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Abstract

In this paper, we propose a novel noise-robust
semi-supervised deep generative model by jointly
tackling noisy labels and outliers simultaneously
in a unified robust semi-supervised variational au-
toencoder (URSVAE). Typically, the uncertainty
of of input data is characterized by placing the
uncertainty prior on the parameters of probabil-
ity density distributions in order to ensure the
robustness of the variational encoder towards out-
liers. Subsequently, a noise transition model is
integrated naturally into our model to alleviate the
detrimental effects of noisy labels. Moreover, a
robust divergence measure is employed to further
enhance the robustness, where a novel variational
lower bound is derived and optimized to infer
the network parameters. By proving that the in-
fluence function of the proposed evidence lower
bound is bounded, the enormous potential of the
proposed model in the classification in the pres-
ence of the compound noise is demonstrated. The
experimental results highlight the superiority of
the proposed framework by the evaluating on im-
age classification tasks and comparing with the
state-of-the-art approaches.

1. Introduction

The recent success of training deep neural network has
been heavily relying on the collection of large datasets of
high quality labels. Semi-supervised deep neural network
(Kingma et al., 2014) serves as an effective alternative ap-
proach to alleviate the challenges of labeling large datasets
(Tanno et al., 2019)(Maalge et al., 2017). However, these
alternative solutions inevitably introduce the label noise
due to human fatigue and the subjective nature of annota-
tors, which can deteriorate the performance of deep neural
network. Moreover, the problem of semi-supervised deep
learning with noisy labels becomes more complicated when
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the input image contains outliers where their behaviors are
far away from normal samples (Bora et al., 2018). For
instance, due to radiation or patient motions during the
imaging process, the deviations in neuroimaging data are
generated. In parallel, Bayesian deep learning (BDL) (Li
& Gal, 2017)(Huang et al., 2018) has drawn extensive at-
tention due to its capability of transforming the problem of
posterior inference of a BDL model into the optimization of
an objective function, which is expressed as an expectation
of an analytic function of latent variables. The question
that is then asked is: how can we design a unified deep gen-
erative model in order to counter noisy labels and outliers
in one shot simultaneously in a semi-supervised Bayesian
deep learning ? In this paper, we address this challenging
problem by developing a unified robust semi-supervised
variational autoencoder.

Towards learning with noisy labels, semi-supervised learn-
ing with noisy labels have achieved remarkable success in-
cluding the work at (Malach & Shwartz, 2017)(Jiang et al.,
2018)(Patrini et al., 2017a). In (Kaneko et al., 2019), label-
noise robust generative adversarial network is proposed by
incorporating a noise transition model to learn a clean la-
bel conditional generative distribution even when training
labels are noisy. Targeting at reducing the noise on the in-
put data with generative models, AmbientGAN (Bora et al.,
2018) considered the task of learning an implicit genera-
tive model given only lossy measurements of samples from
the distribution of interest. Despite the separate progress
of learning with noisy labels and outliers, their connection
has not been well explored in semi-supervised learning set-
tings. Previous work on learning with noisy labels (Patrini
et al., 2017a) usually focuses on correcting the loss function
based on estimation of the noise transition matrix. How-
ever, the limitations of these approaches is that they can not
handle the case with high noise ratio for corrupted labels.
Moreover, none of them has considered the influences of
sample outliers. To overcome these challenges, our work
take a different perspective by proposing a robust solution
with variational Bayesian approaches. In (Hou & Galata,
2008), a variational Bayesian approach has been applied to
the problem of robust estimation of gaussian mixtures from
noisy input data. However, the method described in (Hou &
Galata, 2008) is mainly designed for clustering in an unsu-
pervised learning setting and therefore it does not take into
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account of the more complicated and interesting problem of
robust semi-supervised learning with noisy labels in deep
neural network.

The work (Maalge et al., 2017) has leveraged auxiliary
variables to enhance deep generate models for more accu-
rate variational approximation for semi-supervised learning
when the labels and the data are noise-free. Inspired by that,
we propose a novel hierarchical variational inference model
to characterize the uncertainties of the data with Gaussian
mixture models in light of outliers. In the work of Futami et
al (Futami et al., 2018), an outlier-robust pseudo-Bayesian
variational method by replacing the Kullback-Leibler diver-
gence used for data fitting to a robust divergence such as the
[B-divergence. Realizing the effectiveness of robust diver-
gence (Futami et al., 2018) to overcome outliers, our work
leverages the robust divergence on the hierarchical model
in the semi-supervised learning by incorporating a noise
transition model for noisy labels and the robust divergence
jointly to counter the compound noise.

1.1. Summary of Contributions

The major contribution of this paper can be summarized as:

1. To the best of our knowledge, this is the first work that
a novel robust semi-supervised deep generative model
is proposed to handle noisy labels and sample outliers
in one shot simultaneously.

2. To alleviate the compound noise, the proposed model
proposes to leverage three denoising schemes to ensure
the robustness of the proposed system:

* First, URSVAE places the uncertainty priors on
the parameters of the mixture components to
model the noisy input data and meanwhile adapt
noise transition models to characterize the noisy
labels in the robust semi-supervised learning. The
proposed novel denoising schemes and architec-
ture have effectively reduced the detrimental ef-
fect of the compound noise.

¢ Subsequently, the robust S-divergence is em-
ployed to replace Kullback-Leibler divergence
used for data fitting to infer the network param-
eters and a novel evidence lower bound for sem-
supervised learning is derived. Theoretical analy-
sis on the influence function of the lower bound
ensures the robustness of the proposed model.

e Our URSVAE achieves significantly improved
performance in the classification of data with
noisy labels and outliers by evaluation on mul-
tiple benchmark datasets and comparison with the
state-of-the-art approaches.

1.2. Related Work

Compared to the work using auxiliary deep generative mod-
els (Maalge et al., 2017) to strengthen the expressive power
of the generative model, our work extend the graphical mod-
els by placing the uncertainty priors on the first and second
order statistics of the Gaussian mixture models and deriving
the novel ELBO based on the robust $-divergence, aiming
at resolving a more challenging problem for robust semi-
supervised learning. Our work also differs from (Futami
et al., 2018) in the sense that, the work (Futami et al., 2018)
studies the theory of variational inference using robust diver-
gence, while our work cohesively adapts uncertainty prior
and noise transitional model into a robust semi-supervised
variational autoencoder and demonstrate the enormous po-
tential of our model in image classification with compound
noise. Meanwhile, in the area of robust learning with deep
neural work, the work (Li et al., 2019) tackles the learning
with noise problem by applying a noise-tolerant training
algorithm relying on a meta-learning update. P-correction
(Yi & Wu, 2019) mitigates the influence from the noisy
labels by training an end-to-end framework in order to up-
date network parameters and label estimations dynamically.
More work along this direction recently includes Iterative-
CV (Chen et al., 2019) which employs cross-validation to
randomly split noisy datasets and adopts Coteaching(Yu
et al., 2019) techniques to train DNNs robustly against
noisy labels. More recently, Dividemix (Li et al., 2020)
characterizes the per-sample loss using a mixture model to
dynamically split the training data into a labeled set with
clean samples and an unlabeled set with noisy samples so
as to train two diverged networks simultaneously. How-
ever, all of these work donot explore the challenging issue
of semi-supervised learning with noisy labels and outliers
simultaneously.

2. Our Approach
2.1. Variational AutoEncoder

Variational autoencoder (Diederik & Welling, 2013) has
been recently proposed as a powerful solution for semi-
supervised learning. Typically, variational inference with
deep learning from powerful probabilistic models are con-
structed by an inference neural network ¢(z|x) and a gen-
erative neural network p(z|z). The generative model and
the inference model are parameterized by 6 and ¢ respec-
tively. Subsequently, the network parameters are estimated
by optimizing the evidence lower bound in the variational
inference. For unsupervised learning, the evidence lower
bound (ELBO) for vanilla VAE is represented as (Maalge
et al., 2017):

np(z) > Eq(z(a) [Inp(z]2)] = Drerlg(zlx)//p(2)] (1)
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Figure 1. Probabilistic generative model for the proposed unified
robust semi-supervised variational autoencoder (URSVAE), where
x denotes the observations, ¢ and ¢ refer to noisy labels and
corrected labels respectively, z and a stand for the latent variable
and auxiliary variable for VAE respectively, T}, represents the
mean of the kth Gaussian component which satisfies the normal
distribution with the mean i, and the precision matrix Ay and C,

represents the variance of the kth Gaussian component.
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2.2. Unified Robust Semi-supervised Variational
AutoEncoder (URSVAE)

Now we introduce our novel framework of unified robust
semi-supervised deep generative model with the main
focus of constructing a semi-supervised deep generative
model that is robust to both of the outliers and noisy labels.
As the outliers of input data poses a serious problem
for the generative tasks in the sampling process for the
learnt distribution, motivated by the fact that the student-t
distribution is more robust to the outliers than Gaussian
distribution by constraining the shapes of the mixture
components from collapsing, shown in Fig.1, the proposed
deep generative model integrates the uncertainty model
by modeling the input data X with a Gaussian mixture
model and placing the uncertainty prior on the parameters
of the mixture components. Here the number of mixture
components K is determined from the number of classes in
the labeled data. Specifically, x,, is a noisy measurement of
its true position and is a draw from the Gaussian mixture
model, where the mean of each Gaussian component
T} is unknown and the variance C}, is known. In order
to characterize the uncertainty and the outliers from the
input, the Gaussian prior is placed on the top of the mean
for each Gaussian component. Namely, 7T}, satisfies the
normal distribution with the mean pj, and the precision
matrix Ag. w; is the latent variable for the ith data point
specifying which Gaussian it came from and 7 is the
mixing weight for the Gaussian mixture model. Specifically,
a Normal-Wishart prior (Murphy, 2007) is placed on
the mean and ;Jarecision of the Gaussian components:
p(ps A) = Tli—y N(urlmo, (BoAx) ™ )W (Ax|Wo, 10)
where mg is set to be zero and fj is set to be a very
small value. W(A|W,v) is a Wishart distribution
with scale matrix W and v degrees of freedom. For

a semi-supervised learning setting, the labels y are
either unknown (for unlabeled data) or noisy (for la-
beled data). The generative model is then defined as:
bo (x|w, T, C)pg (T‘Z’ My A)p9 (CL‘Z, v, a?)pe ($|§a Z)p(z)p(g)
p(w). Define py as the deep neural network with parameters
0 and y as the ground truth of class label. For unlabeled data,
y is considered as a latent variable. Further denote Cat(.) as
a multinomial distribution and in this paper we reasonably
assume that the labels are of categorical distribution and
the proposed model applies to other distributions for the
latent variable y. In order to fit more complicated posteriors
for the marginal distribution p(z|z), motivated by (Maalge
et al., 2017), we extend the variational distribution with
auxiliary variables a, so that the generative model is in-
variant to marginalization over a p(x, 2, a,w, T, C, u, A) =
Po (x|w, T, C)p9 (T‘Z7 Hs A)pg (CL‘Z, .’L‘)pe(ﬂ?, Z) To miti-
gate the influence with the noisy labels, we introduce y
as the corrupted labels and ¢ as the clean label and not
observed during the training which is connected with the
K x K noise transition matrix M where estimation of
the noise transition matrix has been addressed in previous
methods (Sukhbaatar et al., 2015)(Patrini et al., 2017b). In
particular, M = (M; ;) € [0,1]°*¢(>°, M; ; = 1). Further
denote the corrupted labels as § and the corrected labels as
4. The proposed generative model can then be expressed as:

p(z) = N(z[0,1),
p(y) = Cat(y[n) ,
polalz, g, x) = f(a; 2,9, x) ,
po(x|z,9) = f(z;2,9,0),
plale, T, C) =TI Ty mi N (wnlte, i)
[Ty N(talts, . Cs)
P(Tol g, 1) = N (bl s A )
p(lm) =TI Ty mi
p(§ =ily=j) = M, 2)
The inference model can be represented as:
qo(a; 2, p, A, T, g, wlz) = q(z]a, g, x)q(alz)
q(yla, x)q(T, p, A, wlx) 3)

which can be further factorized as

qe(2la, 7, ) = N(z|pg(a, 7, v), diag(c?)), 4)
qp(Yla, z) = Cat(glne(a, )), (5)

g (pie, M) = q(pe|Aw)g(Ar) (6)

In order to compute ¢(7T, i1, A, w|x), we utilize the mean-

field approximation approach (Bishop, 2006) to factorize all
the latent variables and parameters:

q(T, p, A wlz) = q(T|w, x)q(w|z)g(p, Alz) =
T1; Cat(wi|r:)][Dir(m|a) [T, N (prlme, (BeAr) ™)
W(Ak|Wk, Vk) (7N
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To characterize the normal distributions of py(a|z, 7, ),
po(z|z,y) and g4 (2|a, §, ), two separate outputs from the
top deterministic layer in each deep neural network are
defined as p14ve(.) and log o3, 4 (). Thus, the reparameteri-
zation trick (Diederik & Welling, 2013) can be employed to
approximate the expectations from the output.

2.3. Robust Divergences for VAE

Given the uncertainty prior on our model, we now briefly
introduce the robust divergence to further alleviate the im-
pact from outliers. Introduced theoretically at (Basu et al.,
1998), the -divergence between two functions g and f are
defined as

Ds(g Il f) = 5 [ 9(x)!*Pdx + [ f(x)

—% [ g(@)f(z)Pdx
When 8 — 0, the 8-divergence converges to KL-divergence,
limg_0 Dg(g || f) = Drr(g || f). As described in (Fu-

tami et al., 2018), minimizing the S-divergence from the
empirical distribution p(x) to p(z; 6)

4By

®)

arg min Ds (p(z) [| p(2:0)) 9
we obtain
Jdlnp(x;; 0 Olnp(x;0
fzj oy PO g (a0 L),

As the probability densities of outliers are usually much
smaller than those of inliers, the first term of the above
equation is the likelihood weighted according to the power
of the probability density for each sample, which effectively
suppress the likelihood of outliers. This estimator is also
called as M -estimator (Huber & Ronchetti, 2011), which
provides provably superior performance in various machine
applications (Li & Gal, 2017).

2.4. Variational Lower Bound on -Divergence for
URSVAE

In order to infer the network parameters for robust optimiza-
tion, we shall now derive the variational lower bound based
on -divergence (3-ELBO) for our URSVAE. The 8-ELBO
for VAE using robust S-divergence can be characterized as:

ELBOg = Dxkrlq(z|2)//p(2)] —

J a(zla)(=Ndg(p(xl2)/ /p(x))) (10)

and

N

da(p(a]2)//P(z)) = ==

=1

—EZp(xﬂz)ﬁ—F/p(ﬂz)Hﬁdz

For labeled data, the variational lower bound for the pro-
posed URSVAE model can be represented as:

logp(z,§) = [, [, Jz [, Jx L.,
log(x, g, a,z,T, u, A, w)dadzdTdudAdw >
Ellog(pe(a, 2, T, p, A, w, z,9))] —
Elgg(a,2. 10,0 0)z,5)] = Ellog(pe(a, 2, T, i, A, w, ,9))]
—E[44(a12)] — Eldg(z]a,5,0)] —
~Eldou.n)] = Elgswim)]

Eqp(T)p0.2)]

The above inequality can be rewritten as

. 2, T, A x, g
logp(z,9) > Egstazrmniom [log p;;zliml:mz;)} -
Eqd,(a,z,T,u,Mm,g) [log(pG ((E, gj|a, 2, Ta Hy A))} +

DKL[(]((I7Z,T,H,A‘x,g)//p(a,Z,T,,u,A)] (11)

In order to attenuate the influence of outliers, defining the
set for all latent variables as H = {a,z,T,w, u, A} and
employing the technique from (Futami et al., 2018) by re-
placing KL-divergence with 3-Divergence, the 5-ELBO for
labeled data L can be represented as:

Lg = [q(H|z,9)(— BH Zﬁvzlp@ﬂH;mi)ﬁ
+N [ p(j|H; ) FBdg) + DKL[Q(H|I7g)//p(H)UZ)

The above equation computes the lower bound and learn
the network parameters from noisy labels and outliers based
on labeled data, where the first term enhances the the ro-
bustness to the sample outliers as the reconstruction error
relying on (3-divergence for labeled data and the second
term regularizes q(H |z, ) to be close to the prior p(H) as
the prior regularization error. Denote L2 as the recon-
struction error from the decoder based on log likelihood
for labeled data and LP™*°" as the prior regularization error.
Therefore,

Lg = LE* + Lyppior (13)
In order to remedy the influence of noisy labels g, our goal
is to construct the evidence lower bound based on the clean
label ¢ using the noise transition model. Particularly, we
reformulate the equation as

S 0 = 771 = §7)a(al . 2)a(H )
dHle.d) = = == Gl
JGIH. ) = > g Myr gra(9|H, x)q(H |z) (14

> Myr gra(glw)

For unlabeled data, by introducing the variational distribu-
tion for § as ¢4 (a, z|7), the variational lower bound for the
proposed URSVAE can be represented as

logp(z) = [, [, [7 [, [y J;lo8(x,§a,2, T, p, A)da
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~ po(a,2,T,p, A x,5)
dZdelJ’Ady 2 EQd)(anaZ’T’#’A‘CC) [lOg qZ(a,z,T,;:,A,gﬂa:)

Table 1. Unsupervised test log-likelihood using different learning

= Ellog(po(a, 2, T, p, A,w,x,7))] — E[qg(a,,7,11,A,w,5|=)] algorithms on the permutation invariant MNIST dataset (with

= Ellog(po(a, 2, T, p, A, w, 2,9))] — Elgg(ale)] — Elds(jla,

2?% outliers) the normalizing flows VAE (VAE+NF), importance
w%vei ghted auto-encoder IWAE), variational Gaussian pro-cess VAE

—E[as(:1a,5.2)] = Eldp(rip.0,2)] = Eltpu,0)] = Eldp(wim | (VAE+VGP), Ladder VAE (LVAE) with FT denot-ing the finetun-

Similarly, replacing the KL-divergence with 3-Divergence
and augmenting the latent variable set with the unknown
labels y as H,, = {a,z,y,T,w,u, A}, the 8-ELBO for
unlabeled data in our model can be cast as

Us = [ q(Hu|2)(— 22 S0, plai| Ha)P +
[ p(x|H,) +Pdr) + Dicplg(Hula)/ /p(H)]

Similarly, we can further write the above equation as

Dec

Uﬁ = Usg + Uprz'or . (15)

Practically, LBD ¢ and U éj €¢ are calculated via Monte Carlo
sampling. The robustness of our proposed ELBO can be
guaranteed leveraging the influence function (IF) (Huber &
Ronchetti, 2011). As IF is widely used to analyze how much
contamination affects estimated statistics, it is straightfor-
ward to show that given the perturbation on the empirical
cumulative distribution caused by outliers, the IF of out pos-
terior distribution is bounded, where the detailed theoretical
analysis can be found at (Futami et al., 2018). The full
objective for the proposed unified robust semi-supervised
variational autoencoder (URSVAE) is therefore:

LURSVAE' = Lgec + AlUBDeC + me'or + A1Upm'or (16)

We would like to emphasize that our framework advances
the model from (Maalge et al., 2017) by introducing three
novel components to effectively counter the outliers and
noisy labels including:

» Uncertainty prior on the parameters of Gaussian mix-
ture models to model the noisy input data.

» Noise transition model to correct the noisy labels so
that the generative model and the inference model are
conditioned on clean labels.

* Robust divergence to minimize the impact from the
outliers in the optimization of ELBO.

2.5. Influence Function

Define G(z) as a empirical cumulative distribution given
by {x;}7_, and denote the perturbed version of G at z as
Ge,(z) = (1 — e)G(x) + A, (z), where ¢ is the contam-
ination portion and A () is the point mass at z. Given a
statistic 7T". the influence function (IF) is defined as (Futami
et al., 2018)

OT(G, ()

IF(2,T,G) = e le=0

a7

ing procedure (Sgnderby et al., 2016) and auxiliary deep generative
models (Maalge et al., 2017) and our method (5=0.2), where L rep-
resents the number of stochastic latent layers z1, ..., zr, and IW
characterizes the importance weighted samples during training.

| Method | —logp(x) |
VAE+NF(Miyato et al., 2015), L=1 -89.35
IWAE, L=1, IW=1 (Burda et al., 2015) -90.26
IWAE, L=1, IW=50 (Burda et al., 2015) -88.36
IWAE, L=2, IW=1 (Burda et al., 2015) -89.71
IWAE, L=2, IW=50 (Burda et al., 2015) -86.43
VAE+VGP, L=2 (Tran et al., 2015) -85.79
LVAE, L=5, IW=1 (S¢nderby et al., 2016) -85.08
ADGM, L=1, IW=1 (Maalge et al., 2017) -84.67
ADGM, L=1, IW=2 (Maalge et al., 2017) -84.34
URSVAE, L=1, IW=1 -83.12
URSVAE, L=1, IW=2 -82.86

Thus, the IF of Ly rsv AE is given by

(FLgsvar) = 0By, [Dicrlq(Hulz)//p(H,)
+N (A p(2|Hy)? — [ p(x|H,)' P da)

(LLynsvar) 1 O F o Dyerq(H|z)//p(H))
+N (5 p(gle, H)? — [ p(gle, H)*Pdg), (18)

It is straightforward to show that the above result is always
bounded, namely our system is robust to the compound
noise (the outliers on the data x and the labels ¥).

3. Experimental Results

Dataset: We evaluate the performance on five benchmark
datasets including the MNIST, CIFAR-10, CIFAR-100 as
benchmark datasets for image classification. The proposed
algorithm is also evaluated with two real world large scale
image datasets including Clothing1M and WebVisionl.0.
For ClothingIM dataset, it includes 1 million training im-
ages obtained from online shopping websites and labels
are generated from surrounding texts. WebVision includes
2.4 million images collected from the internet using the
1,000 concepts in ImageNet ILSVRC12. Similar to the pre-
vious work (Chen et al., 2019), the baseline methods on
the first 50 classes of the Google image subset using the
inception-resnet v2 (Szegedy et al., 2017) are compared.

Competing approaches: We evaluate the robustness and ac-
curacy performance of the proposed algorithm by comparing
with multiple baseline methods and the state-of-the-art ap-
proaches. The baseline methods consist of ADGM(Maalge
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Table 2. Comparison of classification accuracy using different learning algorithms on the CIFAR-10(C10) and CIFAR-100(C100) datasets
with varying levels of label noise and sample outliers. We re-implement all methods under the same setting based on public code.

| Dataset | C10 | C10 C10

| C10 | C100 | C100 | C100 | C100 |

‘ Label Noise, Outliers(%)

| 50,10 | 80,10 | 50,20 | 80,20 | 50,10 | 80,10 | 50,20 | 80,20 |

VAT (Miyato et al., 2015) 68.2 62.3 78.6
LadderNet(Rasmus et al., 2015) 70.3 67.7 68.1
ADGM(Maalge et al., 2017) 72.6 69.3 69.6
Coteaching(Yu et al., 2019) 85.1 65.8 81.3
M-correct(Arazo et al., 2019) 79.7 62.9 75.7
P-correct(Yi & Wu, 2019) 86.3 75.1 74.5
Meta-Learn(Li et al., 2019) 87.9 84.0 75.2
Dividemix (Li et al., 2020) 91.3 90.7 90.5
RGAN(Kaneko et al., 2019) 90.3 88.6 89.2
AmbientGAN (Bora et al., 2018) | 87.5 83.6 84.9
URSVAE 94.3 92.7 93.7

73.1 48.7 28.3 47.2 253
51.3 43.5 46.7 38.5 36.2
67.8 53.7 46.5 52.3 41.3
61.5 53.1 21.9 51.6 20.7
72.6 67.3 48.6 65.6 47.3
72.3 65.3 58.3 61.6 46.9
72.6 59.1 46.6 58.7 45.3
88.7 72.1 57.9 68.2 56.8
87.5 71.5 62.3 71.6 59.8
81.6 67.2 64.5 63.8 60.3
93.2 79.6 65.6 76.5 64.3

et al., 2017) VAT (Miyato et al., 2015) and Ladder Net-
work (Rasmus et al., 2015). The state-of-art approaches
include Dividemix (Li et al., 2020), M-correction (Arazo
et al., 2019), P-correction (Yi & Wu, 2019), Meta-Learning
(Li et al., 2019), Coteaching (Yu et al., 2019), Ambient-
GAN (Bora et al., 2018) and rGAN (Kaneko et al., 2019).
Among these approaches, Meta-Learning (Li et al., 2019)
applies a noise-tolerant training algorithm relying on a meta-
learning update. P-correction (Yi & Wu, 2019) tackles the
noisy labels by training an end-to-end framework which
can update network parameters and label estimations as la-
bel distributions. Iterative-CV (Chen et al., 2019) applies
cross-validation to randomly split noisy datasets and adopts
Coteaching(Yu et al., 2019) techniques to train DNNSs ro-
bustly against noisy labels. Dividemix (Li et al., 2020)
models the per-sample loss with a mixture model to dynam-
ically divide the training data into a labeled set with clean
samples and an unlabeled set with noisy samples and trains
two diverged networks simultaneously. In the training of
AmbientGAN (Bora et al., 2018), the output of the generator
is passed through a simulated random measurement func-
tion to cope with lossy measurement. rGAN (Kaneko et al.,
2019) incorporate a noise transitional model to learn a clean
label generative distribution, where WGAN-GP (Gulrajani
et al., 2017) is uitlized to ensure the training statability in
the GAN configuration.

Implementation Details: For all the benchmark with vari-
ational autoencoders on MNIST, CIFAR-10 and CIFAR-100
datasets, we parameterize the deep neural network with three
sets of 5 by 5 fully convolutional, ReLU and pooling layers
followed by two fully connected hidden layers where each
pair of layers contains the hidden units as dim(h) = 500 or
dim(h) = 1000. Moreover, in order to have the fair com-
parison the dimensions of the auxiliary variables a, namely
dim(a,z) = 100. and the latent variable z are set to be

Table 3. Comparison of classification accuracy using different
learning algorithms on the CIFAR-10 (with asymmetric 40% label
noise and 10% outliers) and Clothing1M datasets (real-world noise
and 10% outliers).

| Dataset

C10 | ClothingIM

VAT (Miyato et al., 2015) 73.6 59.42
M-correction(Arazo et al., 2019) | 87.1 70.53
Joint-Optim(Tanaka et al., 2018) | 87.6 71.35

P-correction(Yi & Wu, 2019) 86.3 72.81
Meta-Learning (Li et al., 2019) | 87.9 73.01
Dividemix (Li et al., 2020) 91.3 73.16
RGAN(Kaneko et al., 2019) 86.9 71.97
AmbientGAN (Bora et al., 2018) | 87.3 70.55
URSVAE 94.7 79.65

the same as ADGM(Maalge et al., 2017). The network is
trained with SGD using a batch size of 128. A momentum
of 0.9 is set with a weight decay of 0.0005. The network
is trained for 300 epochs. We set the initial learning rate
as 0.02, and reduce it by a factor of 10 after 150 epochs.
The warm up period is 10 epochs for CIFAR-10 and 30
epochs for CIFAR-100. For the Clothing1M and WebVision
datasets, we utilize a similar architecture of Resnet-18 (He
et al., 2015) but adding the uncertainty prior for the input,
the noise transition model along with the auxilary variables
as our encoder, by encoding a 256 by 256 RGB image into
512 feature maps of size 8 by 8. \; is set to be the ratio of
the number of unlabeled samples versus the number of la-
beled samples. All parameters are initialized using the same
scheme described as (Glorot & Bengio, 2010). 3 varies
from 0.1 to 0.4 where the best performance is reported.

Typically, Both CIFAR-10 and CIFAR-100 contain 50K
training images and 10K test images of size 32 by 32. Each
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dataset is randomly sampled and divided into three dis-
jointed subsets including the labeled set (5% samples), un-
labeled set (75% samples) and test set (20% samples). We
vary the outliers percentages from 10% to 20% and ap-
ply them to the datasets where the outliers are created by
randomly removing 10% to 20% features in the data and
replacing with zeros. Two types of label noises are studied
in the experiments including symmetric and asymmetric la-
bel noise. In particular, the symmetric noise is ranging from
20% to 80% and generated by randomly replacing the labels
for a percentage of training data with all possible labels.
The asymmetric noise is created to simulate the real-world
label noise where the corrupted label consists of the labels
from the most similar class with respect to the ground truth
(e.g. "horse” to “deer”, ’truck” to “automobile”, ’bird” to
“airplane”).

Performance Evaluations on Classification: Fig.2 demon-
strates the comparison of the t-SNE visualization with two
dimensions for the auxiliary latent space for the CIFAR-
10 dataset using ADGM (Maalge et al., 2017) and our
URSVAE with 10% sample outliers and 20% noisy labels,
where the index number indicates classes 0 to 9. Each
number locates on the median position of the correspond-
ing vectors and the outliers are marked with squares. The
embeddings from 10 distinct clusters using our method cor-
responds to true class labels instead of noisy labels. As illus-
trated by Fig.2, URSVAE finds a better separation among
different classes in the presence of compound noise due to
the utilization of uncertainty prior, noise transition model
and robust divergence which justifies the robustness of our
method to label noise and sample outliers. Fig.3 provides ex-
emplary images with noisy labels detected by our URSVAE
method from Clothing1M dataset, where the false labels are
above the images in orange and the true labels are below the
images in light blue. These examples demonstrates the effi-
cacy of URSVAE in detection of images with noisy labels.
We report the lower bound for the 3-ELBO Upg on the un-
labeled data with 5000 importance weighted samples where
the similar setting as (Rasmus et al., 2015) with warm up,
batch normalization and 1 Monte Carlo and IW sample for
training. The percentage of outliers is set to be 20%. Table
1 demonstrates the log-likelihood scores for the permuta-
tion invariant MNIST dataset. The results shown in Table
1 indicates the the proposed method has strong expressive
power by performing better than other methods in terms of
log-likelihood due to the utilization of the uncertainty prior
and the robust divergence in the inference. From Table 2,
we see that our URSVAE is suffering significantly less from
the compound noise than the other competing approaches
due to our effective denoising schemes, which helps explain
the state-of-the-art performance of our approach. The better
performance with respect to Dividemix (Li et al., 2020) and
RGAN(Kaneko et al., 2019) is mainly because our method

Figure 2. Comparison of the t-SNE visualization with two dimen-
sions for the auxiliary latent space for the CIFAR-10 dataset using
ADGM (Maalge et al., 2017) and our URSVAE (5=0.15) with
10% sample outliers and 20% noisy labels, where the index num-
ber indicates classes 0 to 9. Each number locates on the median
position of the corresponding vectors and the outliers are marked
with squares. The embeddings from 10 distinct clusters using
our method corresponds to true class labels, which justifies the
robustness of our method to label noise and sample outliers.
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Figure 3. Exemplary images with compound noise detected by
URSVAE from ClothinglM dataset, where the false labels are
noted in orange and the true labels are noted in light blue.
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efficiently rejects the outliers by placing a smaller or zero
weight on them. While the performance gain compared to
AmbientGAN(Bora et al., 2018) can be attributed to the
fact that URSVAE successfully suppresses the samples with
noisy labels by integrating the noise transition model in the
optimization. Table 3 provides the comparison of clas-
sification accuracy using different learning algorithms on
the CIFAR-10 (with asymmetric 40% label noise and 10%
outliers) and Clothing1M datasets (real-world noise) along
with standard deviation (in brackets). 40% asymmetric label
noise is selected because certain classes become theoret-
ically indistinguishable for asymmetric noise larger than
50%. Joint-Optim (Tanaka et al., 2018) jointly optimize the
sample labels and the network parameters. As it can be seen
from Table 3 that our method works nicely with asymmetric
noise and real-world noise. With the optimization of the
proposed 8-ELBO, our method significantly outperforms
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Table 4. Comparison of top-1 (top-5) accuracy with different state-of-the-art methods on the WebVision validation dataset and the
ImageNet ILSVRC12 validation datasets training on (mini)WebVision dataset with 20% outliers.

| Dataset | WebVision | WebVision | ILSVRC12 | ILSVRCI2 |

‘ Metric ‘ topl ‘ topS ‘ topl ‘ topS ‘
Coteaching(Yu et al., 2019) 62.75 83.61 60.73 83.56
F-correction(Patrini et al., 2017a) 60.73 81.64 56.81 81.72
Decoupling(Malach & Shwartz, 2017) 61.37 82.95 57.93 81.38
MentorNet(Jiang et al., 2018) 62.78 80.92 57.52 79.51
Iterative-CV (Chen et al., 2019) 64.87 84.03 61.31 83.79
Dividemix (Li et al., 2020) 75.68 87.73 72.87 85.61
RGAN(Kaneko et al., 2019) 74.39 85.68 71.35 84.78
URSVAE 77.35 90.68 7541 90.68

Table 5. Ablation study results in terms of testing accuracy(%) on CIFAR-10(C10) and CIFAR-100(C100) for our method.

\ Dataset \ C10 \ C10 \ C10 \ C10 \ C10 \ C100 \ C100 \ C100 \ C100 \

‘ Noise type ‘ Sym. ‘ Sym. ‘ Sym. ‘ Sym. ‘ Asym. ‘ Sym. ‘ Sym. ‘ Sym. ‘ Sym. ‘

| Label Noise, Outliers(%) | 50,10 | 80, 10 | 50,20 | 80,20 | 40, 10 | 50, 10 | 80,10 | 50,20 | 80,20 |
Ours w/o uncertainty prior | 91.7 90.7 91.5 88.7 92.3 77.3 72.0 63.8 60.9
Ours w/o robust divergence | 89.6 92.6 93.4 92.1 91.6 77.6 74.9 61.2 61.7
Ours w/o noise transition 86.5 90.7 91.9 88.7 91.3 78.5 75.1 63.2 62.8
Ours 95.7 93.3 93.7 | 929 95.1 813 | 671 778 | 67.9

the best competitor Dividemix by 3.8% and 5.2% respec-
tively on CIFAR-10 and Clothing1M datasets. In contrast,
most approaches from the competitors cannot address the
issues from outliers and label noise simultaneously.

Table 4 illustrates the comparison of top-1 (top-5) accuracy
with different state-of-the-art methods on the WebVision
validation dataset and the ImageNet ILSVRC12 validation
datasets training on (mini)WebVision dataset with 20% out-
liers. Here top-5 accuracy is an extension to top-1 accu-
racy where instead of computing the probability that the
most probable class label equals to the ground truth label,
the probability that the group truth label is in the top 5
most probable labels is calculated. Specifically, in Men-
torNet(Jiang et al., 2018), an auxiliary teacher network is
pre-trained and used to drop samples with noisy labels for
its student network which is used for image recognition.
Our method again achieves the best performance with re-
spect to other competing methods due to its capability of
mitigating the compound noise simultaneously in one shot.
Ablation Study: Here we provide some details on abla-
tion study in Table 5. Our method w/o uncertainty prior
excludes the uncertainty prior from the model. Hence the
performance degradation (especially with 20% outliers) sug-
gests the importance of the proposed hierarchical structure
for variational inference by placing the uncertainty prior.
Secondly, our method w/o robust divergence replaces /3-

divergence with the regular KL-divergence for ELBO in
the optimization, which validates the contribution of using
robust divergence for countering the problem of sample
outliers because more outliers would be mistakenly classi-
fied without robust divergence. Moreover, our method w/o
noise transition is utilizing the same network architecture as
URSVAE except omitting the noise transition model, which
indicates the effectiveness of adapting the noise transition
model in the classification to alleviate the detrimental effect
of noisy labels by conditioning on clean labels. Finally, by
tuning 3 in the robust divergence, the classification perfor-
mance of URSVAE is improved by around 2.2% on average.
The training time of URSVAE on CIFAR-10 evaluated on a
single Nvidia V100 GPU is 4.9 hours.

4. Conclusion

A novel robust semi-supervised variational autoencoder un-
der noisy labels and outliers is proposed. With the aid of
uncertainty priors and noise transition models, URSVAE
has demonstrated the robust performance in the presence
of noisy labels and outliers. Moreover, the proposed ro-
bust divergence in variational inference further enhanced
the robustness by minimizing the 3-ELBO. Evaluations on
multiple benchmark and real-world datasets demonstrate
the efficiency and robustness of URSVAE compared to the
state-of-the-art approaches.
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