0
e 2Ch
222
@ ¢ o T
- - -Em- e
moE

¥ ¥
CREDIT ASSIGNMENT MECHANISM I ‘—°

Figure 2: Algorithmic Causal Model of Learning. A learning
algorithm with credit assignment mechanism II that produces
gradients § to update functions f to £’ can be represented as a
causal graph (a). II is not modular (b) if it contains a hidden
variable whose outgoing causal edges cut a partitioning among the
d’s (shown by the red star) and modular (c) if it does not.

5. An Algorithmic Causal Model of Learning

We can determine the dynamic modularity of a learning
algorithm if we can evaluate the modularity constraint, but
evaluating it is not practical in its current form because algo-
rithmic information is generally incomputable. This section
proposes to bypass this incomputability by translating the
constraint into a d-separation criterion on the causal struc-
ture of I, defined as part of one single causal graph of the
learning process, which combines both the model of execu-
tion and the model of credit assignment. The challenge to
constructing this graph is that £ are treated as functions in E
but as data in C, so it is not obvious how to reconcile the two
in the same graph. We solve this by treating the function
application operation APPLY (Abelson & Sussman, 1996)?,
where V£, x, APPLY(f,x) := £(z), as itself a function in
a computational graph, enabling us to treat both £ and x as
variables in the same flattened dynamic graph (Fig. 2a).

Lemma 4 (algorithmic causal model of learning). Given
a model of execution E and of credit assignment C, define
the algorithmic causal model of learning (ACML) as a
dynamic computational graph 1L of the learning process.
We assume 11 has its own internal causal structure with
internal variable and function nodes. The function nodes
of L are APPLY, UPDATE, and the internal function nodes
of 11, all with length O(1). The variable nodes of L are x,
£, 6, and internal variable nodes of 1. Then these variable
nodes satisfy the algorithmic causal Markov condition with
respect to L for all steps of credit assignment.

ACML is the bridge that brings tools from algorithmic
causality (Janzing & Schélkopf, 2010) to bear on analyzing
not simply the algorithmic independence of variables, but
algorithmic independence of functions in general learning
algorithms. The learnable mechanisms are no longer con-
sidered to have length O(1) as is assumed in the model of

“This operation is known in A-calculus as S-reduction.

execution. With ACML, we define a criterion to test whether
the modularity constraint holds by direct inspection:

Theorem 5 (modularity criterion). If L is faithful, the
modularity constraint holds if and only if for all i, outputs
0 and 6, of 11 are d-separated by its inputs x and E.

We generally have access to the true computational graph,
because the learning algorithm was programmed by us.
Thus Thm. 5 enables us to evaluate, before any training,
whether a learning algorithm satisfies the modularity con-
straint by simply inspecting L for d-separation (Fig. 2b,c),
giving us a practical tool to both design and evaluate learn-
ing algorithms on the basis of dynamic modularity.

6. Modularity in Reinforcement Learning

We now apply the modularity criterion to evaluate the
dynamic modularity of two major classes of RL algo-
rithms (Sutton & Barto, 2020) — action-value and policy-
gradient methods. The modularity criterion unlocks the use
graphical language for our analysis, which simplifies the
proofs. We define a common model of execution for all al-
gorithms within the SDM framework from §3.2 that enables
us to compare the causal structures of their different credit
assignment mechanisms under ACML. We find that in the
general function approximation setting, assuming acyclic
decision sequences, the cloned Vickrey society (CVS, §3.2)
is the only algorithm to our knowledge so far that produces
reinforcement learners that exhibit dynamic modularity.

6.1. From Monolithic Policies to Decision Mechanisms

As mentioned in §3.2, and as motivated by our taqueria
example, we are interested in analyzing the independence
of different decisions, so we need to adapt the model of exe-
cution we gave as an example for MDPs in §4.2 to treat the
functions that control each decision as separate mechanisms.

We observe from the SDM framework that any discrete-
action policy 7 with IV actions can be decomposed into
a set of mechanisms computing a “bid” b’jt for each deci-
sion £ (i.e., a value of the action variable, recall §3.2) at
the given state s;, and an independent selection mechanism
that selects a decision given the bids (Fig. 3a-c). Define a
decision mechanism as the function that computes a bid.
For policy-gradient methods, a bid corresponds to the action
probability for a particular action p(a = k|-), and the selec-
tion mechanism is the stochastic sampler for a categorical
variable. For action-value methods, a bid corresponds to
the estimated Q-value for a particular action, Q(-,a = k),
and the selection mechanism could be an e-greedy sampler
or a Vickrey auction (Chang et al., 2020). Often decision
mechanisms share weights (e.g. DQN (Mnih et al., 2015))
and thus are algorithmically dependent, but for some al-
gorithms they do not, as in CVS. Then, by absorbing the

Modularity in Reinforcement Learning via Algorithmic Independence in Credit Assignment

transition function T and reward function R into APPLY, the
function nodes £ of our model of execution are the decision
mechanisms, which each take as input s;, and produce as
output the tuple (b% , 5,41, 7, wf), where wy is a binary flag
that indicates whether the selection chose its corresponding
action. The execution trace x, which we call a decision

sequence, records the values of these variables in a rollout.

6.2. The Modularity of RL Algorithms

We now ask which action-value and policy-gradient meth-
ods exhibit dynamic modularity by evaluating whether their
credit assignment mechanisms satisfy the modularity crite-
rion and whether their decision mechanisms share weights.

Which RL algorithms satisfy the modularity criterion?
The modularity criterion can be violated if there exists a
shared hidden variable in the causal structure of II that
couples together the gradients &, which causes the §5’s to
not be d-separated given x and £ (Fig. 3c-e).

For all policy gradient methods, the gradient into the ac-
tion probabilities includes a normalization term), b* as a
shared hidden variable (Fig. 3e):

Corollary 5.1 (policy gradient). All policy gradient meth-
ods do not satisfy the modularity criterion.

We divide action-value methods into single-step and n-step
(where n > 1) temporal difference methods, abbrv. TD(0)
and TD(n > 1) respectively. For TD(n > 1) methods,
such as those that use Monte Carlo (MC) estimation of
returns, TD(X) (Sutton, 1985), or generalized advantage es-
timation (Schulman et al., 2015), this shared hidden variable
is a sum of estimated returns or advantages at different steps
of the decision sequence (Fig. 3d):

Corollary 5.2 (n-step TD). All TD(n > 1) methods do not
satisfy the modularity criterion.

This leaves only TD(0) methods. If the decision mech-
anism £* were selected (i.e. wf = 1) at step ¢, these
methods produce, for some function g, gradients as JF :=
g(b% sy, s141,1¢, £). Otherwise, 6F := 0. For example,
for Q-learning, g is the TD error [max; b] + r; — bf]
(Fig. 3f), where [max; b], | is computed from s;1; and £.
The only hidden variable is [max; b/ .]. It is only shared
when the decision sequence x contains a cycle where two
states s; and s} transition into the same state s;;1. In this
cyclic case, the credit assignment mechanism would not

satisfy the modularity criterion. Otherwise it does:

Corollary 5.3 (single-step TD). TD(0) methods satisfy the
modularity criterion for acyclic x.

As cyclic x are non-generic cases that arise from specific set-
tings of x, we henceforth restrict our analysis to the acyclic

@ ,, . (@) MC S0
° ..
CHON - 5 Os - 10n ° InONECECING
X K

o OO0 omo

Figure 3: Modularity in RL. To convert the MDP model of exe-
cution (a) to the SDM model of execution (c), we split the action
node into a set of nodes each representing a possible decision (b)
and split the monolithic policy into a set of decision mechanisms
for each decision (c). The agent-environment boundary separates
the learnable decision mechanisms from other algorithmically in-
dependent functions, such as the transition function of the MDP
(T) or the selection mechanism of the policy (S). TD(n > 1)
methods, like using Monte Carlo (MC) estimation (d), and policy
gradient (PG) methods (e) do not have modular credit assignment
mechanisms because they contain shared hidden variables. TD(0)
methods (f) have modular credit assignment mechanisms in gen-
eral. The causal edges of non-modular credit assignment cut a
partitioning among the gradients 4, indicated by the red star.

case, justifying this restriction similarly to the justification
of assuming faithfulness in other causal literature.

Which RL algorithms exhibit dynamic modularity?
We have identified TD(0) methods as the class of RL al-
gorithms that satisfy the modularity criterion. By Thm. 3,
whether they satisfy dynamic modularity now depends on
whether they satisfied static modularity at initialization
(¢ = 0). We assume random initialization of £, so the only
source of dependence among £ is if they share parameters.

In the tabular setting, decision mechanisms are columns of
the ()-table corresponding to each action. Because these
columns do not share parameters, ()-learning (Watkins &
Dayan, 1992), SARSA (Rummery & Niranjan, 1994), and
CVS exhibit dynamic modularity:

Corollary 2.1 (tabular). In the tabular setting, Thm. 3
holds for Q-learning, SARSA, and CVS.

In the general function approximation setting, static mod-
ularity requires decision mechanisms to not share weights,
which eliminates DQN (Mnih et al., 2015) and its variants.

Corollary 2.2 (function approximation). In the function
approximation setting, Thm. 3 holds for TD(0) methods
whose decision mechanisms do not share parameters.

To our knowledge, CVS is the only proposed TD(0) method
with this property, but it is straightforward to make existing
TD(0) methods exhibit dynamic modularity by using sepa-
rate networks for estimating the (-value of each decision.

Modularity in Reinforcement Learning via Algorithmic Independence in Credit Assignment

Optimal decision sequence

for training task uses a, = a,

C O 0— @
<>>>:<<;%<2< g«‘)
O—00—0—0
C 2<>>E<<>>Z<<>>Z<<)
o O— = O0—0—0O

for transfer task uses a, = a, - ~ a3 Q

Intervention on MDP
swaps effects of a; and a,

Figure 4: How transfer tasks are generated. We consider
transfer problems where the optimal decision sequence of the
transfer task differs from that of the training task by a single
decision. As above, the transfer MDP and the training MDP differ
in that the effects of actions a; and a2 get swapped; all other
transitions remain the same. The agent must learn to choose action
a4 instead of az while re-using other previously optimal decisions.

Summary. If we want dynamic modularity, then we need
the decision mechanisms to not share parameters and the
credit assignment mechanism to not contain a shared hidden
variable that induced algorithmic dependence among the
gradients it outputs. An RL algorithm with dynamic modu-
larity makes it possible for individual decision mechanisms
to be modified independently without an accompanying
modification to other decision mechanisms.

7. Simple Experiments

This paper is motivated by the hypothesis that modularity
enables flexible adaptation. To test this hypothesis requires
(1) a method for determining whether a learning algorithm
is modular and (2) a metric for evaluating flexible adapta-
tion. The previous sections have contributed (1). The metric
we use for (2) is the comparative transfer efficiency of an
algorithm that exhibits dynamic modularity with respect
to one that does not. We consider transfer problems that
require modifying only one decision in a previously opti-
mal decision sequence needs to be changed, similar to our
motivating example with Gusteau’s taqueria (§1).

Our evaluation focuses on discrete-action on-policy RL al-
gorithms since many factors that influence the learning of
off-policy methods are still not well understood (Achiam
et al., 2019; Kumar et al., 2020; Van Hasselt et al., 2018; Fu
et al., 2019). Specifically we compare three algorithms that
span the spectrum of action-value and policy-gradient meth-
ods. CVS represents a method that exhibits dynamic modu-
larity. PPO (Schulman et al., 2017) represents a method that
is not modular at all. PPOF is a modification of PPO whose
where each action logit is computed by a different network,
and represents a method that exhibits static modularity at
initialization but not dynamic modularity during learning.

We designed our experiments to be as minimal as possible

to remove confounders. States are represented as binary vec-
tors. The reward is given at the end of the episode and is 1 if
the task is solved and O otherwise. The relationship between
the training and transfer MDP is given by an intervention in
the MDP transition function (Fig. 4).

7.1. An Enumeration of Transfer Problems

Similar to how analysis of d-separation is conducted with
triplets of nodes, we enumerated all possible topologies of
triplets of decisions: linear chain, common ancestor, and
common descendant (Fig. 5, left column). For each topology
we enumerated all ways of making an isolated change to
an optimal decision sequence. The common ancestor and
common descendant topologies involve multi-task training
for two decision sequences of length two, while linear chain
involves single-task training for one decision sequence of
length three. For example, in Fig. 5, the optimal decision
sequence for the linear chain training task is A —» B —
C. For each topology we have a training task and three
independent transfer tasks. Each transfer task represents a
different way to modify the MDP of the training task. This
single comprehensive task suite (Fig. 5) enables us to ask a
wide range of questions. The answers to the questions that
follow are scoped only to our stated experimental setup.

Does dynamic modularity improve transfer efficiency?
Yes, at least in these experiments. For each of the nine trans-
fer settings (rightmost three columns) in Fig. 5, CVS (red)
transfers consistently more efficiently than both PPO (green)
and PPOF (blue), despite having comparable training effi-
ciency in the training task (second column from left). The
variance among the different runs is also lower for CVS.

How does where a decision needs to be modified in the
decision sequence affect transfer efficiency? The im-
provement in transfer efficiency is especially pronounced in
the trend shown in the bottom row of Fig. 5 for linear chain.
The later the decision that needs to be modified appears in
the decision sequence, the wider the gap between CVS and
the other two methods, to the point that we had to widen
the plot width. Our theory (Thm. 3) offers one possible
explanation. Considering the bottom-right plot of Fig. 5, the
transfer task requires modifying the last decision and keep-
ing the previous two the same. But the lack of independent
gradients and parameters in PPO and PPOF seems to have
affected correct decision mechanisms in the first two steps
based on the errors encountered by the decision mechanism
in the last step, seemingly causing the previous decision
mechanisms to “unlearn” originally optimal behavior, then
relearn the correct behavior again, as shown in the plots for
“state 0” and “state 1” in Fig. 6. This unnecessary unlearning
and relearning seems to be a primary reason for the lower
transfer efficiency of PPO and PPOF. It is as if Colette in

Modularity in Reinforcement Learning via Algorithmic Independence in Credit Assignment

Common Ancestor T&ammg Task (a) Transfer from (a) to (b)

Transfer from (a) to (c)

Transfer ﬁom (a) to (d)

-/ﬂ e : | 0 <07] s /" 075 [e
ES- B 20 3 10.8x 2, 3 - 21x
i c| go. goso | Zo. Foso /
@) () c c os T c s oS
| = g0 PPOF $0.25 PPOF go. PPOF 5025 |4 PPOF
— /” z PPO = PPO = PPO = PPO
T
| 0.00 i 2 3 005 1 5 3 000 i 2 3
(c) (d) Steps e Steps le6 Steps le6 Steps le6
Common Descendant
B [& 0 2075 L0x 075/ [L0x 20750 N i
~ — £ £ £ £
/-ﬂ /)ﬂ E 2 2.8x 2 1.8x 2 2.2x
> o (5 | go. o0 8050 8os0
@ o] 8o ovor 5025/ | wor | Soas wor | Soas o
@ Y @ Y @ Y
ﬂ\\n n\/‘ﬂ % PPO = PPO = PPO = PPO
- [8 0.007 1 3 000G 3 5 3 000 i 2 3
©) (d) Steps 1e Steps le6 Steps le6 Steps 1le6
Linear Chain
@ n 0 £ 0.75 L2x 0. 075 G
l! l! = = = =
* 3 2 1.6x 2 2
[oo g K 0.50 20. 2 0.50
v 50. rror §0.25 wor | § 5025 or
30 o oY oY oY i
© |IH—BE—ha = PPO = PO | = = PPO
0.00'4 5 3 0.00
0 1 2 3 1 3 3 4 5 6 7 8 9 10
@ I—a—A Yoteps. 166 Steps 1e6 Steps 1e6 Steps 1e6

Figure 5: Transfer problems involving triplets of decisions. For each task topology (leftmost column) we have a training task,
labeled (a) and three independent transfer tasks, labeled (b,c,d). Each transfer task is a different way to modify the training task’s MDP.
CVS consistently exhibits higher sample efficiency than both PPO and PPOF showing that dynamic modularity correlates with more
efficient transfer. Notably the gap between CVS and the other methods in the bottom-right (e.g. 13.9x more efficient than PPO) is so
wide that we had to extend the chart width. We set the convergence time as the first time after which the return deviates by no more than
€ = 0.01 from the optimal return, 0.8, for 30 epochs of training. Shown are runs across ten seeds.

Gusteau’s taqueria (§1) stopped heating tortillas because
of the angry reviews about meat contamination but then
realized that she should still be heating tortillas after all.

Does dynamic modularity enable independent modifica-
tion of decision mechanisms in practice? While theory
tells us that decision mechanisms can be modified indepen-
dently within a single credit assignment update, in practice
transfer learning requires multiple credit assignment updates
to converge. Across multiple credit assignment updates, the
decision mechanisms would no longer be independent, even
for algorithms that exhibit dynamic modularity, but it is
also expected that the functions of a learner should learn
to work together over the course of learning in any case.
Nonetheless, Fig. 6 shows that the lack of a softmax ty-
ing the bids of CVS together enables them to change more
independently and rapidly than PPOF.

How much of transfer efficiency is due to modular
credit assignment than network factorization? This
question pits our theory against a competing explanation:
that network factorization alone (represented by PPOF) is
responsible for improved transfer efficiency. Though PPOF
is more efficient than PPO in training and transfer, PPOF is
consistently less efficient than CVS in transfer while being
similarly efficient in training. This suggests that network
factorization is not a sufficient explanation, leaving our the-
ory of dynamic modularity still standing.

7.2. Modularity and Forgetting

A desirable consequence of having the capacity to indepen-
dently modify learnable mechanisms is the ability to not

Transfer

[

Training

State 0

State 2

State 1

e &
S o
-]

Bid value
o
I
S

>

Bid value
o
I
S

°
N
a

0.5
Steps

ot
o

0.5
Steps

PPOF A
PPOF B
PPOF C
PPOF D
—— PPOFE
—— PPOFF

PPOF A
PPOF B
PPOF C
PPOF D
—— PPOF E
—— PPOF F

CVS A
cvsB
cvsc
cvsD
—— CVSE
— CVSF

Figure 6: How the decision mechanisms change during trans-
fer. Shown the three states of the decision sequence. The optimal
last decision must change from action C (purple) to action D
(green). CVS modifies its bids independently. The bids for PPOF
are coupled together across decision mechanisms and across time.

modify mechanisms that need not be modified: we would
not want the agent to forget optimal behavior in one context
when it trains on a different task in a different context. We
now test whether dynamic modularity contributes to this
ability. The experimental setup is shown in Fig. 7. There
are four possible values for the action, A, B, C, D. In task
(a), the optimal decision sequence is A — C, starting at
state sy and passing through state s, which has a context
bit flipped to 0. In task (b), the optimal decision sequence
is B — D, starting at state s; and passing through state s,
which has a context bit flipped to 1. Though the optimal
states for task (a) are disjoint from the optimal states for task
(b), the decision mechanisms corresponding to A, B, C, D
are present for both tasks. We first train on task (a), then
transfer from (a) to (b), then transfer back from (b) to (a).

Modularity in Reinforcement Learning via Algorithmic Independence in Credit Assignment

Training Task (a)

Transfer from (a) to (b) Transfer from (b) back to (a)

o
©

77\

"\f,f)
IO = == > 2O

Hor et

Mean Return
o o
) o

o
N

.

— Qs
—— PPOF

0.8

o©
)

0 1 2
Steps

1.9x
c c
506 506 10.6x
° ©
%04 o4
g g —— Qs
=02 =022 —— PPOF
PPO
3 0073 1 2 3 005 i 2 3
le6 Steps le6 Steps le6

Figure 7: Modularity and forgetting. The optimal solutions for tasks (a) and (b) involve a disjoint set of decisions: A — C for task (a)
and B — D for task (b). We first train on task (a), then transfer from (a) to (b), then transfer back from (b) to (a). The purpose of this
experiment is to test whether dynamic modularity improve the agent’s ability to preserve optimal behavior on a previous task after having
trained to convergence on a different task in a different context. While both CVS and PPO have similar sample efficiency when initially
training on task (a), CVS is more than ten times more sample efficient than PPO when transferring back from (b) to (a), suggesting that
PPO “forgot” the optimal behavior for task (a) when training on task (b), which is not the kind of forgetting we want in learning agents.

Does dynamic modularity improve the agent’s ability to
preserve optimal behavior on a previous task after hav-
ing trained to convergence on a different task? To test
this, we compare CVS and PPO’s sample efficiency when
transferring back from (b) to (a). Fig. 7 shows that even
when both CVS and PPO have similar sample efficiency
when initially training on task (a), CVS is more than ten
times more sample efficient than PPO when transferring
back from (b) to (a). Our explanation for this phenomenon
is that the lack of algorithmic independence in the decision
mechanisms of PPO causes the decision mechanisms for
actions A and C' to be significantly modified when PPO
transfers from (a) to (b), even when these actions do not
even participate in the optimal decision sequence for task
(b). The low sample efficiency when transferring back from
(b) to (a) suggests that PPO “forgot” the optimal behavior
for task (a) when training on task (b), which is not the kind
of forgetting we want in flexibly adaptable agents.

How much of this ability to preserve previously optimal
behavior due to modular credit assignment than net-
work factorization? PPOF is similarly inefficient as PPO
compared to CVS in transferring from (a) to (b), which is
consistent with our findings from §7.1. Interestingly, PPOF
seems to be just as efficient at transferring back from (b) to
(a) as CVS, which seems to suggest that the primary cause
for the forgetfulness of PPO, at least in this experiment, is
less due to lack of independent gradients but more to lack of
network factorization. This experiment suggests a need for
an explanatory theory to identify under which circumstances
independent gradients are more influential to flexible adap-
tation than network factorization, and vice versa, as well as
a means for quantifying the degree of influence each has.

8. Discussion

The hypothesis that modularity can enable flexible adapta-
tion requires a method for determining whether a learning
system is modular. This paper has contributed the modular-

ity criterion (Thm. 5) as such a method. The consistency of
how dynamic modularity in on-policy reinforcement learn-
ing correlates with higher transfer efficiency in our experi-
ments suggests a need for future work to provide an explana-
tory theory for exactly how dynamic modularity contributes
to flexible adaptation as well as to test whether the same
phenomenon can be observed with other classes of learn-
ing algorithms, other transfer problems, and other domains.
The modularity criterion is a binary criterion on algorithmic
independence or lack thereof, but our experiments also sug-
gest a need for future work in quantifying algorithmic causal
influence if we want to relax the criterion to a softer penalty
on algorithmic mutual information. Learning algorithms are
simply only one example of the more general concept of
the dynamic computational graph introduced in this paper,
which we have shown with Lemma 4 can be used to analyze
the algorithmic independence of functions that evolve over
time. The connection we have established among credit
assignment, modularity, and algorithmic information the-
ory, in particular the link between learning algorithms and
algorithmic causality, opens many opportunities for future
work, such as new ways of formalizing inductive bias in
the algorithmic causal structure of learning systems and the
learning algorithms that modify them.

Acknowledgements

We thank Daniel Filan, Michael Janner, Giambattista Paras-
candolo, Sam Toyer, and Olivia Watkins for feedback on
earlier drafts of the paper. We thank Dominik Janzing, Avi-
ral Kumar, and Jason Peng for useful discussions. This
research was supported by the AFOSR grant FA9550-18-1-
0077, and computing resources from Amazon Web Services
and Microsoft Azure. MC is supported by the National Sci-
ence Foundation Graduate Research Fellowship Program.

Modularity in Reinforcement Learning via Algorithmic Independence in Credit Assignment

References

Abelson, H. and Sussman, G. J. Structure and interpretation
of computer programs. The MIT Press, 1996.

Achiam, J., Knight, E., and Abbeel, P. Towards charac-
terizing divergence in deep g-learning. arXiv preprint
arXiv:1903.08894, 2019.

Aldrich, J. Autonomy. Oxford Economic Papers, 41(1):
15-34, 1989.

Alet, F., Lozano-Pérez, T., and Kaelbling, L. P. Modular
meta-learning. arXiv preprint arXiv:1806.10166, 2018.

Andreas, J., Rohrbach, M., Darrell, T., and Klein, D. Neural
module networks. In Proceedings of the IEEE conference

on computer vision and pattern recognition, pp. 39-48,
2016.

Balduzzi, D. Cortical prediction markets. arXiv preprint
arXiv:1401.1465, 2014.

Balduzzi, D., Czarnecki, W. M., Anthony, T. W., Gemp,
I. M., Hughes, E., Leibo, J. Z., Piliouras, G., and
Graepel, T. Smooth markets: A basic mechanism
for organizing gradient-based learners. arXiv preprint
arXiv:2001.04678, 2020.

Baum, E. B. Toward a model of mind as a laissez-faire
economy of idiots. In ICML, pp. 28-36, 1996.

Bird, B., Lewis, B., Pinkava, J., and Capobianco, J. Rata-
touille, 2007.

Chaitin, G. J. On the length of programs for computing
finite binary sequences. Journal of the ACM (JACM), 13
(4):547-569, 1966.

Chaitin, G. J. A theory of program size formally identical
to information theory. Journal of the ACM (JACM), 22
(3):329-340, 1975.

Chang, M., Kaushik, S., Weinberg, S. M., Griffiths, T. L.,
and Levine, S. Decentralized reinforcement learning:
Global decision-making via local economic transactions.
arXiv preprint arXiv:2007.02382, 2020.

Chang, M. B., Gupta, A., Levine, S., and Griffiths,
T. L. Automatically composing representation transfor-

mations as a means for generalization. arXiv preprint
arXiv:1807.04640, 2018.

Csordas, R., van Steenkiste, S., and Schmidhuber, J. Are
neural nets modular? inspecting functional modular-
ity through differentiable weight masks. arXiv preprint
arXiv:2010.02066, 2020.

Devin, C., Gupta, A., Darrell, T., Abbeel, P., and Levine,
S. Learning modular neural network policies for multi-
task and multi-robot transfer. In Robotics and Automa-
tion (ICRA), 2017 IEEE International Conference on, pp.
2169-2176. IEEE, 2017.

Filan, D., Casper, S., Hod, S., Wild, C., Critch, A., and
Russell, S. Clusterability in neural networks. arXiv
preprint arXiv:2103.03386, 2021.

Ford, M. Architects of Intelligence: The truth about Al from
the people building it. Packt Publishing Ltd, 2018.

Fu, J., Kumar, A., Soh, M., and Levine, S. Diagnosing
bottlenecks in deep g-learning algorithms. In Interna-
tional Conference on Machine Learning, pp. 2021-2030.
PMLR, 2019.

Gaécs, P, Tromp, J. T., and Vitanyi, P. M. Algorithmic
statistics. IEEE Transactions on Information Theory, 47
(6):2443-2463, 2001.

Gemp, I, McKee, K. R., Everett, R., Duéfiez-Guzman, E. A.,
Bachrach, Y., Balduzzi, D., and Tacchetti, A. D3c: Re-
ducing the price of anarchy in multi-agent learning. arXiv
preprint arXiv:2010.00575, 2020.

Goodman, N. D., Tenenbaum, J. B., and Contributors,
T. P. Probabilistic Models of Cognition. http://
probmods.org/v2,2016. Accessed: 2021-1-29.

Goyal, A., Lamb, A., Hoffmann, J., Sodhani, S., Levine,
S., Bengio, Y., and Scholkopf, B. Recurrent independent
mechanisms. arXiv preprint arXiv:1909.10893, 2019.

Haavelmo, T. The probability approach in econometrics.
Econometrica: Journal of the Econometric Society, pp.
iii—115, 1944.

Janzing, D. and Scholkopf, B. Causal inference using the
algorithmic markov condition. [EEE Transactions on
Information Theory, 56(10):5168-5194, 2010.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Kirsch, L., Kunze, J., and Barber, D. Modular networks:
Learning to decompose neural computation. In Advances

in Neural Information Processing Systems, pp. 2414—
2423, 2018.

Kolmogorov, A. N. Three approaches to the quantitative
definition of information. Problems of information trans-
mission, 1(1):1-7, 1965.

Kumar, A., Agarwal, R., Ghosh, D., and Levine, S. Implicit
under-parameterization inhibits data-efficient deep rein-
forcement learning. arXiv preprint arXiv:2010.14498,
2020.

http://probmods.org/v2
http://probmods.org/v2

Modularity in Reinforcement Learning via Algorithmic Independence in Credit Assignment

Lemeire, J. Conditional independencies under the algo-
rithmic independence of conditionals. The Journal of
Machine Learning Research, 17(1):5252-5271, 2016.

Lemeire, J. and Janzing, D. Replacing causal faithfulness
with algorithmic independence of conditionals. Minds
and Machines, 23(2):227-249, 2013.

Li, M., Vitanyi, P, et al. An introduction to Kolmogorov com-
plexity and its applications, volume 3. Springer, 2008.

Mansinghka, V. K. et al. Natively probabilistic computa-
tion. PhD thesis, Massachusetts Institute of Technology,
Department of Brain and Cognitive ..., 2009.

Meek, C. Strong completeness and faithfulness in bayesian
networks. In Proceedings of the Eleventh Conference
on Uncertainty in Artificial Intelligence, UAI’95, pp.
411-418, San Francisco, CA, USA, 1995. Morgan Kauf-
mann Publishers Inc. ISBN 1558603859.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness,
J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidje-
land, A. K., Ostrovski, G., et al. Human-level control
through deep reinforcement learning. nature, 518(7540):
529-533, 2015.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., et al. Pytorch: An imperative style, high-performance
deep learning library. arXiv preprint arXiv:1912.01703,
2019.

Pathak, D., Lu, C., Darrell, T., Isola, P., and Efros, A. A.
Learning to control self-assembling morphologies: a
study of generalization via modularity. In Advances in
Neural Information Processing Systems, pp. 2295-2305,
2019.

Pearl, J. Causal diagrams for empirical research. Biometrika,
82(4):669-688, 1995.

Pearl, J. Causality. Cambridge university press, 2009.

Peters, J., Janzing, D., and Scholkopf, B. Elements of causal
inference. The MIT Press, 2017.

Rummery, G. A. and Niranjan, M. On-line Q-learning
using connectionist systems, volume 37. University of
Cambridge, Department of Engineering Cambridge, UK,
1994.

Samejima, K., Doya, K., and Kawato, M. Inter-module
credit assignment in modular reinforcement learning.
Neural Networks, 16(7):985-994, 2003.

Schulman, J., Moritz, P., Levine, S., Jordan, M., and Abbeel,
P. High-dimensional continuous control using generalized
advantage estimation. arXiv preprint arXiv:1506.02438,
2015.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

Simpkins, C. and Isbell, C. Composable modular reinforce-
ment learning. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 33, pp. 4975-4982, 2019.

Solomonoff, R. J. A preliminary report on a general theory
of inductive inference. United States Air Force, Office of
Scientific Research, 1960.

Solomonoff, R. J. A formal theory of inductive inference.
part ii. Information and control, 7(2):224-254, 1964.

Spirtes, P., Glymour, C. N., Scheines, R., and Heckerman,
D. Causation, prediction, and search. MIT press, 2000.

Sprague, N. and Ballard, D. Multiple-goal reinforcement
learning with modular sarsa (0). 2003.

Srivastava, R. K., Masci, J., Kazerounian, S., Gomez, F.,
and Schmidhuber, J. Compete to compute. In Advances
in neural information processing systems, pp. 2310-2318,
2013.

Sutton, R. S. Temporal credit assignment in reinforcement
learning. 1985.

Sutton, R. S. and Barto, A. G. Reinforcement learning: An
introduction. MIT press, 2020.

van de Meent, J.-W., Paige, B., Yang, H., and Wood, F. An
introduction to probabilistic programming. arXiv preprint
arXiv:1809.10756, 2018.

Van Hasselt, H., Doron, Y., Strub, F., Hessel, M., Sonnerat,
N., and Modayil, J. Deep reinforcement learning and the
deadly triad. arXiv preprint arXiv:1812.02648, 2018.

Vickrey, W. Counterspeculation, auctions, and competitive
sealed tenders. The Journal of finance, 16(1):8-37, 1961.

Watanabe, C. Interpreting layered neural networks via hi-
erarchical modular representation. In International Con-
ference on Neural Information Processing, pp. 376-388.
Springer, 2019.

Watkins, C. J. and Dayan, P. Q-learning. Machine learning,
8(3-4):279-292, 1992.

Yu, T., Kumar, S., Gupta, A., Levine, S., Hausman, K., and
Finn, C. Gradient surgery for multi-task learning. arXiv
preprint arXiv:2001.06782, 2020.

