
Image-Level or Object-Level?
A Tale of Two Resampling Strategies for Long-Tailed Detection

Nadine Chang 1 * Zhiding Yu 2 Yu-Xiong Wang 3 Anima Anandkumar 2 4 Sanja Fidler 2 5 6 Jose M. Alvarez 2

Abstract
Training on datasets with long-tailed distributions
has been challenging for major recognition tasks
such as classification and detection. To deal with
this challenge, image resampling is typically in-
troduced as a simple but effective approach. How-
ever, we observe that long-tailed detection differs
from classification since multiple classes may be
present in one image. As a result, image resam-
pling alone is not enough to yield a sufficiently
balanced distribution at the object level. We ad-
dress object-level resampling by introducing an
object-centric memory replay strategy based on
dynamic, episodic memory banks. Our proposed
strategy has two benefits: 1) convenient object-
level resampling without significant extra compu-
tation, and 2) implicit feature-level augmentation
from model updates. We show that image-level
and object-level resamplings are both important,
and thus unify them with a joint resampling strat-
egy (RIO). Our method outperforms state-of-the-
art long-tailed detection and segmentation meth-
ods on LVIS v0.5 across various backbones.

1. Introduction
Real-world visual data often follows a long-tailed distribu-
tion, where a few object classes are very common and many
of the classes are rare (Zhu et al., 2014; Liu et al., 2019;
Gupta et al., 2019). However, many existing datasets are
curated to be balanced (Krizhevsky et al., 2009; Everingham
et al.; Lin et al., 2014), leading to a discrepancy between
the performance of the methods developed and tested on
these datasets and their performance when deployed in the
real world. In many applications, localization/recognition
of rare classes is critical, e.g., in autonomous driving the
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Figure 1. We illustrate the difference between image resampling
and our proposed resampling strategy based on object-centric mem-
ory replay. In image resampling, all the objects within a repeated
image are resampled, including the teddy bears, aprons, and gourds
in this example. Our method increases the sampling of the rare
gourds by retrieving additional ones from the memory bank.

ego-car is expected to be able to localize and react to objects
such as certain animals that the system has not often seen in
the training data. In this paper, we address the problem of
long-tailed object detection (and segmentation).

Long-tailed recognition has been recently popularized, facil-
itated by the release of large-scale visual recognition bench-
marks (Liu et al., 2019; Gupta et al., 2019). Popular ap-
proaches include reweighting the loss function according to
the class frequency (Tan et al., 2020), decoupling represen-
tation and classifier (Kang et al., 2019), as well as few-shot
learning techniques such as feature normalization (Chen
et al., 2019; Wang et al., 2020b), fine-tuning (Wang et al.,
2020b), and meta-learning (Wang et al., 2017). In addition
to these techniques, repeat factor sampling (RFS) (Mahajan
et al., 2018; Gupta et al., 2019) has emerged as a simple but
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popular image resampling baseline. By repeating images
containing rare classes in each epoch, the method is shown
to work well on long-tailed classification problems (Wang
et al., 2018; Kang et al., 2019). However, applying the same
method out of the box for object detection, even though
shown to be empirically effective (Gupta et al., 2019), ig-
nores the fact that a general image often contains multiple
objects from different classes. This is aggravated by the
common co-occurrence of frequent classes and rare classes,
as shown in Fig. 1. Therefore, image resampling alone is not
sufficient to successfully balance the training distribution.

One special aspect of detection is that objects are the basic
units. This requires object-centric sampling strategies that
can balance the distribution at the object-level. Achieving
this goal is not straightforward, because image-level batch
sampling is still the predominant pipeline for the current
object detection training practices. Arguably, one could
consider straightforward modifications that are compatible
to this pipeline, for example, sampling additional images or
even object crops containing the target rare classes. How-
ever, this may introduce additional computational costs by
the extra forward and backward propagation during training,
especially when the distribution is highly imbalanced. Other
possible complications include the need to ignore frequent
classes when taking the whole sampled image as input, or
losing image context when just taking the object crops.

We address the issues by proposing a novel object-centric
memory replay framework that augments each batch with
additional region of interest (RoI) features and their cor-
responding box locations. At the core of our framework
is the idea of reusing the RoI features from the previous
forward propagation. This can be achieved by introducing
a dynamic memory bank that stores the RoI features and
box coordinates. The memory bank is continuously updated
every iteration by pushing with the batch of newly computed
RoI features, and basically serves as a buffer with limited
size to accumulate the RoI features for every class. Under
an imbalanced input distribution, the buffers of frequent
classes get filled and updated quicker, whereas the ones of
rare classes also get filled over time (but slower). Thus the
memory bank allows for efficient object resampling without
requiring additional forward/backward propagation. The
above strategy has two additional advantages: (1) The mem-
ory bank contains features from historical model snapshots,
thus achieving model-level augmentation across time. (2)
The box locations for the same object can be slightly differ-
ent over time, because models are continuously updated and
images are randomly augmented. Thus our OCS framework
can achieve diversified augmentation at various levels.

We provide detailed analysis on both image-level and object-
level resamplings to examine the overlooked pitfalls for de-
tection. Although the two strategies capture different aspects

of resampling, they are actually not mutually exclusive. Al-
though a memory bank can counter imbalanced distribution
by accumulating features over time, our analysis indicates
that certain extremely rare classes only appear few times in
one epoch. This leads to significantly outdated features and
decreases the memory bank quality. Fortunately, such issue
can be directly addressed with an RFS-based image resam-
pling. We therefore argue that image-level and object-level
resamplings can be symbiotic, which leads to a joint resam-
pling strategy termed RIO (Resampling at Image-level and
Object-level, shown in Fig. 1).

We showcase our method’s efficacy on LVIS which is cur-
rently the most popular and challenging benchmark for long-
tailed detection (Gupta et al., 2019). Previous methods im-
prove the overall accuracy but the rare classes still show
significant gaps to the common and frequent classes. Our
method greatly alleviates this issue, leading to state-of-the-
art performance both overall and on rare classes.

Summary of Contributions:

• We propose a novel object-centric memory replay strategy
based on memory bank. Our method is able to perform ef-
ficient object-level sampling with implicit augmentation.

• We show the importance of balancing the distribution at
both image-level and object-level in object-centric mem-
ory replay. This motivates us to propose RIO, a unified
resampling framework comprising both schemes.

• Our framework is frustratingly simple but motivated. The
proposed method achieves state-of-art performance in
both the overall accuracy and accuracy of rare classes.

2. Related Work
Few-shot Learning. Few-shot learning has been a domi-
nant task towards addressing imbalanced datasets. Many
approaches focus on utilizing similar class features to as-
sist in creating better rare class features or scores (Vinyals
et al., 2016; Snell et al., 2017). More recent approaches
attempt to address few-shot learning as a “learning to learn”
task using meta-learning (Finn et al., 2017; Wang & Hebert;
Zhang et al., 2018). Finally, another stream attempts to solve
few-shot learning by adding more training samples. This
is similar in nature to resampling, but explicitly attempts
to create samples that are more unique. Some works use
Generative Adversarial Networks to synthesize entirely new
images (Radford et al., 2015), while others require addi-
tional annotations to create domain specific samples (Lake
et al., 2013; Radford et al., 2015). Some work bypasses
the complexity of generating images and instead uses meta-
learning to hallucinate features (Wang et al., 2018). Simi-
larly, our method also focuses on feature-level augmentation.
While few-shot learning has seen significant advance, it as-
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sumes that imbalanced datasets contain either large or small
amounts of data and differs from long-tailed learning.

Long-tailed Classification. Certain limitations of few-shot
learning have motivated the interest to study long-tailed
learning. A popular approach to address long-tailed learn-
ing is to transfer feature representations (Liu et al., 2019)
or intra-class variance (Yin et al., 2019) from common cat-
egories to rare ones. However, these approaches tend to
require relatively complex frameworks such as modulated
attention and dynamic meta-embeddings (Liu et al., 2019).
Similar frameworks are also used to address the additional
intra-class variance in long-tailed datasets and improve the
robustness and generalization for the rare categories (Zhu
& Yang, 2020). Recent works indicate that simple strategies
such as resampling and reweighting in different stages of
training also work very well (Kang et al., 2019; Shen et al.,
2016; Cao et al., 2019). (Kang et al., 2019) shows that
normalizing and adjusting classifiers only with resampling
strategies are able to achieve good performance. In addition,
the class-balance loss shows that class-balanced training
can be achieved by re-weighting category losses based on
the category size (Cui et al., 2019). Both resampling and
rebalancing aim towards a common goal of balancing the
contribution of all classes. Their overall success indicates
that class balancing is crucial for long-tailed learning.

Long-tailed Detection and Segmentation. Long-tailed de-
tection and segmentation recently raised great attention. A
popular long-tailed detection baseline is Repeat Factor Sam-
pling (RFS) which repeats an image based on the rarest ob-
ject within that image. The class-aware resampling method
attempts to balance the batch by filling it with classes first,
and then randomly sampling images for each class (Shen
et al., 2016). However, class-aware sampling often performs
worse when there is a large number of classes with a highly
imbalanced sample distribution, such as LVIS. Classic fine-
tuning (Wang et al., 2020b), a baseline also for few-shot
learning, has shown that simply fine-tuning a pretrained
model on the rarer categories substantially increases their
performance. Fine-tuning also uses RFS to fine-tune on
more rare samples. Additionally, Hu et al. separates the
long-tailed dataset into sections and performs incremental
learning in each section (Hu et al., 2020). Another major
line of work focuses on different loss strategies. Equaliza-
tion Loss (EQL) (Tan et al., 2020) and Seesaw Loss (Wang
et al., 2020a) attempt to balance encouraging and discourag-
ing gradients for classes. Similar in spirit, another method
proposes a balanced group softmax (BAGS) and tries to
balance all classifiers such that both frequent and rare classi-
fiers are trained sufficiently (Li et al., 2020). Lastly, Forest
R-CNN (Wu et al., 2020) leverages the existing hierarchi-
cal structure in the dataset and constructs a different model
architecture based on the class hierarchies. Although per-
forming well on LVIS, the proposed method is highly reliant

on the extra supervision from the hierarchy which in reality
is not always available or requires careful construction.

Memory Bank. Memory bank was recently proposed by
Wu et al. (Wu et al., 2018). A memory bank consists of
the feature representations of dataset samples, supporting
fast large-scale feature retrievals without forward and back-
propagation computation costs. Though widely used in re-
cent unsupervised contrastive representation learning meth-
ods (Chen et al., 2020a; He et al., 2020; Chen et al., 2020b),
the technique has not been applied to long-tailed object
detection problems to the best of our knowledge.

3. Method
Our ultimate goal is to boost the number of rare classes only,
which cannot be achieved by using only image resampling
due to the nature of multi-object images. Thus, in junction
with image sampling, batches are augmented with RoI ob-
ject samples from the memory bank as seen in Fig. 2. We
describe our memory bank setup, dynamic changes, and
training in the following section.

Following LVIS class set definitions, the classes of a long-
tailed dataset can be divided into three sets of classes based
on the number of training examples per class: 1) Sf , fre-
quent classes with > 100, 2) Sc, common classes with
< 100 images but > 10 images, and 3) Sr, rare classes with
≤ 10 images. We denote the total number of images in the
dataset as N . For a single image Ii, i ∈ (1, . . . , N),we de-
note all k objects as oji , j ∈ (1, . . . , k). Each oji corresponds
to its category cji , j ∈ (1, . . . , k).

3.1. Memory Bank

Setup. The memory bank M consists of several independent
queues for each targeted object class as seen in Fig. 2. As
we only want to repeat rare classes, the key classes in M are
only the rare classes. Note that the key classes can be set to
any set of classes if desired. Thus, we denote each category
queue in M as qr, r ∈ Sr. To improve efficiency and space,
each qr can only store a maximum amount of v samples.
We emphasize that our queues are not traditional queues in
the sense that sampling from a queue does not remove the
sample from the queue. Finally, we note that our memory
bank is only utilized during training. Evaluation proceeds
as normal without any augmentation. We describe the three
main operations used on our memory bank and illustrate all
operations in Fig. 3.

Pushing to Memory Bank. The memory bank consists of
only object-level samples. In order to achieve that, M is
populated by RoI object features with class labels and their
bounding box coordinates. Within our framework where
we use Mask R-CNN as our architecture, we obtain RoI
features and bounding boxes from the fully connected layer
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Figure 2. A depiction of RoI object feature’s extraction location and our memory bank M used for object resampling.
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Figure 3. Our memory bank three operations are shown here in
the sequential order in which they will be used during training: 1)
Sampling, 2) Dequeuing, 3) Pushing.

immediately prior to the classification and bounding box
regression branches. However, we emphasize that any RoI
level features can be used in the memory bank. We illustrate
the location of our feature extraction in Fig. 2. At training
iteration t with training batch B, all objects proposed in
image i are denoted as oji , j ∈ (1, . . . , k). If any object
category cji ∈ Sr, we push the RoI features and bounding
boxes, denoted as {feat, box}t, into the top of M’s category
queue qr. We iterate through all images and objects to
discover any RoI feature and bounding box to add to M.

Dequeuing from Memory Bank. At any point when any
queue qr reaches its maximum space limit v, we have to
dequeue feature and proposal pairs from qr. We dequeue
qr from the bottom of the queue, where the oldest samples
are located. As illustrated in Fig. 3, when we want to push a
pair {feat, box}t into a full qr, we first dequeue from qr
and then push {feat, box}t into qr.

Sampling from Memory Bank. A batch cannot sample
from a category r from queue qr in M until qr is populated
with at least 1 sample. qr is populated immediately after
the first image containing r is observed during training.
Once qr is populated, we can sample from qr to augment
any training batch. At training iteration t with training
batch B, we augment the batch with object-level samples if
necessary. For each Ii in B, we augment the batch if there
exist any r ∈ Sr. Specifically, we augment the batch by
sampling from qr x number of feature and proposal pairs
{feat, box}t−l, l ∈ (1, . . . , x). The number of samples x

can be changed as desired. From here, training proceeds as
normal towards classification and bounding box regression.

In summary, if there exists any target category in a cur-
rent batch, the class’ queue 1) dequeues if necessary, 2)
samples additional features with ground truth classes and
bounding boxes from the queue, and 3) pushes the current
feature, ground truth class, and bounding box into the queue.
We emphasize that through memory bank we are able to
augment batches with object samples from different images,
model snapshots, and image augmentations.

3.2. Resampling Strategy

In this section, we explore different resampling strategies
and analyze their effects in balancing the image/object-level
distributions. We also consider their roles in designing our
resampling policy with memory bank.

Dataset. We report our analysis on the LVIS version 0.5
dataset. LVIS version 0.5 contains 1230 classes, split into
454 rare categories, 461 common categories, and 315 fre-
quent categories. LVIS defines classes with > 100 images
as frequent, classes with > 10 but < 100 images as com-
mon, and classes with ≤ 10 images as rare.

Image Resampling. Repeat factor sampling (RFS) (Gupta
et al., 2019) has been a baseline image resampling method
for LVIS. This method is not new, and is thus not part of our
contribution. RFS is a pre-processing method that dictates
which images are repeated per epoch. First, for each cate-
gory c, RFS computes the fraction of images that contain it
and denotes it as f(c). Next, for each category c, it computes
a category level “repeat factor” r(c) = max(1,

√
t/f(c),

where t is a hyperparameter defaulted to 0.001. Finally,
for each image I containing k unique categories, an image-
level “repeat factor” is computed as r(I) = max(1, r(c)),
c ∈ 1, . . . , k. Intuitively, the rarest category is used to
compute the repeat factor for each image.

Although RFS is an effective resampling strategy for de-
tection, its image-based resampling has certain limitations
for long-tailed detection problems. Images often contain a
mixture of frequent, common, and rare categories. Thus,
resampling an image causes all present objects to be resam-
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Figure 4. Image-level and object-level resampling analysis. Start from the leftmost to the rightmost figure: (a) The number of instances
per category with image resampling (RFS). (b) Total number of instances per category type. (c) Memory bank update frequency for some
rare classes. (d) The number of instances per category with image and object resampling (RIO).

pled, not just the ones from rare classes. We illustrate this
phenomenon by showing for an epoch the number of object
instances per category in Fig. 4a. One can observe that the
frequent classes are also increased. Similarly, we show the
total number of object instances for overall frequent, com-
mon, and rare categories in Fig. 4b. Frequent classes as a
whole shows an 18% relative increase in the number of ob-
ject instances. Ideally, the focus of resampling in detection
is to target sufficiently equalized object-level distributions.
Yet manipulating object-level distribution is fundamentally
difficult with an image-based resampling strategy. We there-
fore address this pitfall through object-level resampling.

Object Resampling. Object-centric sampling (OCS) specif-
ically resamples targeted object instances as opposed to a
whole image. We achieve this by augmenting a batch that
has a targeted class with a set amount of additional features
(default at 20). These features are stored in a memory bank
that continuously updates when a targeted object is seen.
For a given epoch, the object-level sampling effect on the
number of object instances is shown in Fig. 4b. OCS is able
to specifically resample classes with fewer instances, such
as those in rare and a subset of common classes, without re-
sampling additional frequent classes. However, OCS relies
on an updating memory bank. The memory bank is only
allowed to update when a batch contains an image with tar-
geted objects. Thus, the success of OCS is restricted by the
number of images per epoch. In Fig. 4c, we can observe the
frequency of memory bank updates for the most common
types of rare classes that have 1-11 total object instances.
In a worse case scenario without image resampling, a rare
class seen in only 1 image can only update the memory bank
once in an epoch. Further, object instances seen only in the
beginning of an epoch lack more mature features found later
in the epoch. The lack of updates reduces the amount of
augmentation and better trained features over time.

Proposed Resampling Strategy. When considering a re-
sampling policy for localization, we discover that neither
image resampling nor object resampling is sufficient as a
stand-alone strategy. Image resampling suffers from resam-
pling redundant frequent classes, and object resampling is
inherently restricted by the number of image appearances in

an epoch that allows for memory bank updates. We hypoth-
esize that localization resampling requires both image-level
and object-level resampling, where each is complimentary
to the other. As demonstrated in Fig. 4c, image resampling
allows the feature memory bank to update more frequently.
Similarly, in Fig. 4b, the inclusion of object resampling in-
creases the number of rare and common classes’ instances
without increasing the total frequent classes’ instances. Con-
clusively, we propose RIO, a resampling strategy that jointly
resamples at both image-level and object-level as a com-
prehensive resampling strategy for object detection. We
illustrate RIO’s effects on a training epoch by showing the
number of object instances per category in Fig. 4d.

4. Experiments
In this section we detail our experiments using RIO on
the LVIS dataset. We demonstrate the effectiveness of our
method against other resampling methods and previous top
performing non-sampling methods on LVIS.

4.1. Experimental Setup

Implementation. As detailed in Sec. 3.1, our memory bank
targets specific classes to store. With LVIS v0.5, we tar-
get the infrequent categories with images ≤ 30 samples.
Thus, we focus on all LVIS’ rare classes and a subportion
of its common classes. Specifically, by using classes with
≤ 30 samples, we target a total of 706 classes in our mem-
ory bank. Additionally, our experiments use Mask R-CNN
with a ResNet-50 backbone and Feature Pyramid Network
(FPN) (He et al., 2017). Our networks are trained and
tested with Detectron2 (Wu et al., 2019) on PyTorch ver-
sion 1.5.1. Images are resized such that their shorter and
longer edges are 800 and 1333 pixels, and are augmented
with only horizontal flipping. Unless specified otherwise,
models are trained with batchsize 16, base learning rate
0.02, and weight decay 0.0001 on 4 Tesla V100s with 32GB
memory. Following standard Detectron2 settings, RPN uses
only 256 regions for training. All models train for 90000
iterations, with decay at 60k and 80k iterations. During
testing, 100 detections are allowed per image. We note that
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Mask R-CNN basic classifier layer is traditionally set as
a linear classifier. However, several papers in long-tailed
classification and detection (Chen et al., 2019; Wang et al.,
2020b) have demonstrated the success of cosine layer for
both classification and detection. Thus, our model uses co-
sine layer (Cos) as well. Lastly, our memory bank has a
fixed maximum size v in order to constrain the amount of
memory taken. In all experiments we set v to be 60 samples.
Our models augment each batch by 20 samples for each
targeted memory bank class that exists in the batch.

Evaluation Metric. We follow the LVIS evaluation metrics
and report the APs of the three category domains and denote
them as follows: APf for frequent classes, APc for common
classes, and APr for rare classes. As we use Mask R-CNN,
we report the overall box AP and mask AP of detection
and segmentation as APb and APm, respectively. Lastly, we
also report AP50 and AP75, which refer to overall AP with
IoU = 50 and IoU = 75 respectively.

4.2. Main Results on LVIS v0.5

Rebalancing Baselines. We first establish a few rebalanc-
ing baselines which feature simplicity using either resam-
pling or reweighting. We compare against existing methods
such as repeat factor sampling (RFS) (Gupta et al., 2019),
class-aware sampling (Shen et al., 2016), class-balanced
loss (Cui et al., 2019), and equalization loss (EQL) (Tan
et al., 2020). RFS was introduced along with LVIS, where
each image is repeated if the rarest category in that image
is below a certain threshold. The amount of repetition is
determined by exactly how many images the rarest cate-
gory contains as detailed in Sec. 3.2. Class-aware sampling
first samples a category and then uniformly samples a ran-
dom image that contains the category (Shen et al., 2016).
Class-balanced loss weighs the loss by using the number of
samples for each class to rebalance the loss (Cui et al., 2019).
Similar in nature to class-balanced loss, EQL’s contribution
is not explicitly image or object resampling. They ignore
the gradient from samples of frequent categories for the rare
categories. We report 2 sets of EQL performance. EQL’s
GitHub implementation notes that its results are better than
the ones reported in the original paper because on top of
horizontal flipping they include features such as scale jitter,
class-specific mask head, and better ImageNet pretrained
models which come along with Detectron2. In addition to
the above rebalancing methods, we also report the perfor-
mance of cosine layer baseline for ablation study.

Object Detection. As shown in Tab. 1, our object-centric
sampling (OCS) baseline achieves a 24.4% overall box AP,
which is slightly higher than RFS. Notably, OCS outper-
forms EQL GitHub with a 22.4% relative improvement on
rare AP. This increase illustrates the effectiveness of object
resampling alone without additional image repeat. Unified

Table 1. Ablation study and comparison to resampling and
reweighting baselines on LVIS v0.5, where † and ‡ indicate results
from the paper and GitHub of (Tan et al., 2020), respectively.

Detection APb AP50 AP75 APr APc APf

Baseline (Cos) 22.0 36.6 22.6 5.3 20.9 30.1
Cls-Aware Smp.† 18.4 - - - - -
Cls-Bal. Loss† 21.0 - - - - -
EQL† 23.3 - - - - -
EQL Github‡ 23.6 38.3 25.2 8.5 23.9 29.3
RFS (Cos) 24.3 40.3 24.8 13.1 23.9 29.3
OCS (Ours) 24.4 40.0 25.4 10.4 24.4 29.9
RIO (Ours) 25.7 41.8 26.7 17.2 25.1 29.8

Segmentation APm AP50 AP75 APr APc APf

Baseline (Cos) 22.9 35.4 24.2 6.7 23.1 29.0
Cls-Aware Smp.† 18.5 31.1 18.9 7.3 19.3 21.9
Cls-Bal. Loss† 20.9 33.8 22.2 8.2 21.2 25.7
EQL† 22.8 36.0 24.4 11.3 24.7 25.1
EQL Github‡ 24.0 36.6 26.0 9.4 25.2 28.4
RFS (Cos) 25.1 38.9 26.6 15.1 25.4 28.6
OCS (Ours) 24.8 38.2 26.0 12.0 25.7 28.7
RIO (Ours) 26.0 39.7 28.0 18.9 26.2 28.5

resampling using RIO further achieves 25.7% overall AP,
a 5.8% relative improvement from RFS alone. In addition,
RIO achieves the best performance on rare categories with
a 17.2% AP, which is a 31.3% relative improvement from
RFS and a 102.3% relative improvement from EQL GitHub.

Instance Segmentation. As shown in Tab. 1, RIO achieves
a 26.0% overall mask AP, which is 0.9% better than RFS,
3.2% better than EQL, 2.0% better than EQL GitHub, 6.0%
better than class-balanced loss, and 7.5% better than class-
aware sampling. OCS alone outperforms EQL whereas RIO
further improves both rare and common categories.

State-of-the-arts. Besides the above rebalancing baselines,
we also compare with state-of-the-art methods in Tab. 2, and
illustrate the relative improvement over them in Tab. 3. We
consider several top performing methods: 1) RFS + Fine-
Tuning (FT) (Wang et al., 2020b), 2) RFS + EQL (Gupta
et al., 2019), 3) Forest R-CNN (Wu et al., 2020), 4) Balanced
Group Softmax (BAGS) (Li et al., 2020). Note that Forest R-
CNN is a strong but relatively complicated framework which
requires additional class hierarchy structure and supervision.

Object Detection. Since RFS + FT only provides detection
results, we compare to it only on this task. Our method
outperforms by 1.3% on overall box AP, 1.1% on rare AP,
0.8% on common AP, and 2.1% on frequent AP. Our method
achieve a relative 5.2% improvement on the overall box AP
and a relative 1.9% improvement on the rare AP. Our rare AP
is 0.3% higher than Forest R-CNN, 1.2% higher than RFS
+ EQL, and 2.2% higher than BAGS, which correspond to
1.9%, 7.4%, and 14.6% relative improvements, respectively.
We note that BAGS mainly targets the overall performance
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Table 2. Comparison to state-of-the-art methods on LVIS v0.5 with
a ResNet-50 backbone. † indicates results from the GitHub.

Detection APb AP50 AP75 APr APc APf

RFS + FT 24.4 40.0 26.1 16.9 24.3 27.7
RFS + EQL† 25.4 41.1 27.0 16.0 25.4 29.1
Forest R-CNN 25.9 42.7 27.2 16.9 26.1 29.2
BAGS 25.8 - - 15.0 25.5 30.4
RIO (Ours) 25.7 41.8 26.7 17.2 25.1 29.8
RIO + EQL (Ours) 26.1 41.9 27.3 18.6 26.2 29.0

Segmentation APm AP50 AP75 APr APc APf

RFS + EQL† 26.1 39.6 27.6 17.2 27.3 28.2
Forest R-CNN 25.6 40.3 27.1 18.3 26.4 27.6
BAGS 26.2 - - 18.0 26.9 28.7
RIO (Ours) 26.0 39.7 28.0 18.9 26.2 28.5
RIO + EQL (Ours) 26.3 39.8 27.9 18.8 27.4 27.9

Table 3. Relative performance gain (%) of our methods compared
to other methods in Tab. 2. † indicates results from the GitHub.

Method Comp Method
Detection Segmentation

APb APr APc APm APr APc

RIO RFS + FT 5.2 1.9 3.2 - - -
RIO RFS + EQL† 1.0 7.4 -1.4 -0.5 9.7 -4.0
RIO Forest R-CNN -0.9 1.9 -3.9 1.5 3.1 -0.7
RIO BAGS -0.4 14.6 -1.5 -1.0 5.0 -2.6

RIO + EQL RFS + FT 7.0 10.2 7.8 - - -
RIO + EQL RFS + EQL† 2.8 16.1 3.1 0.7 9.5 0.0
RIO + EQL Forest R-CNN 0.8 10.2 0.4 2.7 2.9 3.7
RIO + EQL BAGS 1.3 23.9 3.0 0.1 4.8 1.7

and emphasizes less on the rare classes. Although Forest R-
CNN is less imbalanced, its performance on rare classes still
has space to improve. On the other hand, RIO achieves state-
of-the-art rare AP, while maintaining competitive overall
AP. This provides a good trade-off between rare and overall
performance and better ensures model fairness.

Instance Segmentation. Our improvement on rare AP re-
mains significant in instance segmentation. Our method
outperforms Forest R-CNN by a relative 1.5% on overall
mask AP, 3.1% on rare AP, and 3.3% on frequent AP. Com-
pared to BAGS and RFS + EQL, our rare AP is 0.9% and
1.7% higher, or 5.0% and 9.7% relative improvements.

EQL + RIO. We demonstrate that RIO can be complemen-
tary to other methods by combining with EQL. In Tab. 2,
RIO + EQL achieves 26.1% APb and 26.3% APm, a state-of-
the-art performance over all comparing methods. In Tab. 3,
our relative improvements over comparing methods are com-
prehensive. We note that the improvements on rare box AP
are significant, ranging from 10.2% to 23.9%. The promis-
ing results show that the benefits from our results remain
even when utilized with another competitive method, which
validates the value of RIO as a useful approach.

Table 4. Comparison to state-of-the-art methods on LVIS v0.5 with
ResNet-101/ResNeXt-101. † indicates results from the GitHub.

Detection Bkb APb AP50 AP75 APr APc APf

RFS + FT R101 26.2 41.8 27.5 17.3 26.4 29.6
RFS + EQL† R101 27.1 43.0 29.1 15.9 27.9 30.6
Forest R-CNN R101 27.5 44.9 29.0 20.0 27.5 30.4
RIO R101 27.3 43.7 29.0 19.1 26.8 31.2
RIO + EQL R101 27.6 43.5 28.9 19.2 27.7 30.9

Forest R-CNN X101 28.8 46.3 30.9 20.6 29.2 31.7
BAGS X101 27.8 - - 18.8 27.3 32.1
RIO X101 28.6 45.2 30.5 19.0 28.0 33.0

Segmentation Bkb APm AP50 AP75 APr APc APf

RFS + EQL† R101 27.4 41.5 29.4 17.3 29.0 29.4
Forest R-CNN R101 26.9 42.2 28.4 20.1 27.9 28.3
RIO R101 27.7 42.3 29.0 20.1 28.3 30.0
RIO + EQL R101 27.6 41.6 29.6 19.8 28.6 29.6

Forest R-CNN X101 28.5 43.8 30.9 21.6 29.7 29.7
RIO X101 28.9 44.0 30.9 19.5 29.7 31.6

Generalization across Backbones. We present additional
results trained with ResNet-101 and ResNeXt-101 (32×8d)
backbones in Tab. 4. We show that the improvements of
RIO and RIO + EQL are consistent across different network
architectures. In fact, the improvements become more sig-
nificant as RIO alone comprehensively outperforms RFS +
EQL and BAGS. RIO is comparable with Forest R-CNN on
detection and slightly better on instance segmentation.

Analysis on Targeted Class. We study the effect of tar-
geted classes with memory bank. A class is targeted if the
number of images containing that class is less than a thresh-
old. In this study, we vary the threshold as 10/20/30/40
and show the detection performance in Fig. 6a. Our study
shows that repeating samples for classes that already have
sufficient data decreases the performance. Alternatively, re-
peating samples for a more limited set of classes is also less
effective. From our ablation we observe a peak performance
when classes with less than 30 samples are targeted.

Analysis on Sample Number. We further conduct analysis
on the number of objects retrieved each time from a memory
bank. We vary this number from 5 to 30 and show the object
detection performance in Fig. 6b. We observe that the best
overall performance is achieved at 20 samples. Rare AP
continue to increase as we increase this number, showing
the significant benefit of memory replay on rare classes.
However, the performance of more frequent classes tend
to decrease mildly after the number exceeds 20, whereas a
lower number does not contribute enough on rare AP.

Analysis on Memory Replay Efficacy. We present a base-
line which simply repeats the current rare objects’ RoI fea-
tures. There is no memory bank to sample additional sam-
ples from. Fig. 6c shows that such strategy leads to a sig-
nificant decrease in performance. We notice a consistent
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Figure 5. Detection and instance segmentation visualizations of different models. The targeted rarer categories are colored in green and
the frequent classes are colored in blue. Note that certain object categories such as human are not part of the LVIS annotations. Thus these
object categories are not detected.
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Figure 6. Ablations studies. (a) The effect of targeted classes on
detection performance. (b) The effect of sampled object number
from a memory bank on detection performance. (c) Baseline
method which simply repeats the RoI features of targeted classes
in each batch instead of using memory bank.

overall decrease in all the classes except for the rare ones,
even though reducing the repeat number tends to alleviate
this issue. The study shows the efficacy of memory replay
as it provides valuable feature augmentation from model
update and object diversity, which is key to the improved
performance.

Additional Visualizations. We additionally visualize the
detection and segmentation results in Fig. 5. One can see
that RIO can improve the detection of rare class objects with
significantly varying sizes, such as birdfeeder (large), horse
carriage (medium) and atomizer (small).

4.3. Main Results on LVIS v1.0

We showcase our method on LVIS v1.0. Results can be
seen in Tab. 5. Similar to LVIS v0.5, RIO makes signifi-
cant gains in rare, common, overall classes with negligible
effects on frequent classes. In detection and segmentation,
RIO improves over RFS in overall performance by a rela-
tive 3.6% and 3.4% respectively. Importantly, within rare
classes we see a significant relative improvement of 36.4%
and 29.9% in detection and segmentation respectively. Fur-
thermore, we show that RIO is compatible with another
backbone, ResNeXt-101 (32×8d) on LVIS v1.0 and ob-
serves consistent healthy improvements. Lastly, we would
like to acknowledge that there are several top performing
methods in the LVIS Challenge. However, all methods pre-
sented use several methods together, such as a much larger
architecture, additional dataset annotations, and fine-tuning.
2020’s LVIS winner combined more than 10 techniques.

Table 5. Detection and segmentation results on LVIS v1.0.

Detection Bkb APb AP50 AP75 APr APc APf

Baseline (Cos) R50 19.9 32.5 20.7 2.6 16.6 31.0
RFS (Cos) R50 23.3 37.7 24.5 10.7 21.6 30.6
RIO R50 24.1 38.6 25.4 14.6 22.3 30.4

Baseline (Cos) X101 24.3 38.7 25.4 4.3 22.3 35.4
RFS (Cos) X101 27.7 43.0 29.7 14.8 26.6 34.5
RIO X101 28.5 44.0 30.6 18.6 26.9 34.6

Segmentation Bkb APm AP50 AP75 APr APc APf

Baseline (Cos) R50 19.5 30.7 20.4 2.9 17.3 29.2
RFS (Cos) R50 22.9 35.5 24.1 11.7 21.9 28.9
RIO R50 23.7 36.6 25.3 15.2 22.5 28.8

Baseline (Cos) X101 23.8 36.6 25.1 5.4 22.7 33.0
RFS (Cos) X101 26.9 40.8 28.7 15.4 26.5 32.3
RIO X101 27.5 41.6 29.5 18.8 26.7 32.3
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5. Conclusion
We proposed a novel object-centric memory replay frame-
work which allows us to consider a joint resampling strategy
at both image and object level (RIO) for object detection.
As part of RIO, we proposed OCS as the first RoI-level
sampling method introduced for multi-object tasks with im-
plicit feature augmentation from the memory replay. RIO
achieves the state-of-the-art performance on rare categories
in LVIS while maintaining overall AP. Importantly, by em-
phasizing model performance on less represented categories
without sacrifice to overall model performance, our method
creates a more fair model for long-tailed localization.

Acknowledgment
We would like to sincerely thank Achal Dave, Kenneth
Marino, Senthil Purushwalkam and other NVIDIA col-
leagues for the discussion and constructive suggestions.

References
Cao, K., Wei, C., Gaidon, A., Arechiga, N., and Ma,

T. Learning imbalanced datasets with label-distribution-
aware margin loss. In NeurIPS, 2019.

Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. A
simple framework for contrastive learning of visual rep-
resentations. In ICML, 2020a.

Chen, W.-Y., Liu, Y.-C., Kira, Z., Wang, Y.-C. F., and Huang,
J.-B. A closer look at few-shot classification. arXiv
preprint arXiv:1904.04232, 2019.

Chen, X., Fan, H., Girshick, R., and He, K. Improved
baselines with momentum contrastive learning. arXiv
preprint arXiv:2003.04297, 2020b.

Cui, Y., Jia, M., Lin, T.-Y., Song, Y., and Belongie, S. Class-
balanced loss based on effective number of samples. In
CVPR, 2019.

Everingham, M., Van Gool, L., Williams, C. K. I., Winn, J.,
and Zisserman, A. The PASCAL Visual Object Classes
Challenge 2012 (VOC2012) Results. http://www.pascal-
network.org/challenges/VOC/voc2012/workshop/index.html.

Finn, C., Abbeel, P., and Levine, S. Model-agnostic meta-
learning for fast adaptation of deep networks. arXiv
preprint arXiv:1703.03400, 2017.

Gupta, A., Dollar, P., and Girshick, R. LVIS: A dataset for
large vocabulary instance segmentation. In CVPR, 2019.

He, K., Gkioxari, G., Dollár, P., and Girshick, R. Mask
r-cnn. In ICCV, 2017.

He, K., Fan, H., Wu, Y., Xie, S., and Girshick, R. Mo-
mentum contrast for unsupervised visual representation
learning. In CVPR, 2020.

Hu, X., Jiang, Y., Tang, K., Chen, J., Miao, C., and Zhang,
H. Learning to segment the tail. In CVPR, 2020.

Kang, B., Xie, S., Rohrbach, M., Yan, Z., Gordo, A.,
Feng, J., and Kalantidis, Y. Decoupling representation
and classifier for long-tailed recognition. arXiv preprint
arXiv:1910.09217, 2019.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers
of features from tiny images. 2009.

Lake, B. M., Salakhutdinov, R. R., and Tenenbaum, J. One-
shot learning by inverting a compositional causal process.
In NIPS, 2013.

Li, Y., Wang, T., Kang, B., Tang, S., Wang, C., Li, J., and
Feng, J. Overcoming classifier imbalance for long-tail
object detection with balanced group softmax. In CVPR,
2020.

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P.,
Ramanan, D., Dollár, P., and Zitnick, C. L. Microsoft
coco: Common objects in context. In ECCV, 2014.

Liu, Z., Miao, Z., Zhan, X., Wang, J., Gong, B., and Yu, S. X.
Large-scale long-tailed recognition in an open world. In
CVPR, 2019.

Mahajan, D., Girshick, R., Ramanathan, V., He, K., Paluri,
M., Li, Y., Bharambe, A., and van der Maaten, L. Explor-
ing the limits of weakly supervised pretraining. In ECCV,
2018.

Radford, A., Metz, L., and Chintala, S. Unsupervised rep-
resentation learning with deep convolutional generative
adversarial networks. arXiv preprint arXiv:1511.06434,
2015.

Shen, L., Lin, Z., and Huang, Q. Relay backpropagation for
effective learning of deep convolutional neural networks.
In ECCV, 2016.

Snell, J., Swersky, K., and Zemel, R. Prototypical networks
for few-shot learning. In NIPS, 2017.

Tan, J., Wang, C., Li, B., Li, Q., Ouyang, W., Yin, C., and
Yan, J. Equalization loss for long-tailed object recogni-
tion. In CVPR, 2020.

Vinyals, O., Blundell, C., Lillicrap, T., Wierstra, D., et al.
Matching networks for one shot learning. In NIPS, 2016.

Wang, J., Zhang, W., Zang, Y., Cao, Y., Pang, J., Gong,
T., Chen, K., Liu, Z., Loy, C. C., and Lin, D. Seesaw
loss for long-tailed instance segmentation. arXiv preprint
arXiv:2008.10032, 2020a.



A Tale of Two Resampling Strategies for Long-Tailed Detection

Wang, X., Huang, T. E., Darrell, T., Gonzalez, J. E., and
Yu, F. Frustratingly simple few-shot object detection. In
ICML, 2020b.

Wang, Y.-X. and Hebert, M. Learning to learn: Model
regression networks for easy small sample learning. In
ECCV.

Wang, Y.-X., Ramanan, D., and Hebert, M. Learning to
model the tail. In NIPS, 2017.

Wang, Y.-X., Girshick, R., Hebert, M., and Hariharan, B.
Low-shot learning from imaginary data. In CVPR, 2018.

Wu, J., Song, L., Wang, T., Zhang, Q., and Yuan, J. Forest
r-cnn: Large-vocabulary long-tailed object detection and
instance segmentation. In ACM-MM, 2020.

Wu, Y., Kirillov, A., Massa, F., Lo, W.-Y., and Gir-
shick, R. Detectron2. https://github.com/
facebookresearch/detectron2, 2019.

Wu, Z., Xiong, Y., Yu, S. X., and Lin, D. Unsupervised fea-
ture learning via non-parametric instance discrimination.
In CVPR, 2018.

Yin, X., Yu, X., Sohn, K., Liu, X., and Chandraker, M.
Feature transfer learning for face recognition with under-
represented data. In CVPR, 2019.

Zhang, R., Che, T., Ghahramani, Z., Bengio, Y., and Song, Y.
Metagan: An adversarial approach to few-shot learning.
In NeurIPS, 2018.

Zhu, L. and Yang, Y. Inflated episodic memory with region
self-attention for long-tailed visual recognition. In CVPR,
2020.

Zhu, X., Anguelov, D., and Ramanan, D. Capturing long-tail
distributions of object subcategories. In CVPR, 2014.

https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2

