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Abstract

The goal of classification with rejection is to
avoid risky misclassification in error-critical ap-
plications such as medical diagnosis and prod-
uct inspection. In this paper, based on the re-
lationship between classification with rejection
and cost-sensitive classification, we propose a
novel method of classification with rejection by
learning an ensemble of cost-sensitive classifiers,
which satisfies all the following properties: (i)
it can avoid estimating class-posterior probabil-
ities, resulting in improved classification accu-
racy, (ii) it allows a flexible choice of losses in-
cluding non-convex ones, (iii) it does not require
complicated modifications when using different
losses, (iv) it is applicable to both binary and mul-
ticlass cases, and (v) it is theoretically justifiable
for any classification-calibrated loss. Experimen-
tal results demonstrate the usefulness of our pro-
posed approach in clean-labeled, noisy-labeled,
and positive-unlabeled classification.

1. Introduction
In ordinary classification, a classifier learned from training
data is expected to accurately predict a label of every possi-
ble test input in the input space. However, when a particular
test input is difficult to classify, forcing a classifier to always
predict a label can lead to misclassification, causing seri-
ous troubles in risk-sensitive applications such as medical
diagnosis, home robotics, and product inspection (Cortes
et al., 2016a; Geifman & El-Yaniv, 2017; Ni et al., 2019).
To cope with this problem, classification with rejection was
proposed as a learning framework to allow a classifier to ab-
stain from making a prediction (Chow, 1957; 1970; Bartlett
& Wegkamp, 2008; El-Yaniv & Wiener, 2010; Geifman &
El-Yaniv, 2017; Cortes et al., 2016a;b; Yuan & Wegkamp,
2010; Franc & Prusa, 2019), so that we can prevent misclas-
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sification in critical applications.

A well-known framework for classification with rejection
that has been studied extensively is called the cost-based
framework (Chow, 1970; Bartlett & Wegkamp, 2008; Yuan
& Wegkamp, 2010; Cortes et al., 2016a;b; Franc & Prusa,
2019; Ni et al., 2019). In this setting, we set a pre-defined
rejection cost to be less than the misclassification cost. As a
result, a classifier trained in this framework prefers to reject
than making a risky prediction, where there currently exist
two main approaches as the following.

The first approach is called the confidence-based approach,
where we train a classifier then use an output of the clas-
sifier as a confidence score (Bartlett & Wegkamp, 2008;
Grandvalet et al., 2009; Herbei & Wegkamp, 2006; Yuan &
Wegkamp, 2010; Ramaswamy et al., 2018; Ni et al., 2019).
In this approach, we manually set a confidence threshold
as a criterion to refrain from making a prediction, if the
confidence score of a test input is lower than the thresh-
old. Most confidence-based methods rely on a loss that can
estimate class-posterior probabilities (Yuan & Wegkamp,
2010; Reid & Williamson, 2010; Ni et al., 2019), which
can be difficult to estimate especially when using deep neu-
ral networks (Guo et al., 2017). Although there are some
exceptions that can avoid estimating class-posterior proba-
bilities, most of them are only applicable to binary classifi-
cation (Bartlett & Wegkamp, 2008; Grandvalet et al., 2009;
Manwani et al., 2015).

The second approach is called the classifier-rejector ap-
proach, where we simultaneously train a classifier and a
rejector (Cortes et al., 2016a;b; Ni et al., 2019). It is known
that this approach has theoretical justification in the binary
case only for the exponential and hinge-based losses (Cortes
et al., 2016a;b). This is because the proof technique highly
relies on the function form of the loss (Cortes et al., 2016a;b).
In the multiclass case, Ni et al. (2019) argued that this ap-
proach is not suitable both theoretically and experimentally
since the multiclass extension of Cortes et al. (2016b) is not
calibrated and the confidence-based softmax cross-entropy
loss can outperform this approach in practice.

The goal of this paper is to develop an alternative approach
to classification with rejection that achieves the follow-
ing four design goals. First, it can avoid estimating class-
posterior probabilities, since this often yields degradation
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of classification performance. Second, the choice of losses
is flexible and does not require complicated modifications
when using different losses, which allows a wider range
of applications. Third, it is applicable to both binary and
multiclass cases. Fourth, it can be theoretically justified. In
this paper, we show that this goal can be achieved by bridg-
ing the theory of cost-sensitive classification (Elkan, 2001;
Scott, 2012; Steinwart, 2007) and classification with rejec-
tion. The key observation that allows us to connect the two
problems is based on the fact that one can mimic the Bayes
optimal solution of classification rejection by only know-
ing argmaxy p(y|x) and whether maxy p(y|x) > 1 − c,
where c is the rejection cost. Based on this observation, we
propose the cost-sensitive approach, which calibration can
be guaranteed for any classification-calibrated loss (Zhang,
2004; Bartlett et al., 2006). Classification-calibration is
known to be a minimum requirement for a loss in ordinary
classification (Bartlett et al., 2006). This suggests that the
loss choices of our proposed approach are as flexible as that
of ordinary classification.

To emphasize the importance of having a flexible loss choice,
we explore the usage of our approach for classification from
positive and unlabeled data (PU-classification) (du Plessis
et al., 2014; 2015; Kiryo et al., 2017) and classification
from noisy labels (Angluin & Laird, 1988; Ghosh et al.,
2015). Our experimental results show that a family of sym-
metric losses, which are the losses that cannot estimate
class-posterior probabilities (Charoenphakdee et al., 2019),
can be advantageous in these settings. We also provide
experimental results of clean-labeled classification with re-
jection to illustrate the effectiveness of the cost-sensitive
approach.

2. Preliminaries
In this section, we introduce the problem setting of clas-
sification with rejection. Then, we review cost-sensitive
binary classification, which will be essential for deriving
the proposed cost-sensitive approach for classification with
rejection.

2.1. Classification with Rejection

Our problem setting follows the standard cost-based frame-
work classification with rejection (Chow, 1970; Cortes
et al., 2016b; Ni et al., 2019). Let X be an input space
and Y = {1, . . . ,K} be an output space, where K de-
notes the number of classes. Note that we adopt a conven-
tional notation Y = {−1,+1} when considering binary
classification (Bartlett et al., 2006). In this problem, we
are given the training input-output pairs {xi, yi}ni=1 drawn
i.i.d. from an unknown probability distribution with density
p(x, y). A classification rule of learning with rejection is
f : X → {1, . . . ,K,®}, where ® denotes rejection. Let

c ∈ (0, 0.5) be the rejection cost. Unlike ordinary classifica-
tion, where the zero-one loss `01(f(x), y) = 1[f(x)6=y]

1 is
the performance measure, we are interested in an extension
of `01, which is called the zero-one-c loss `01c defined as
follows (Ni et al., 2019):

`01c(f(x), y) =

{
c f(x) = ®,
`01(f(x), y) otherwise.

The goal is to find a classification rule f that minimizes the
expected risk with respect to `01c, i.e.,

R`01c(f) = E
(x,y)∼p(x,y)

[`01c(f(x), y)]. (1)

In classification with rejection, a classification rule f is al-
lowed to refrain from making a prediction and will receive a
fixed rejection loss c. In this paper, following most existing
studies (Cortes et al., 2016a;b; Ramaswamy et al., 2018;
Ni et al., 2019), we consider the case where c < 0.5. Intu-
itively, this case implies that it is strictly better to reject if a
classifier has less than half a chance to be correct. Thus, the
case where c < 0.5 is suitable if the goal is to avoid harm-
ful misclassification. We refer the readers to Ramaswamy
et al. (2018) for more discussion on the case where c ≥ 0.5
and how it is fundamentally different from the case where
c < 0.5. Next, let us define η(x) = [η1(x), . . . , ηK(x)]>,
where ηy(x) = p(y|x) denotes the class-posterior proba-
bility of a class y. The optimal solution for classification
with rejection f∗ = argminf R

`01c(f) known as Chow’s
rule (Chow, 1970) can be expressed as follows:

Definition 1 (Chow’s rule (Chow, 1970)). The optimal
solution of multiclass classification with rejection f∗ =
argminf R

`01c(f) can be expressed as

f∗(x) =

{
® maxy ηy(x) ≤ 1− c,
argmaxy ηy(x) otherwise.

Chow’s rule suggests that classification with rejection is
solved if we have the knowledge of η(x). Therefore, one
approach is to estimate η(x) from training examples. This
method is in a family of the confidence-based approach,
which has been extensively studied in both the binary (Yuan
& Wegkamp, 2010) and multiclass cases (Ni et al., 2019).
Figure 1 illustrates the confidence-based approach.

2.2. Cost-sensitive Binary Classification

Consider binary classification where y ∈ {−1,+1}. In
ordinary classification, the false positive and false negative
costs are treated equally. On the other hand, in cost-sensitive
classification, the false positive and false negative costs are

11[·] denotes an indicator function.
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Figure 1. Illustration of the confidence-based approach. Figure (a) denotes a prediction function. The rejector in figure (b) has a rejection
region spreads from the decision boundary of the prediction function. The width of the rejection region depends on the choice of the
rejection threshold parameter. Data points in purple are rejected.

generally unequal (Elkan, 2001; Saerens et al., 2002; Scott,
2012).

Without loss of generality, we define α ∈ (0, 1) to be the
false positive cost and 1 − α to be the false negative cost.
Then, the expected cost-sensitive risk can be expressed as

R`01α (f) = (1− α)π E
x∼p(x|y=+1)

[`01(f(x),+1)]

+ α(1− π) E
x∼p(x|y=−1)

[`01(f(x),−1)],

where π = p(y = +1) denotes the class prior.

It is known that the Bayes optimal cost-sensitive binary
classifier can be expressed as follows:
Definition 2 (Scott (2012)). The optimal cost-sensitive clas-
sifier f∗α = argminf Rα(f) can be expressed as

f∗α(x) =

{
+1 p(y = +1|x) > α,
−1 otherwise.

Note that when α = 0.5, the Bayes optimal solution f∗0.5(x)
coincides with that of ordinary binary classification. More-
over, when α is known, cost-sensitive binary classification
is solved if we have access to the class-posterior probability
p(y = +1|x).

3. Cost-sensitive Approach
In this section, we propose a cost-sensitive approach for
classification with rejection. We begin by describing our
motivation and analyzing the behavior of the Bayes optimal
solution of classification with rejection. Then, we show
that this problem can be solved by simultaneously solving
multiple cost-sensitive classification problems.

3.1. Motivation

As suggested by Chow’s rule (Chow, 1970), classification
with rejection can be solved by estimating the class-posterior
probabilities. However, an important question arises as:
Is class-posterior probability estimation indispensable for
solving classification with rejection? This question is fun-
damentally motivated by Vapnik’s principle (Vapnik, 1998),
which suggests not to solve a more general problem as an
intermediate step when solving a target problem if we are
given a restricted amount of information.

In our context, the general problem is class-posterior prob-
ability estimation. In fact, knowing class-posterior prob-
abilities can also solve many other problems (Qin, 1998;
Bickel et al., 2007; Sugiyama et al., 2012; Dembczynski
et al., 2013; Koyejo et al., 2014). However, many of such
problems are also known to be solvable without estimating
the class-posterior probabilities (Kanamori et al., 2012; Bao
& Sugiyama, 2020). Note that class-posterior probability
estimation can be unreliable when the model is misspeci-
fied (Begg & Lagakos, 1990; Heagerty & Kurland, 2001) or
highly flexible (Guo et al., 2017; Hein et al., 2019).

To find a more direct solution for classification with rejec-
tion, we seek for a general approach that it may not be
able to estimate class-posterior probabilities, but its opti-
mal solution coincides with the optimal Chow’s rule (Chow,
1970). Although the idea of directly solving classification
with rejection without class-posterior estimation itself is not
novel, most existing methods are only applicable to binary
classification with rejection (Bartlett & Wegkamp, 2008;
Grandvalet et al., 2009; Manwani et al., 2015; Cortes et al.,
2016b;a), or focus on specific types of losses (Ramaswamy
et al., 2018). For the multiclass case, Zhang et al. (2018)
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Figure 2. Illustration of Chow’s rule in binary classification with
rejection and the unnecessity of knowing the class-posterior proba-
bility to solve this problem. If the rejection cost c = 0.2, as long
as we know p(y = 1|x) > 0.8, knowing the exact value of the
class-posterior probability does not change our final decision to
predict a positive label.

proposed to modify a loss by bending it to be steeper (for
the hinge loss) and positively unbounded, but there exist
hyperparameters to be tuned such as the rejection threshold
and the bending slope. Also, Mozannar & Sontag (2020)
recently proposed a classifier-rejector approach by augment-
ing a rejection class in the model’s prediction, but their loss
choice is limited to the modified cross-entropy loss. More
discussion on related work is provided in Appendix A.

3.2. A Closer Look at Chow’s Rule

Here, we analyze the behavior of Chow’s rule (Chow, 1970).
We discuss the minimal knowledge required for a classi-
fication rule to mimic Chow’s rule, which illustrates that
the class-posterior probabilities need not to be known. For
simplicity, we begin by considering binary classification
with rejection.

In binary classification with rejection, Chow’s rule in Defi-
nition 1 can be expressed as

f∗(x) =


1 p(y = +1|x) > 1− c,
® c ≤ p(y = +1|x) ≤ 1− c,
−1 p(y = +1|x) < c.

(2)

To solve binary classification with rejection, there are only
three conditions to verify, which are p(y = +1|x) > 1− c,
p(y = +1|x) < c, and p(y = +1|x) ∈ [c, 1 − c]. We can
see that if we know p(y = +1|x) > 1−c, we do not need to
know the exact value of p(y = +1|x) to predict the label as
positive. For example, if c = 0.2, knowing p(y = +1|x) >
0.8 is already sufficient to predict a label, i.e., knowing
whether p(y = +1|x) > 0.88 or p(y = +1|x) > 0.96
does not change the decision of Chow’s rule. Figure 2
illustrates this fact, which is the key intuition why it is
possible to develop a method that can avoid estimating the
class-posterior probabilities for solving this problem.

3.3. Binary Classification with Rejection Based on
Cost-sensitive Classification

Here, we show that by solving two cost-sensitive binary
classification problems, binary classification with rejection
can be solved. The following proposition shows the relation-
ship between the optimal solutions of cost-sensitive binary

classification and that of binary classification with rejection.
Proposition 3. In binary classification with rejection,
Chow’s rule can be expressed as

f∗(x) =


1 f∗1−c(x) = 1,
−1 f∗c (x) = −1,
® otherwise.

(3)

Proof. We assert that if we can verify the following two
conditions:

p(y = +1|x) > 1− c, (4)
p(y = +1|x) > c, (5)

then binary classification with rejection is solved. Based on
Chow’s rule (2), if Ineq. (4) holds, Ineq. (5) must also hold
since c < 0.5. Then we should predict a positive label. On
the other hand, we should predict a negative label if Ineq. (5)
does not hold. Next, if Ineq. (5) holds but Ineq. (4) does not
hold, we should reject x. As a result, based on Definition 2,
knowing f∗1−c(x) and f∗c (x) is sufficient to verify Ineqs. (4)
and Ineq. (5). This concludes the proof.

Proposition 3 suggests that by solving two binary cost-
sensitive classification with α = c and α = 1− c to obtain
f∗c (x) and f∗1−c(x), binary classification with rejection can
be solved.

3.4. Multiclass Extension

Here, we show that our result in Section 3.3 can be naturally
extended to the multiclass case. More specifically, we show
that multiclass classification with rejection can be solved by
learning an ensemble of K binary cost-sensitive classifiers.

Let us define the Bayes optimal solution for one-versus-rest
cost-sensitive binary classifier f∗,yα , where y is the positive
class and y′ ∈ Y, y′ 6= y are the negative classes:

f∗,yα (x) =

{
+1 ηy(x) > α,
−1 otherwise.

Then, we obtain the following proposition (its proof can be
found in Appendix B.1).
Proposition 4. Chow’s rule in multiclass classification with
rejection can be expressed as

f∗(x) =

{
® maxy f

∗,y
1−c(x) = −1,

argmaxy f
∗,y
1−c(x) otherwise.

Proposition 4 suggests that by learning cost-sensitive clas-
sifiers f∗,y1−c for y ∈ Y , it is possible to obtain Chow’s rule
without estimating the class-posterior probabilities. Note
that when c < 0.5, there exists at most one y′ ∈ Y such that
f∗,y

′

1−c (x) = 1. This is because it implies that ηy′(x) > 1−c,
which is larger than 0.5.
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Table 1. Classification-calibrated binary surrogate losses and their properties including the convexity, symmetricity (i.e., φ(z) + φ(−z) is
a constant), and its capability to estimate the class posterior probability η1(x) in binary classification. The column “confidence-based”
indicates that a loss is applicable to the confidence-based approach and it satisfies all conditions required in order to use the previous work
to derive its excess risk bound (Yuan & Wegkamp, 2010; Ni et al., 2019). On the other hand, our cost-sensitive approach can guarantee the
existence of the excess risk bound as long as a loss φ is classification-calibrated (Bartlett et al., 2006).

Loss name φ(z) Convex Symmetric Estimating η1(x) Confidence-based
Squared (1− z)2 X × X X

Squared hinge max(0, 1− z)2 X × X X
Exponential exp(−z) X × X X

Logistic log(1 + exp(−z)) X × X X
Hinge max(0, 1− z) X × × ×
Savage

[
(1 + exp(2z))2

]−1 × × X ×
Tangent (2arctan(z)− 1)2 × × X ×
Ramp max(0,min(1, 0.5− 0.5z)) × X × ×

Sigmoid [1 + exp(z)]
−1 × X × ×

4. A Surrogate Loss for the Cost-sensitive
Approach

In this section, we propose a surrogate loss for the cost-
sensitive approach for classification with rejection.

It is known that given training data, directly minimizing
the empirical risk with respect to `01c is computationally
infeasible (Bartlett & Wegkamp, 2008; Ramaswamy et al.,
2018). Therefore, many surrogate losses have been pro-
posed to learn a classifier with rejection in practice (Yuan
& Wegkamp, 2010; Cortes et al., 2016b; Ni et al., 2019).
Here, we propose the cost-sensitive surrogate loss for clas-
sification with rejection. Let g(x) = [g1(x), . . . , gK(x)]>,
where gy(x) : X → R is the score function for a class y.
Let φ : R→ R be a binary margin surrogate loss. A margin
loss is a class of loss functions for binary classification that
takes only one real-valued argument (Bartlett et al., 2006;
Reid & Williamson, 2010). Table 1 illustrates examples of
binary margin surrogate losses. With a choice of φ, we can
define our proposed cost-sensitive surrogate loss as follows.

Definition 5. Given a binary margin surrogate loss φ and
a pre-defined rejection cost c, the cost-sensitive surrogate
loss for classification with rejection is defined as

Lc,φCS(g;x, y) = cφ
(
gy(x)

)
+ (1− c)

∑
y′ 6=y

φ
(
− gy′(x)

)
.

Next, following the empirical risk minimization frame-
work (Vapnik, 1998), a learning objective function can be
straightforwardly obtained as follows:

R̂L
c,φ
CS (g) =

1

n

n∑
i=1

Lc,φCS(g;xi, yi). (6)

Note that regularization can also be applied in practice to
avoid overfitting. Moreover, we want to emphasize that

although it is theoretically suggested to learn an ensemble of
classifiers to solve classification with rejection, in practice,
by using linear-in-parameter models or neural networks
with K-dimensional vectorial outputs, we can conveniently
learn all K cost-sensitive binary classifiers together at once,
which is g.

After learning g by minimizing Eq. (6), we have to design
how to reject x. Following the optimal rejection rule in our
Proposition 4, i.e., maxy f

∗,y
1−c(x) = −1, we can directly

obtain the following rejection rule:

max
y

gy(x) ≤ 0. (7)

Intuitively, Cond. (7) suggests to reject x if all gy(x) have
low prediction confidence. One may interpret this type of
rejection as distance rejection (Dubuisson & Masson, 1993),
where the rejection is made when g is uncertain whether x
belongs to any of the known classes. Note that this does not
necessarily imply that x belongs to an unknown class, e.g.,
x may be located close to the decision boundary, causing
none of gy(x) to be confident enough to predict a class y.

Next, we also consider the following rejection rule:

∃y, y′ s.t. y 6= y′and gy(x), gy′(x) > 0. (8)

Cond. (8) suggests to reject x because there exists a predic-
tion conflict among at least two binary classifiers, i.e., gy(x)
suggests to predict a class y but gy′(x) suggests to predict
another class y′. Note that if we succeed to obtain the opti-
mal classifier g∗, this condition is impossible to be satisfied.
Recall that in Section 3.4, for g∗, at most one g∗y(x) can
be more than zero since it implies ηy > 1− c > 0.5. Nev-
ertheless, Cond. (8) may hold in practice due to empirical
estimation. This rejection condition can be interpreted as
ambiguity rejection (Dubuisson & Masson, 1993), where
the rejection is made when g interprets x to be associated
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Figure 3. Illustration of the cost-sensitive approach. Figure (a) denotes a prediction function. Unlike the confidence-based approach (Fig-
ure 1), the prediction function is not designed to predict all data points in the space and the rejection region does not spread from
the decision boundary. The decision boundary is based on an ensemble of cost-sensitive classifiers for blue, red, and green classes,
respectively. Then, the rejector in figure (b) is constructed based on the rejection rule in Eq. (7) by aggregating the prediction result of
each cost-sensitive classifier. Data points in purple are rejected.

with more than one class. More discussion on the proposed
rejection conditions is provided in Appendix. D.

To sum up, we employ the following classification rule for
the cost-sensitive approach:

f(x; g) =

{
® Conds. (7) or (8),
argmaxy gy(x) otherwise.

(9)

Figure 3 illustrates the cost-sensitive approach. It is worth
mentioning that our rejection condition is different from that
of Zhang et al. (2018). In their rejection rule, an input x is
rejected if all binary classifiers’ outputs are close to zero.
In our case, Cond. (7) rejects x as long as all gy(x)’s are
negative, e.g., x is also rejected if all prediction outputs are
much smaller than zero. Also, their method can predict a
set of labels when at least two classifiers predict positively,
which is different from our problem setting, where it is
only allowed to predict one label or refrain from making a
prediction.

5. Theoretical Analysis
In this section, we show that the classification rule f(x; g)
in Eq. (9) can achieve the Chow’s rule and also provide
excess risk bounds.

5.1. Calibration

We begin by introducing the well-known notion of
classification-calibrated loss in binary classification. Let
us define the pointwise conditional surrogate risk for a fixed
input x in binary classification with its class-posterior prob-

ability of a positive class η1:

Cφη1(v) = η1φ(v) + (1− η1)φ(−v), (10)

for v ∈ R. Next, a classification-calibrated loss can be
defined as follows.
Definition 6 (Bartlett et al. (2006)). We say a loss φ is
classification-calibrated if for any η1 6= 1

2 , we have

inf
v(2η1−1)≤0

Cφη1(v) > inf
v
Cφη1(v).

Intuitively, classification-calibration ensures that minimiz-
ing a loss φ can give the Bayes optimal binary classi-
fier sign(2η1 − 1). It is known that a convex loss φ is
classification-calibrated if and only if it is differentiable at 0
and φ′(0) < 0 (Bartlett et al., 2006).

Analogously, in classification with rejection, calibration is
also an important property that has been used to verify if a
surrogate loss is appropriate (Bartlett & Wegkamp, 2008;
Yuan & Wegkamp, 2010; Cortes et al., 2016b;a; Ni et al.,
2019). Calibration guarantees that by replacing the zero-
one-c loss `01c with a surrogate loss L, the optimal Chow’s
rule can still be obtained by minimizing the surrogate risk.
Verifying the calibration condition in classification with
rejection has not been as well-studied as ordinary binary
classification. We are only aware of the works by Yuan &
Wegkamp (2010) and Ni et al. (2019), which provided a
condition to verify calibration of general loss functions for
the confidence-based approach. Nevertheless, their condi-
tion can only verify a convex loss. Note that losses that are
calibrated in our cost-sensitive approach may not be cali-
brated in the confidence-based approach, e.g., the sigmoid
loss. See Table 1 for more details.
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Now we are ready to show that the calibration condition of
our proposed approach is equivalent to the classification-
calibration condition of φ. Let us define the pointwise
conditional surrogate risk WL of an input x with its class-
posterior probability η(x) for the multiclass case:

WL
(
g(x));η(x)

)
=
∑
y∈Y

ηy(x)L
(
g;x, y

)
. (11)

By analyzing the classification rule with respect to the con-
ditional risk minimizer, we obtain the following theorem
(its proof can be found in Appendix B.2).
Theorem 7. Let g∗ be a conditional risk minimizer that
minimizes the pointwise conditional surrogate risk g∗(x) =
argmingWLc,φCS

(
g(x);η(x))). The surrogate loss Lc,φCS

is calibrated for classification with rejection, that is,
f(x; g∗) = f∗(x) for all x ∈ X , if and only if φ is
classification-calibrated.

Theorem 7 suggests that the condition to verify if our cost-
sensitive surrogate loss Lc,φCS is calibrated is equivalent to the
condition of whether φ is classification-calibrated. As long
as a binary surrogate loss φ is classification-calibrated, min-
imizing the surrogate risk w.r.t. Lc,φCS can lead to the optimal
Chow’s rule. As a result, Theorem 7 successfully borrows
the knowledge in the literature of binary classification to
help prove calibration in classification with rejection for the
cost-sensitive approach.

5.2. Excess Risk Bound

While calibration ensures that the optimal solution w.r.t. a
surrogate loss agrees with the optimal Chow’s rule, an ex-
cess risk bound provides a regret bound relationship between
the zero-one-c loss `01c and a surrogate loss L.

Let Rφ,i1−c(gi) be the cost-sensitive binary surrogate risk for
class i and RL,∗ be the minimum risk w.r.t. to the loss L.
We prove the following theorem, which is our main result to
use for deriving the excess risk bound of the cost-sensitive
approach for any classification-calibrated loss (its proof can
be found in Appendix B.3).
Theorem 8. Consider a cost-sensitive surrogate loss Lc,φCS .
Let f be a classification rule of the cost-sensitive approach
with respect to the score function g, that is, f = f(x; g)
for an input x. If a binary surrogate loss φ is classification-
calibrated, the excess risk bound can be expressed as fol-
lows:

R`01c(f)−R`01c,∗ ≤ RL
c,`01
CS (g)−RL

c,`01
CS ,∗ (12)

≤
K∑
i=1

ψ−1φ,1−c(R
φ,i
1−c(gi)−R

φ,i,∗
1−c ),

(13)

where ψφ,1−c : R→ R is a non-decreasing invertible func-
tion and ψφ,1−c(0) = 0.

Ineq. (12) suggests that the regret of the classification with
rejection problem can be bounded by the regret of the cost-
sensitive surrogate with respect to the zero-one loss `01.
This inequality allows us to borrow the existing findings
of cost-sensitive classification to give excess risk bounds
for classification with rejection. Next, Ineq. (13) suggests
that RL

c,`01
CS (g) − RL

c,`01
CS ,∗ is bounded by the sum of an

invertible function of the regret of the cost-sensitive binary
classification risk. The invertible function ψφ,1−c is a well-
studied function in the literature of cost-sensitive classifi-
cation, which is guaranteed to exist for any classification-
calibrated loss (Steinwart, 2007; Scott, 2012). For example,
ψ−1φ,1−c(ε) =

ε2

2c(1−c)−(ε)(1−2c) for the squared loss, where
ε ≥ 0. Examples of ψφ,1−c for more losses and how to
derive ψφ,1−c can be found in Steinwart (2007) and Scott
(2012). Since ψφ,1−c is non-decreasing and ψφ,1−c(0) = 0,
the regret with respect to the zero-one-c loss will also get
smaller and eventually become zero if the surrogate risk is
successfully minimized.

As an example to demonstrate how to obtain an excess risk
bound with our Theorem 8, we prove that the following
excess risk bound holds for the hinge loss φhin, which is
the loss that cannot estimate the class-posterior probabili-
ties (Cortes & Vapnik, 1995), and its optimal solution for the
confidence-based approach cannot mimic Chow’s rule. The
bound can be straightforwardly derived based on our Theo-
rem 8 and the known fact that ψ−1φhin,1−c(ε) = ε (Steinwart,
2007).
Corollary 9. Let us consider the hinge loss φhin(z) =
max(0, 1− z). The excess risk bound for the cost-sensitive
surrogate Lc,φhin

CS can be given as follows:

R`01c(f)−R`01c,∗ ≤ RL
c,φhin
CS (g)−RL

c,φhin
CS ,∗.

6. Experimental Results
In this section, we provide experimental results of clas-
sification with rejection. The evaluation metric is the
test empirical zero-one-c risk over ten trials. We also
reported the rejection ratio, accuracy of accepted data,
and the full experimental results in the table format in
Appendix D. The varying rejection costs ranged from
{0.1, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40} for all settings. For
noisy-labeled classification, we used the uniform noise (An-
gluin & Laird, 1988; Ghosh et al., 2015), where the ran-
domly selected 25% of the training labels were flipped.

6.1. Experiment Setup

Datasets and models: For binary classification, we used
the subjective-versus-objective classification (Subj), which
is a text dataset (Pang & Lee, 2004). Moreover, we used
Phishing and Spambase, which are tabular datasets, and
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Figure 4. Mean and standard error of the test empirical zero-one-c risk over ten trials with varying rejection costs (Binary classification).
Each column indicates the performance with respect to one dataset. (Top) clean-labeled classification with rejection. (Middle) noisy-labeled
classification with rejection. (Bottom) PU-classification with rejection.

Twonorm, which is a synthetic dataset drawn from different
multivariate Gaussian distributions (Lichman et al., 2013).
We also used the Gisette dataset, which is the problem of
separating the highly confusible digits 4 and 9 with noisy
features (Guyon et al., 2005). Linear-in-input models were
used for all binary datasets. For multiclass classification,
we used Gas-Drift (Vergara et al., 2012) and Human activity
recognition (HAR) (Anguita et al., 2013), which are tabular
datasets. Multilayer perceptrons were used for both datasets.
We also used the image datasets, which are MNIST (Le-
Cun, 1998), Kuzushiji-MNIST (KMNIST) (Clanuwat et al.,
2018), and Fashion-MNIST (Xiao et al., 2017). Convo-
lutional neural networks were used for all image datasets.
The implementation was done using PyTorch (Paszke et al.,
2019). More details on the datasets and implementation can
be found in Appendix C.

Methods: For the confidence-based approach, based on Ni
et al. (2019), we used the softmax cross-entropy loss (SCE).
For the classifier-reject approach, we used the proposed
method by Mozannar & Sontag (2020) (DEFER). We also
used the method by Zhang et al. (2018) with the bent hinge
loss (ANGLE). For our cost-sensitive approach, we used the
hinge (CS-hinge), and sigmoid (CS-sigmoid) losses.

Hyperparameter tuning: We provided additional training
data for SCE and ANGLE to tune their hyperparameters. For
SCE, we also added temperature scaling (Guo et al., 2017) to
improve the prediction confidence. For ANGLE, we chose
the bending slope paramater according to Zhang et al. (2018)
and tuned the rejection threshold. In PU-classification, it is
difficult to tune hyperparameters for them. Thus, we pro-
vided clean-labeled data for them only for hyperparameter
tuning. Both rejection threshold of ANGLE and the tem-
perature parameter for SCE are chosen from the following
candidate set of twenty numbers spaced evenly in a log
scale from 0 to 1 (inclusively) and nine integers from 2 to
10. Since only SCE and ANGLE require additional data to
tune hyperparameters, it is not straightforward to provide a
fair comparison because our methods and DEFER do not
use validation data. Nevertheless, with less data, our meth-
ods are still competitive and can outperform the baselines
in several settings.

6.2. Binary Classification with Rejection

Here, we compare the performance of all methods in clean-
labeled, noisy-labeled, and positive-unlabeled classification
with rejection. For PU-classification, we implemented all
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Figure 5. Mean and standard error of the test empirical zero-one-c risk over ten trials with varying rejection cost (Multiclass classification).
Each column indicates the performance with respect to one dataset. (Top) clean-labeled classification with rejection. (Bottom) noisy-
labeled classification with rejection. For MNIST, Fashion-MNIST, and KMNIST, we found that ANGLE failed miserably and has
zero-one-c risk more than 0.5 and thus it is excluded from the figure for readability.

methods based on the empirical risk minimization frame-
work proposed by Kiryo et al. (2017) (more detail can be
found in Appendix C).

Figure 4 shows the performance with varying rejection costs
for all settings. In clean-labeled classification, it can be
observed that CS-hinge and ANGLE are most preferable
in this setting. In noisy-labeled and PU classification, CS-
sigmoid outperformed other methods in most cases. This
illustrates the usefulness of having a flexible choice of loss
functions. We also found that noise can degrade the per-
formance to be worse than always reject for some methods.
Moreover, we found that DEFER rejected data more often
than other methods, which may sometimes lead to worse
performance. In PU-classification, SCE and ANGLE did
not perform well although clean labeled data were used for
hyperparameter tuning. This could be due to a steep loss can
suffer severely from the negative risk problem (Kiryo et al.,
2017), causing them to be ineffective in PU-classification.

6.3. Multiclass Classification with Rejection

Figure 5 illustrates the performance of all methods in the
clean-labeled and noisy-labeled settings. It can be observed
that SCE had almost the same performance for all rejection
costs. Although temperature scaling is applied, it seems that
SCE still suffered from overconfidence (Guo et al., 2017)
and failed to reject the ambiguous data points. This could
be due to SCE has the high accuracy on the validation set
(more than 90%) and thus temperature scaling could not
smoothen the prediction confidence to reject the ambigu-
ous data effectively. Interestingly, DEFER did not suffer
from such overconfidence although it is also based on the

cross-entropy loss and it rejected the data more than other
methods. For ANGLE, we found that although it can per-
form competitively in Gas-drift and HAR, it failed miserably
in the image datasets. For figure’s readability, we report the
performance of ANGLE in a table format in Appendix D.
In noisy-labeled classification, CS-sigmoid outperformed
other methods in most cases.

7. Conclusions
We have proposed a cost-sensitive approach to classification
with rejection, where any classification-calibrated loss can
be applied with theoretical guarantee. Our theory of excess
risk bounds explicitly connects the classification with re-
jection problem to the cost-sensitive classification problem.
Our experimental results using clean-labeled, noisy-labeled,
and positive and unlabeled training data demonstrated the
advantages of avoiding class-posterior probability estima-
tion and having a flexible choice of loss functions.
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W., and Hüllermeier, E. Optimizing the f-measure in
multi-label classification: Plug-in rule approach versus
structured loss minimization. In ICML, pp. 1130–1138,
2013.

du Plessis, M. C., Niu, G., and Sugiyama, M. Analysis of
learning from positive and unlabeled data. In Advances
in Neural Information Processing Systems, pp. 703–711,
2014.

du Plessis, M. C., Niu, G., and Sugiyama, M. Convex
formulation for learning from positive and unlabeled data.
In ICML, pp. 1386–1394, 2015.

Dubuisson, B. and Masson, M. A statistical decision rule
with incomplete knowledge about classes. Pattern recog-
nition, 26(1):155–165, 1993.

El-Yaniv, R. and Wiener, Y. On the foundations of noise-
free selective classification. JMLR, 11(May):1605–1641,
2010.

Elkan, C. The foundations of cost-sensitive learning. In
IJCAI, volume 17, pp. 973–978. Lawrence Erlbaum As-
sociates Ltd, 2001.

Franc, V. and Prusa, D. On discriminative learning of pre-
diction uncertainty. In ICML, pp. 1963–1971, 2019.

Geifman, Y. and El-Yaniv, R. Selective classification for
deep neural networks. In Advances in Neural Information
Processing Systems, pp. 4878–4887, 2017.

Ghosh, A., Manwani, N., and Sastry, P. Making risk min-
imization tolerant to label noise. Neurocomputing, 160:
93–107, 2015.

Grandvalet, Y., Rakotomamonjy, A., Keshet, J., and Canu,
S. Support vector machines with a reject option. In
Advances in Neural Information Processing Systems, pp.
537–544, 2009.

Guo, C., Pleiss, G., Sun, Y., and Weinberger, K. Q. On
calibration of modern neural networks. In ICML, pp.
1321–1330. JMLR. org, 2017.

Guyon, I., Gunn, S., Ben-Hur, A., and Dror, G. Result
analysis of the nips 2003 feature selection challenge. In
Advances in Neural Information Processing Systems, pp.
545–552, 2005.

Heagerty, P. J. and Kurland, B. F. Misspecified maximum
likelihood estimates and generalised linear mixed models.
Biometrika, 88(4):973–985, 2001.

Hein, M., Andriushchenko, M., and Bitterwolf, J. Why
ReLU networks yield high-confidence predictions far
away from the training data and how to mitigate the prob-
lem. In CVPR, pp. 41–50, 2019.



Classification with Rejection Based on Cost-sensitive Classification

Herbei, R. and Wegkamp, M. H. Classification with reject
option. Canadian Journal of Statistics, 34(4):709–721,
2006.

Ioffe, S. and Szegedy, C. Batch normalization: Accelerating
deep network training by reducing internal covariate shift.
In ICML, pp. 448–456. PMLR, 2015.

Kanamori, T., Suzuki, T., and Sugiyama, M. Statistical anal-
ysis of kernel-based least-squares density-ratio estimation.
Machine Learning, 86(3):335–367, 2012.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. ICLR, 2015.

Kiryo, R., Niu, G., du Plessis, M. C., and Sugiyama, M.
Positive-unlabeled learning with non-negative risk esti-
mator. In Advances in Neural Information Processing
Systems, pp. 1674–1684, 2017.

Koyejo, O. O., Natarajan, N., Ravikumar, P. K., and Dhillon,
I. S. Consistent binary classification with generalized
performance metrics. In Advances in Neural Information
Processing Systems, pp. 2744–2752, 2014.

LeCun, Y. The mnist database of handwritten digits.
http://yann. lecun. com/exdb/mnist/, 1998.

Lichman, M. et al. UCI machine learning repository, 2013.

Manwani, N., Desai, K., Sasidharan, S., and Sundararajan,
R. Double ramp loss based reject option classifier. In
Pacific-Asia Conference on Knowledge Discovery and
Data Mining, pp. 151–163. Springer, 2015.

Mozannar, H. and Sontag, D. Consistent estimators for
learning to defer to an expert. ICML, 2020.

Nair, V. and Hinton, G. E. Rectified linear units improve
restricted boltzmann machines. In ICML, pp. 807–814,
2010.

Ni, C., Charoenphakdee, N., Honda, J., and Sugiyama, M.
On the calibration of multiclass classification with re-
jection. In Advances in Neural Information Processing
Systems, pp. 2582–2592, 2019.

Pang, B. and Lee, L. A sentimental education: Sentiment
analysis using subjectivity summarization based on mini-
mum cuts. arXiv preprint cs/0409058, 2004.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., et al. Pytorch: An imperative style, high-performance
deep learning library. In Advances in Neural Information
Processing Systems, pp. 8026–8037, 2019.

Pennington, J., Socher, R., and Manning, C. D. Glove:
Global vectors for word representation. In Proceedings
of the 2014 conference on empirical methods in natural
language processing, pp. 1532–1543, 2014.

Qin, J. Inferences for case-control and semiparametric two-
sample density ratio models. Biometrika, 85(3):619–630,
1998.

Ramaswamy, H. G., Tewari, A., Agarwal, S., et al. Con-
sistent algorithms for multiclass classification with an
abstain option. Electronic Journal of Statistics, 12(1):
530–554, 2018.

Reid, M. D. and Williamson, R. C. Composite binary losses.
JMLR, 11:2387–2422, 2010.

Saerens, M., Latinne, P., and Decaestecker, C. Adjusting
the outputs of a classifier to new a priori probabilities:
a simple procedure. Neural computation, 14(1):21–41,
2002.

Scott, C. Calibrated asymmetric surrogate losses. Electronic
Journal of Statistics, 6:958–992, 2012.

Steinwart, I. How to compare different loss functions and
their risks. Constructive Approximation, 26(2):225–287,
2007.

Sugiyama, M., Suzuki, T., and Kanamori, T. Density ratio
estimation in machine learning. Cambridge University
Press, 2012.

Vapnik, V. Statistical learning theory. 1998, volume 3.
Wiley, New York, 1998.

Vergara, A., Vembu, S., Ayhan, T., Ryan, M. A., Homer,
M. L., and Huerta, R. Chemical gas sensor drift compen-
sation using classifier ensembles. Sensors and Actuators
B: Chemical, 166:320–329, 2012.

Xiao, H., Rasul, K., and Vollgraf, R. Fashion-mnist: a
novel image dataset for benchmarking machine learning
algorithms. arXiv preprint arXiv:1708.07747, 2017.

Yuan, M. and Wegkamp, M. Classification methods with
reject option based on convex risk minimization. JMLR,
11:111–130, 2010.

Zhang, C., Wang, W., and Qiao, X. On reject and refine op-
tions in multicategory classification. Journal of the Amer-
ican Statistical Association, 113(522):730–745, 2018.

Zhang, T. Statistical behavior and consistency of classifica-
tion methods based on convex risk minimization. Annals
of Statistics, pp. 56–85, 2004.


