Improved Corruption Robust Algorithms for Episodic Reinforcement Learning

A. Organization of appendix

In Appendix B, we give detailed proofs for Theorem 1, which is the result for the non-cheated setting. In Appendix C, we
describe the algorithm omitted in the main paper for the cheated setting as well as its proofs. Then in Appendix D, we
give detailed proofs for Theorem 3 and 4, which are the results for the reward-free exploration sub-algorithm. Finally, in
Appendix E, we give a justification on why efficient reward-free exploration methods proposed in Kaufmann et al. (2020)
and Ménard et al. (2020) are difficult to be used as sub-algorithms here.

B. Regret Analysis for Theorem 1 (the non-cheated case)
B.1. Notations

We use E,,, to denote the m-th epoch. Because the epoch will be restarted when there is an unfinished ESTALL as shown in
line 14 and 15, each E,, can be decomposed into one or more sub-epochs, denoted as E},, E2,. ... ELm each with length
N,,. In the last sub-epoch, either all the ESTALL are finished or the whole algorithm ends.

For convenience, we also define the following notations

VAV =VfandA, =V — V7,

* 7= argmax, oy . Vi

o T = argmaxﬂenl/T{fm(w) — T%A?—l}

. ﬁ;”’k be the real number of times that policy set IT}* interacting with environment inside EF,

m 8\ Aa(HCP4+CT)
* Pm =g qgmN

R o
d Aj = maxﬂel—[;n Aﬂ.

B.2. High Probability Events

We define the following events and show that these events occur with high probability.

Definition 1. Define an event £,y erq11 Which implies that the actual length of all sub-algorithms is closed to their scheduled
time
3
n

. ~Mm ]‘ m m
Eoverall = {Vm,Vk € [['n],Vj € [Sin] : 71} e [in] )51 ]} 3)

Definition 2. Define an event E.,¢, which implies that, for all the completed sub-epochs, we can estimated all the policy
uniformly at the end of epoch

2(HC? , +Cr 1 .
Eest 1= {Vmﬂr P (m) = VI < 2A1 A9 ( m,k k) + —A;”_l
N, 16

Definition 3. Define an event £y, finished, Which implies that, for all sub-epochs with unfinished sub-algorithm, we always
have large corruption as long as E,yperqn holds,

Nm and goverall

1 [In(10T|1I Sovera
gunfinished = vm7Vk € [Fm] : Crpnvk > - n( ‘ 1/T|/ ”)
4 A1 g

Now we are going to prove that Prob[E,perait N Eest N Eunfinished] = 1 — doverarr- We first show that with high probability,
Eoverail holds,

Lemma 1 (High Probability for Eyyerain). Prob [Eoveratl] = 1 — doverali/4
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Proof. For any fixed E¥, and 1%, we use a Chernoff-Hoeffding bound on the r.v. n . The expected value is IE[ m =
ny > Ao = 1210g(8T/50Uem”) )

m, m 1 1 .,
Prob | |7} k —nj'|> 3" ] < 2exp (—(4nj )/3> < dowerait /4T log(T)

Because of the possible failure of a sub-algorithm, there will be at most 7" sub-epochs and log(7") sub-policy sets. So by
taking the union bound over all the sub-epochs and sub-policy sets, we get the target result O

Next, we are going to show with high probability we have &,yerq1 N Ecst- But before we actually prove those, we will
first prove the following lemma that gives an estimation on the total amount of corruptions that will be included in each
sub-algorithm.

Lemma 2. For any fixed sub-epoch EX, and any fixed %", we have

2n’"
Prob | > f1{m € 1]} > J c” ot HmA/5and Y 1{m €T} > N Cmp + HInd/5| <
te Bk, teEk, N

IR

Proof. Tt follows a very similar proof of Eqn.3 in (Gupta et al. 2019) LetY/ = 1{m € II""} and B}* = 3, ., Y/¢;".
Notice that Yf is an 1ndependent Bernoulli variable with mean qj Consider the sequence of r.v.s Xy,..., Xn, deﬁned by
Xi1s 41 = (Y q ) P for t € E,,. Then it is a martingale difference sequence with predictable quadratic variation

Var = qi* Zte B, c;?. Then by applying the freedman inequality we get that, with probability at least 1 — 4,

T <qt > P+ (Var/H + Hin4d/8) <2¢* > ¢}’ + Hln4/s
teEE, teEm,

2n

By replacing " = nj" /N and 37, c . c;” < C,7 ) into that, we have B < x-C) 7 + H1In4/o O

We now continue proving our claim:
Lemma 3 (High Probability for E.t). Prob [Eest] > 1 — doverali/4

Proof. For any fixed m, j, suppose the ESTALL}" is completed. From Lemma 2, we know that, with high probability

147" /4, there will be at most <2NJ oy HIn(4/ 5}”)) amount of corruptions included in the sub-algorithm ESTALL’"
Then by Theorem 4 , we have that, with probability as least 1 — 07", for all w € II’"

nm (2HCD  +Cr)\  Hn(4/sm)
i +

TAm (ﬂ) - VJ‘ < 76‘251& +

Fj" v ij

est

Np,
2(HCY, , + C&,k))

, 2(HC? , +Cr
< 7Eést + 2A1 A2 < ( m.k m,k)>

— 16

1
< € + 2A1 A2 ( N

Now by taking the union bound over at most log T" epochs and at most log 7" sub-algorithms for each epoch, as well as
replacing the value of A”", we have that, with probability at least 1 — d,perair /4, for all m, j and all € H;?1

2(HCY, , +Cr k)
Np,

|fm(ﬂ) — V*Trl S 6j/16 + 2)\1)\2

By the definition of AZ? and H?l, this can also be written as, for all m and all 7 € II, with probability at least 1 — doperair /4,

2(HCY,  +Cr )
Ny,

| () = V| <A™ /16 + 201 g
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Lemma 4 (ngh PfObabﬂity for gunfinished)- Prob [gunfinished] Z 1-— 601)87’(1”/4

Proof. Given Eyerail, all the ESTALL;-”’k will have more than 77" > A F[" > 6[S||A|Fj" log(H |S||A|) number of

interactions with the environment. Then by Theorem 3 , we know that since ESTALL}””“ is unfinished, then with probability

at least 1 — 5;“, we will have more than Mﬁ%FJm amount of corruptions being included in any fixed ESTALLT’k.
Next by Lemma 2, we know that with probability at least 1 — 6" /4,

m J
20 0P 4 HIn(4/67) > —est___pm
N, Ot F 0T 2 gy A B

m,k

By replacing the values of 2n", F™ and e _,, we have for any fixed ESTALL;™",

est’

221\ 200k 5 o ! < > 1 j
es— € — €
YRATN, ) T et \2IS||AJH? T 96[S||A|H2 ) T 4|S||A[H?

Rearranging the inequality we get

No,

CcP & > 1 N egst > Nmeg\;t > 1 1n(10T|H1/T|/6Overall)
T 16|S||AIH? A Az 16|S||A[H2A Ny — 4 Mo

o . X xo 10g(10T (ML, /7| /Sovera o
where the third inequality comes from the fact that €7, > 4H?|S ||A|\/ 1 log( 1‘\/1/ zl/ ) which is an
rearrangement from the inequality in Lemma 5.

Finally, we know there are at most 7" number of sub-epochs. So by taking the union bound over all the sub-epochs and over
all the sub-policy set II7" inside each sub-epoch EF , we get the target result. O

In what follows we assume events Egyerali-ECest aNd Eyn finished hold, since they do so with probability at least 1 — 0.

B.3. Auxiliary Lemmas

Lemma 5. The length of Ny, of epoch m satisfies
16 * 128° X Ao |S|PH* | A]* In(10T 1Ly 7| /Soveran) / (€m)® < Npy < 64 % 128° X Ao S|P H* | A*10T log(2/6overai)/ (em)?
Sometimes we will use the following

16X Ao [S|PHY A In(10T ILy /7| /Soveran) / (emty)? < Ny < 6401 A2| S| H*|A*10T 10g(2/00veran) / (€1%)?

est

Proof. Because 77" — 7., (7*) < 0, so it has A?m = €,,. This immediately implies the lower bound as

N > min nf" > 16 + 128° X Ao |SPH*A[? In(10T |1y /7| /Soveranr) / (€m )
JESm

We get the upper bound from the fact that

Np= Y 0" < 645 128° M Xo|S|PH*|A]” In(10T [Ty 7| /Soveran) / (€m)
JESm
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B.4. Lemmas related to completed sub-algorithm

In the case that all the sub-algorithms are completed, the proof steps are the very similar to the ones in (Gupta et al., 2019).
Here we restate and refined related lemmas.

Lemma 6 (similar to Lemma 5 (Gupta et al., 2019)). Suppose that E.; occurs. Then for all epochs m,
2(HCP r . 2AHCP T
( Cm+0m)_7Am 1< V<2)\1)\2 ( Cm+cm)

92
Ao N,, 16 = N,,

’\Tn

Proof. For the upper bound, by the definition of 7 and the occurrence of &, we have

P = P () — —Am !

* Tm

2(HCr, +C7) 1 1
m m Am _ 7Am
Np, * 16 16 ™

. P T
< V+2>\1)\2w

< V + 22X H

o 2HCP +CT)
—Amm 1 fAmm Loy 4o N\ Tm [ ZmJ
Nom 167 & L

For the lower bound, we have

2(HC?, +Cr)

1 » o
P> F () — EA;“*1 >V — 20\ N
m

1 -
—2_Amr!
167
O

Lemma 7 (similar to Lemma 6 (Gupta et al., 2019)). Suppose that E.s; occurs. Then for all epoch m and all policies T

~ P ™
Am < (A Ly m+28)\1/\2 (HC* +C)>

16m—s N,

Proof. The proof is by induction on m. For m = 1, the claim is trivially true because A}T < 2% 271 = 1. Next, suppose
that the claim holds for m — 1. Using Lemma 6 and the definition of .4, we write

Po — P (m) = (P} — ‘O/) + (‘G/ =V + (VT = 7p(m))
P ” o P T N
< 2)\1)\QW+AW+2)\1)\2W %A;’l

Now using the induction hypothesis, we have

. AHC? +Cr) 1 HCP + O
fi’b—fm(w)SAﬂL%lAz—( O’”+C’”)+<2A 1952 (m- 1)+28A1A2( U+ O, )>

N, 16 16m—1-sN,

. B L 8M A (HCP + CT)
gQAﬂ+2*2m+Z =
yenrt 16m—s N,

Now by the definition of A if # — 7, (1) < 27™, then we directly have A" < 2=™. Otherwise if 77" — 7, (1) > 2™,
then A" < 7" — 7 () O

Lemma 8 (similar to Lemma 7 (Gupta et al., 2019)). Suppose that E.; occurs. Then for all epochs m and all policies

S\Na(HCP +CT) 3. _ 1. 3
s TYs) _Sgem._ A _3, _Z29-m
16m—>N, 8 1 Pm =3

Am 1.
Ar ZZAW—BZ

s=1
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Proof.
A 1
AT > 5(7“ — (7))
D r ™ H P r
. Vo A 2O+ CL) L ) (W 2o 2HCm +Cn) 1 jme
2 N, 16 ™ 2 N, 32
A 4C 3 4
_ B 2om 2 Am-1
5 M N,, 3277
An 4C, L 8MA(HCP 4 CT)
> =7 —_ Ay +27 s
=79 /\1)\2 Nm 32 ( + + port 16m— eN
8)\1)\2 Cp—i—C’”) 3
> S.__9™m

Pm

The first inequality is by the definition of Aﬁm. The first term of the second inequality comes from Lemma 6 and the second
term of the second inequality comes from the occurrence of £.,;. And the third inequality comes from Lemma 7. O

Corollary 1. Suppose that E.s; occurs. Then for all epoch m and all policies .

. 3.
€ 2 A;n —3pm-1— §2 (m=1)

| =

Proof. The above lemma 8 holds for all w € H}” including the one leads to A;”. Furthermore, we have ¢; = Afﬁfl.
Therefore, we get the target result. O

B.S. Lemmas related to unfinished sub-algorithms

Now we will show that, if the sub-algorithm is unfinished, then the number of repeated sub-epochs can be upper bounded in
terms of corruption.

Lemma 9. If £, finished occurs, then we have

T — 1< CPe,/(H?S||A In(107' |14 y7|/doveran) < CP /(H?S|| A In(107' |11y j7|/doverant)

Proof. Condition on Eyy, finished, We have

161 X2
CP 2
<1OT|H1/T‘/6overall) kE[mel] ( m,k)
16A1)\2 Cg]’ — Cm7Fm )2
1n(]-OT’u_Il/T‘/(Smmmzll) 1—‘m -1
16712 Ch
1n(10T|H1/T‘/6overall) ry—-1

NmS

Also from Lemma 5, we know a lower bound on V,,,. Therefore we have

16X\ Ch o

<
- 111(10T|H1/T‘/5overall) Fm -1

16 % 128° X Ao | S| H*|A|* In(10T Iy /7| /Soveran) / (€m)?

Rearranging the above inequality we get

Ly — 1< CP e /(128H?|S||A| In(10T Iy /7| /Soverat)
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B.6. Proof for main theorem

Proof. Assume Eoperails Eest and Eyp finishea 0ccur. Now we decompose the regret into

Reg= > Y Zm: SV -VIHUm=x}+T(V* -V)

m=17€ell k=1 tcEk,

M .
Sk
< E E E A;T“n;.” + O(H)
m=1j€S,, k=1
3 M T, —1
§§ § Am mF77L+ § § § Am mk+0( )
m=1 k=1 jeS,,
NON-REPEAT TERM REPEAT TERM
where the last inequality comes from event &,,erq. For convenience, denote R;.”’k = A;’Ln;."’k, 8 =

5124/A1 A (10T /[ /doveran)|S|| Al H? and we know by definition that e; < 3, /1/n7".

We first give upper bounds on term R;-”’k for any fixed m, k. Notice that when the algorithm goes to epoch m,
it suggests that all the sub-algorithms ran before m are completed. Therefore, we will use lemmas stated in Section B.4 for
the following proof.

Casel: p,,_; < A;"/64. In this case, if A;-”/Z > 2-(m=1) ‘given £,,; , we can use Corollary 1 to get

‘m 3 (e 1 3 3\:,, A
Aj _3pm—1_§2( 1)><——>A4:]

%2 7764

1
4

If AW/Q < 2=(m=1) then € > ﬂ trivially holds.

In turn, we have nj* < f8 / €; according to the definition of n", from which follows

RN < 64B, /0

This can be also be written as

k Am A M A m
< AT/ < 642ATB/(AT)? = 6428/AT < 6426/ min An

L7

Case2: p,,_1 > A;”/64. We again use the upper bound of n7* < B2/,
R™* < 963%py1/€l, = 963 ppn 127"

By combining these two cases, we have

64
R;-"’k <64fmin ¢ /0T, —————— o + 965 prm—1/¢2,
minzerm, ,» A

T
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Secondly, we deal with the NON-REPEAT TERM. By summing RT’k over all policy sets for k = I'),, we get

M
A M m,
> D A

m=1jES,,

M M
6410g T
<648 > :min{\/logTNm, Og} +968%(l0gT) S pr12®™

minzer, ,,

m=1

64log T M
< 648(log T) min {\/T, g} + 963 (log T) Z _,2%m

mlnﬂ'enl/T m=1

‘S|2‘A|3/2H2 min{Hl/z, |S‘1/2|A|1/2} ln(l/(sovemll) min {\/T7 10}>

minweﬂl/T A‘ﬂ'

S|? |.A|3/2H2H1111{H1/2 |S|1/2|A1/2}ln(1/50vem”)m1n{\/f 1})

minﬂ'EH Aﬂ'

@ (|S‘ |.A| ln(1/501)e7all)(HCp + Or))
-o(]
+0

(IS Al (1/doveran) (HC? + C"))

The last equation comes from the fact that Iy /7 is 1/T-net of policy and VT > ——1——— when mingern, . A, <

mlIlﬂ-enl/T A,
o(/1/T).

Here the result of > p,,, 122 comes from the following,

M 8\ A (HCP +CT)
ﬁ2pm— /Em ﬁ2 4m
mZzl 1 Z Z

16m—1=sN,
=81 \of3” 2; HC? +CY) Z 4mﬁ
M 4—3
< 8A A Z(Hcé’ +C5) Z ST
]Lsf_l ;_S4m_1_s
=320\ ;(HCE +C7) mZ: Tgnis

= (5 (|8‘ |A| ln(l/am;erall)(HCp + CT))
where the first equality use changing order of summation techniques and the second inequality comes from the lower bound
of N, in Lemma 5.

Thirdly, we consider the REPEAT TERM. From the previous analysis, we have

I'm—1 M T'p—1

M Tpm
Yoy Z ArnlP <6483 > \/(logT) Nm+z mr — 1)9682(10g T) pr—12%™

m=1 k=1 je m=1 k=1

E

First, given Eyp finished> We can bound the first term by

M T',—1
E 164/ A1\ N o ainl i
64 E log T < O (H?|S|*1A|* In(1/operair) C*
Bm 1 k=1 \/K mk\/1 10T|H1/T‘/5overall) N ( | ‘ | ‘ Il( / ll) )
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Then, by Lemma 9, we can bound the first term by bounding the I',,, — 1 as below

M
B2(1ogT) > (Try — 1)pm—12”™
m=1
M
Cp
< B*(log T m 92m
B ﬂ ( & )mzzl HQ‘SH‘A‘ ln(10T|H1/T‘/6overall)p !

log T M M
CTP;’L 2 _ 22m
H2|S|| A (10T, 7| /Soverant) (Z ) (Z B > pme )

m/=1 m=1 m'eM
C?(log T)? M
< . ( g ) 62 Z pm71227n
H |S||‘A| ln(10T|H1/T|/5oveT’all) me1
/1 .
<0 (HQCP(HC”’ +C ))
Combing all the upper bounds, we get the final result. O

B.7. Relationship between PolicyGapComlexity and the GapCompelxity in Simchowitz & Jamieson (2019)

In the main paper, we assume a single starting states. Here, in order to make a comparison, we remove this assumption and
assume a starting distribution over all states. As stated in the Related Work section, the most common GapComplexity
used in reinforcement learning is in the following form. Note that to aid the exposition, we omit other states and actions
dependency below.

gapy(s,a) = Vi (s) = Qp(s, a),
1

mins,a,h gaph(sa a)

GapComplexity =

To get an intuition about its relation to policy gap A, consider the optimal policy 7* and the second optimal policy 7. If
there is a tie, we just arbitrarily choose two policies with closest behavior. Define

7'[identical - {h|Vh/ S [07 h — 1]7v5 S Sh’aﬂ-*(s) = ﬂ/(s)}

where S, = {s € S| max ¢ Prob (r visits s at h) > 0} and Sp = 0. S0 H;gentical is a collection of steps, before which,
the optimal policy 7* and the second optimal policy 7" are unidentifiable. Note that & = 1 is always included in H;genticai-
Now we have

Ap =V =V

- Prob (7" visit th(V*—’T',')
heﬂrg%iiml;s rob (7% visits s at h) ( V' (s) Ln(s,m(s))

max Prob (7* visits s at h) (V" (s) — Q7. (s, 7' (s
e, 2 Prob ) (Vi (5) = Qs 7'(5)

Y

v

min gap, (s,a)  max Z Prob (7* visits s at h) 1{r*(s) # 7'(s)}
s,a,h ’ h€Hidentical ses

It is easy to see that Maxpew, . icar 2 scs PTOb (77 visits s at h) 1{7*(s) # n'(s)} is positive due to the definition of
%idem‘,icab

Recall the the PolicyGapComplexity is defined as ﬁ’ so we have

1 1
PolicyGapC lexity <
OHCYLap-OmpIexity = MAXKEH, genticar 2 scs PIOD (77 Visits s at h) 1{7*(s) # n'(s)} ming 4, gap,, (s, a)
GapComplexity

<
T MAXKEH e niicar D ses PTOD (77 Visits s at h) 1{m*(s) # 7'(s)}
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Therefore, with respect to the gap term, the PolicyGapComplexity and the GapComplexity are close when
MAXEEH genricar O ses PIOD (7% Visits s at h) 1{n*(s) # 7' (s)} is large.

Because step h = 1 is always included in H;gentical, SO One nontrivial case satisfying the above condition is that
the starting states are uniformly chosen from some subset of states. It is easy to see that the single starting states is also
one of the special cases. Besides, there are also many other cases satisfying the above condition, for example, a MDP
that starts from various states and always concentrates on some states with equal chances in later steps included in H;genticai-

Finally, whether the PolicyGapComplexity-dependent bound can also get some refined dependency on |S|, |A|, H
like the GapComplexity-dependent bound in Xu et al. (2021) in some special cases remains further investigation.

C. Meta-algorithm and Results for cheated Adversary

Algorithm 5 BRUTE-FORCE-POLICY-ELIMINATION-RL

1: Imput: time horizon T, confidence yyerair

2: Construct a 1/T-net for non-stationary policies, denoted as II; /7.

3: Initialize S; = 0,TT" = IT. And for j € log T, initialize ¢; = 277.¢/, = ¢;/128

4: Set A1 = 6|S||Allog(H?|S||Al/€sim) and Ag = 121n(8T/Soverair)

5: for epochm =1,2,...do

6: Set 6" = 5overall/(5T)

7. Set F™ — 8\5\2H4\Alfn}n(glﬂml/c?"‘)

8 Set Ny =2\ Ao F™and T = T5, | + Npu_y

9:  Initialize a sub-algorithm ESTALL™ = EstAll(e7?, ., 11", 8™, F™)
10.  for t=71T;,1T; +1,...,T; + Ny —1do
11: Play the policy according the awaiting ESTALL™.CONTINUE. Then continue running ESTALL™ until the next

ROLLOUT is met. (If no more ROLLOUT needed, then just uniformly play one )

12:  end for
13:  if ESTALL™ is unfinished then
14: SetT)5, =T, + N,, and repeat the whole process from line 9. > So each repeat is a sub-epoch.
15:  else
16: Obtain 7, () for all 7.
17:  endif

18:  Update the active policy set

1
HnL-‘rl < {7T| max fm(ﬂ‘/) — ’Fm(ﬂ') S 8)\1)\2H2\/|SHA| ln(IOT‘Hl/T|/6OU€7‘all>T/Nm + gem}

! eH‘rn

19: end for

Theorem 5. The regret is upper bounded by

]%gg@(WﬂAP”H%mMVEMASWMHMU&MMMVT)

2 (CT)Q p\2
+O(H%WM+MSMMU)

Remark In Section 2.2 in (Bogunovic et al., 2020), they proved that in order to get @(\/ HT), the corruption terms can

go as low as Q(%) for the linear bandits. Therefore, we conjecture that O((C” + C?)?) term is also unavoidable in our
setting.
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C.1. Regret Analysis for Theorem 5

For convenience, we rearrange this upper bound a little bit. So now our target is to show the follows.

Reg < O (ISPPIAP/2 B2 min{ VH, \/ISTATH(1/Spuerat) VT

+ (/j ( (HCP + CT)2 1n(1/5overall)
H3[S||A[In([I1;/7]) (| 7|/ dovera)

|$|A|<OP>2>

We only need to consider the case that C” + HC? < H?/[S[[A]In(|II; 7[)T, otherwise we will get a trivial linear regret.

It easy to see that the following events sill holds with at least 1 — §,yer-qy; probability,

1
Eoverall = {vm7Vk € [Fm] LM e [inm, ;nm]}

2HCy, p +Chp ) 1 }

+ ——€m

Eost 1= {Vm,w elI™ : |F™(m) — V| < 2A1 A9 N 16

1 (1071 /Sopera
Eunfinished = § Ym,Vk € [[] : CF | > 4\/ 2 IA |){ ”)Nm and Eoverali
' 112

Notice here we will permanently eliminate a policy instead of maintaining different subset of policies, therefore, in &, all
the active policies have same levels of estimation. Next we show that given the above events, we will never eliminate the
best policy from the active policy set II™+1,

VELV = V7 and A=V - V.

Again we use the following notations ™ = argmax cyy, . Vi

Lemma 10. For any epoch m, we always have & € 11",

Proof. Given E.g, let 7y, = argmax ., cym 7 (1), we know that

2HCy, p +Chp ) 1

P (i) = P (7) < VIm =V 44X Ay ) N + Zem
2(Hcp r +Chr ) 1
<AMA mLm T Zmlm? | Z
N 1 2 NTYL +86

1
< 8)\1)\2H2\/|S\|A| (|7 )T/ N + 5 m

where the last inequality comes from the assumption that C” + HC? < H?, /|S[| A[In([TL; /7[)T. Now by the elimination
condition in Line 18 , we can get our target result. O

Then we can upper bounded max,cyym A, as follows

Lemma 11. For any active policy set II"", we have

- 1
max Ar < O <|S|2|A|3/2H3/2(

E
73
~
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Proof. Let ' = argmax _cppm1Ax

Aﬂ'/ < f/ - ‘/*ﬂ/
20HCY, r +Crhp.) 1
; + S€m
Ny, 8
9 1
< 8\ H \/|S||A| ([T /7 )T/ N + Jeme1

< P () = P () 4+ 41 A2

i VT

=0 |S||A| ln(l/(so'uerall)li2 |SH‘A| ln(lnl/TDN

|.A|3/2H2 ln(l/aoverall) 1n(loj—‘“_[l/T|/(50'uerall)
Nm+1

B 1
<0 <S|3/2|A|3/2H2 In(1/doveran) \/In(|yr|) (VT + ))

N7n+1

- 1
<0 <S|2|A|3/2H2 min{\/ﬁ, VISIIAF In(1/overair) (\/T+ N ))
m—+1
Here the second inequality comes from Lemma 10. The third inequality comes from the elimination condition in Line 18
and the assumption that the assumption that C” + HC? < H?, /[S|[A[In(]IL; /7[)T. Replace the value of €, in the term
of N,,, we get the target result. O

Now given &,yerqir, We again have regret that

3 M M Tp—

- Z max ANy, + Z Nm

2 m=1 m=1 k=1
NON-REPEAT TERM REPEAT TERM

First, we deal with the NON-REPEAT TERM. By applying Lemma 11, we have
M

M
> (max AN < Y O <|3|2|A3/2H2 min{VH, /|S|[A[} n(1/Soperait) <ﬁ+ N1 ))
mel m=1 m+1
< O (ISPIAP/2 H? wind VH, v/[STTAT} (1 /Sveran) VT

Next, we deal with the REPEAT TERM. By &, finished> We have

m=1

M M T'p,—1 111(1/5 ll) M T'p,—1
(max A;)N,, < H N™ < H|.A||S| overa (c? )?
pUE pIpD (0T Ty fopmera) 2 2 (Ot

< H|A||s|(C7)?

D. Analysis for EstAll Sub-algorithm
D.1. Preliminaries
We define the set of episodes that the learner interacts with environment as Z.,; and the total corruption included these

episodes as C" ") = ez, @

D.2. Key results

8ISI” H* | A In(21111/3ct)
6

Theorem 6 (Sample complexity restated here). Suppose F' > and T > 6. Under the corruption

est

assumption CT,, < W’ with probability at least 1 — 0., the algorithm interacts with environment at most

|SI[A[Frlog(H?|S||A|/ecst)

times Note, if the algorithm interacts with environment more than the above number of times, then with probability at least
9
- est» Cest > 2|SHA|H2
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Proof. By Lemma 14, we know that with probability at least 1 — J.4, for any fixed state-action pair (s, a), Line 7 in

Algorithm 2 will fail at most log,(H?|S||.A|/€cs:) times by doubling from #&itar to H. So the maximum number

of policies that will be added into policy set IIp is at most logy (H?|S||A|/€est)|S||A| . Now because for each policy
added into IIp, we will greedily sample F'r times according to Algorithm 4, so the total interaction time is at most
log, (H?|S||Al/€est)|S||A|F7 times. O

8|S|2H*|A|? In(2|11]/8cst)

2
€est

Theorem 7 (Estimation correctness restated here). Suppose F' >
with probability at least 1 — 0.4,

and T > 6. Then for all m € 1],

() = V™ (s1)| < (14 T)eest + (HCEy + Ciy) [ F

i
denote its expected value E[r(z7)] as {V;7}F_,. Here V; is not a real existing value function but an “average value

function” whose rewards and transition functions are the average of rewards and transition functions generated by the
MDPs under different times (so some are corrupted). Now we can use Hoeffding’s inequality to bound |f(7r) — % Zle v |

Proof. By definition, #(7) = + Zf;l r(2F) and {r(z7)}f; is a sequence of independent random variables. We

For those 7 € Ilp,

F
1
Prob [’f'(w) - ZV;F’ < eestl >1—2exp(—2Fe,,/H?) > 1 — .4 /2|11
i=1

For those 7 ¢ Ilp, if none of then are failed, we again have

P
Prob bf(w) - %ZVf’ < Eest] > 1 — dest /2|11
i=1

Then because at each (s, a), the policy fails at most e.;7F/H|S||A|, there will be at most Te.s; F'/H trajectories with
Fails. Each failed trajectory will cause at most H rewards, therefore,

F
Prob l|f(7r) — %Zvﬂ <(1 +T)€est] > 1= dest/2|1]
i=1

Now we can decompose our target result into,

Am) = V7| <

1 & 1 &
) = 2 VT H G VT VT
=1 =1

The first term can be upper bounded by the previous results. The second term can be upper bounded by lemma 16.
Finally, by taking a union bound over all policies in II, we get our target result. O

D.3. Detailed Analysis
D.4. Notations

For convenience, we write F' instead of F,; in this section.

D.4.1. MAIN LEMMAS

Claim 1 For any fixed , each of the trajectories in {z] };c[r] is independent to each other due to the property of MDP.

Definition 4. Define ™ (s, a) as the random variable which is the total number of times a trajectory induced by T visits
(s, a) with respect to the underlying MDP M and then define its expectation as

E[fﬂ(sa a)] = NW(S’ a)
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For any policy set T1, we define the following pll_

Hinax (5, @) = max " (s, a).

This can be leveraged to compute a lower bound on the expected number of times of visiting (s, a) after rolling out each 7 in
1T once.

Lemma 12. Under the assumption of CT,, < % . For any fixed policy m, let I1p be an exploration set of policies

. . o 8|S|PH*|A|? In(2|II| /S es
before simulating w. Then when 1™ (s,a) € W,Zug?j‘x(s,a)}, pllo (s,a) > s 2 SI7H”] LC::( [T}/ dest)
and T > 6, we have with probability at least 1 — fﬁl‘

a TE
Z {(s,a) or Fail(s,a,i) included in 2T }| < |Ds | + ﬁ
i=1 total number of times z] visited (s, a)
Proof. First, we are going to get the high probability lower bound on |Dg,|. Denote

H 1{x" visits (s, a) at layer h during the rollout 5} as X ;, where " = argmax_ o™ (s, a). We have
h=1 Y g J gMax o [

Fr H Fr
o = Z Z Z 1{7’ visit (s, a) at layer h during the rollout j} > Z X;.

j=1n'€llp h=1 Jj=1

Note that { X} is a sequence of independent random variable with each X; € [0, H]. We denote E[X] as uﬁol lout (5, @).

From the corruption assumption C%_, < 3 S||gA\ 7= and by corollary 15, we have

Fr

1 " Iip Cp t €est
_ ‘n' _ < () < 4
|FT ]E:l /”Lj,rollout(& a) /”Lmax(sv (1)| = Fr - 2|S| |.A|H ( )

which, combined with plI?2 (s, a) > 37t - also leads to

Fr
1 g €est
ﬁ;ﬂj,rallout(SVQ) 2|SH.A|H

Then by using the Hoeffding’s inequality, we get

Fr Fr , 2F272 €ost ) 5 .
Prob E X < — E T < — 3 < €5
" ; 72 — M]’TOZZOUt(87a) - eXp( FTH2(4\S||A\H) ) — 2|1

Therefore, we get that with probability at least 1 —

Tn\’ sa‘> Z] 1/‘;(5(1)

Second, we are going to get the high probability upper bound on Zf;l I{(s,a) or Fail(s,a,i) included in 2 }|.
Denote |{(s,a) or Fail(s,a,i) included in 27 }| as ¥; € [0, H] and its expectation E[Y;] = uf ;. (s,a). By Claim 1, we
know that each trajectory in {z] };c[r) is independent to each other. Again from the corruption assumption Cct, < W
and by corollary 15, we have

1 & HC?, €
— T T < est est 5
F ;ul,slm(‘g?a‘) /’[’ (8)a)| — F — 2|SHA|H ( )

also leads to

. . N ..
which, combined with ;™ (s, a) > |S\|At\H’

1 T €est
Fal 122 sim(s7a
F ; : 2|S||A[H
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Jest
2/

F F
Z (s,a) or Fail(s,a,d) included in 2] }| < = Z“Z sim (S, a)

i=1

Finally,

F
Z [{(s,a) or Fail(s,a,i) included in 2] }| — | Ds,q|

i=1

3 F 1 Fr
< 5 Z'U'ZSim<S7a) - 5 E ::U‘;r,rollout(saa)
=1 j=1

1 €est
~Fruyb,(s,a) + W

<
o 2

Fp™(s,a) —

N w
~

(F+ Fr)

€est 3 €est
< F F — __F
< sisiaE 2 F T < samtT

where the second inequality comes from eq. 4, 5 and the last inequality comes form the the assumption p™(s,a) <
2ull? (s,a), 7 > 6. O

Lemma 13. Under the assumption of CT,, < % For any fixed policy m, let I1p be an exploration set of policies

before stmulalmg . Then when p™ (s, a) < \S|\A|H’F > 85| H4‘A|2 W@/Sext) gpg > 6, we have with probability at

Eest
least 1 — Sest
\HI

F

. N . €est
[{(s,a) or Fail(s,a,1) included in z }| < |Dg o| + o= FT
2 S| AIH

=1

Proof. We just need to show that under this condition, ZZ 1 {(s,a) or Fail(s, a, ) included in 27 }| < wgml. To

show this, we use the same method and notation used in the proof of Lemma 12 and get that with probability at least
1 — Oest
2[t]>

F
Z [{(s,a) or Fail(s,a,) included in z] }|

3 €est 2€est Te€est
< —Fu"(s,a) + F < F <
2 2|S||A|H |S||A|lH |S||.A|H

F

O

Lemma 14. Let [1p be the set of policies maintained before executing line 9 and let Ip be the set of policies maintained
after executing. Let (s, a) be the state action pair where the Fail occurs. Then we have, with probability at least 1 — §qqt,

€est }

ﬂfD HD
Mmax(s’ a) 2 ma'X{Qru’max<s> (L), < Al
|SI[AlH

Proof. If pllo < ISIE: SH AT by Lemma 13, we know that with probability at least 1 — W we always have ,umw > [SiAmE SH iR

Otherwise, if we already have ull2 > \S|6|67At\H then by Lemma 12, we know that with probability at 1 — ﬁf plo >

2ull? . Finally, we take the union bound over all policies in I1 to get the target result. O
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D.4.2. AUXILIARY LEMMA

Definition 5. Define g7 (s, h) as the probability that policy m will visit s at step h given the underlying transition probability
P. Also define V;(s1) as the value function that policy w will induce given the underlaying MDP M.

The change of the visiting probability and the value function for any fixed 7 can be upper bounded in terms of the change
of transition functions and expected rewards. Here we consider the most general case that the transition function and the
expected rewards is non-stationary between each layers. We want to remark that, although our underlying MDP is stationary
by assumption, our corruptions is allowed to be non-stationary. Also our algorithm will simulate a trajectory by the sample
collected from different times. Therefore, we prove the following lemma for the non-stationary case.

Lemma 15 (Corruption Effects on Visiting Probability ). For any step b/,

Z ‘q};l (Sa h/) - qgg (57 h/)|

seS
h'—1

<min{1, S sup [Pi(ls,a,h) — Pa(ls,a, ) + sup [ Pi([s0,0,1) — Po(:ls0 0, 1)1}
heo s€ES,aeA acA

Proof. We prove this by induction. First, we can easily get the base case that

> lap, (5,2) = qp,(5,2)] < sup || Pi(-]s0, @) = Pa(-|so, @)l }-
seS a€A

Then by assuming that, for any step h’ > 3,

D laF, (s, 1) = 4, (s,1)]

seS
h'—1
< Z sup [|P1(:]s,a,h) — Pa(:|s,a, h)||l1 + sup [ P1(-[s0, a, 1) = P2(-[s0, @, 1)1,
SGSaGA acA

we have that, for any step A’ + 1,

S lgp, (.1 + 1) — gy (s, + 1)

seS
S Z | Z (%731 (Slvh/) - q}r)2(3/7h/)) P1(8|S/,7Th/(8/),h/)|
sES s'eS
) 1D g, (8 ) (Pu(s|s mne (s, 1 W) = Pa(s|s’, mne(s), 1)) |
SES S'ES
< ST g () — iy (5 )| S Pl s e () + 3 a5 1) S P (sl (s, BY) = Pa(sls! m (5)]
s'eS SES s'eS seS
< Z |qP1 s’ h) —qp,( s'.h) ‘—i— supZ|P1 s|s’ e (s"), B — Pa(s|s’, e (s7), B))]
s'eS s'€8 s

< Z sup [|Pi(:|s,a) — Po(-[s,a)llx + sup || Pi(-[s0, a, k') — Pa(:|s0,a,h")|lx
sES acA acA

Lemma 16 (Corruption effects on value function ).

H

H
(VM M < By sup [Pr(-|s",m(s"), h) — Po(c|s's m(s"), h) |l + ngglm(s m(s),) — pa(s,m(s), h)|
h=2°% h=2"%

+ [|P1(+|s0,7(s0), 1) — Pa(-|s0, 7(s0), 1)[l1 + |1 (50, 7(80), 1) — p2(s0, 7(s0), 1)]
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Proof. For convenience, when I write Zle > _scs in the following, I actually mean Z,ILQ Yoses T2

8=8p"

(VAT (s50) — VT (s9)]

< ‘ Z Z (qgl (S’ h) - qgQ (87 h)) M1 (3771—(8)7 h)l + | Z qug (37 h) (MI(S; 7(5)7 h) - N2(87 7T(8)7 h)) |

h=1s€eS h=1seS
H H
<13 suppn(s,m(5) S (h (5:1) — afy (5, 1)) |+ 3 sup s (5, 7(5), B) — pa(s, w(s), )|
h=1°%€S ses h=1°%€S
H H
< <ZSUDM1(S,W1(S))> (ZSUP||P1('|577T(S)7h) —Pz('lsaﬁ(8)7h)||1>
h—1 sES h—1 sES
H
+ Z Sug |M1(57 71'(5), h) - HQ(‘S? ﬂ-(s)v h)|
h—1 se
H H
<H Z sup || Py(:|s,m(s), h) — Pa(:[s,m(s), h)|l1 + Zsup 1 (s, m(s), h) — pa(s,m(s), h)|
he1 SESH h=1 seES

Here the third inequality comes from Lemma 15 and the last inequality comes from the assumption on the reward
function. H

E. Discussion on Reward-free Exploration Algorithm under Corruptions

In the Related Work section, we mentioned that algorithms proposed in Kaufmann et al. (2020) and Ménard et al. (2020) can
efficiently achieve uniform e-close estimations for all the polices with near-optimal sample complexity in the no-corruption
setting. Their main idea is to construct a computable estimator of Q-value estimation error for all the state-action pairs and
greedily play the action that maximize such estimator at every step until all the state-action pairs have sufficiently small
Q-value estimation errors. So a natural question to ask is,

Can we replace the ESTALL with this type of efficient algorithms ?

To be specific, firstly, in the non-corrupted setting, we want to find an efficient algorithm that can guarantee uniform
estimations on all the policies in any given policy set II by only implementing polices inside 1I. Secondly, we also want this
algorithm has corruption robustness at least not worse than the ESTALL.

For the first target, we can easily define an estimator W (7) = Zthl > ﬁ;h(s))) , where nj, (s, 7(s)) is the empirical

s€S nlt (s,m(s
number of times state-action-step pair (s, 7(s), h) has been visited before time ¢ + 1 and py ;, (s) is the empirical probability
that the policy 7 reach state s at h before time ¢ + 1. Suppose we have an efficient oracle that can calculate the following in
the polynomial times,

argmax_ . W ()

Then we can find an oracle-efficient algorithm by greedily sampling 7,1 = argmax ;W () until all the W, (7) are small
enough.

Unfortunately, in the presence of corruptions, we find it is hard to get a good robustness. Roughly speaking, suppose the
rewards are fixed, then the estimation error V™ for any policy 7 is upper bounded by

|V7T — Vﬂ'| S l’tl’él%l C;Wt('ﬂ‘t+1) + Wt(ﬂ—t+1)

where Z represents the whole time period this algorithm is running. Then from our perspective, when |Z| = o(1/€?), we can
only guarantee mingez Wy (m41) < O (poly(|S||A|H (€2 + C%e®)), which gives

me@@wwMHw%ﬂ% %ﬂ
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Note that ESTALL gives O (poly(|S||A|H((C%)?e + ¢€)))-close estimations when C% < 1/e. Therefore, plug-in this
algorithm instead of ESTALL in BARBAR-RL will give worse dependence in 7.

Whether we can find a better estimator in this type of reward-free sub-algorithms or whether we can find another
proper meta-algorithm for this type of sub-algorithms remains open.



