
Improved Corruption Robust Algorithms for Episodic Reinforcement Learning

Yifang Chen 1 Simon S. Du 1 Kevin Jamieson 1

Abstract
We study episodic reinforcement learning under
unknown adversarial corruptions in both the re-
wards and the transition probabilities of the under-
lying system. We propose new algorithms which,
compared to the existing results in (Lykouris et al.,
2020), achieve strictly better regret bounds in
terms of total corruptions for the tabular setting.
To be specific, firstly, our regret bounds depend
on more precise numerical values of total rewards
corruptions and transition corruptions, instead of
only on the total number of corrupted episodes.
Secondly, our regret bounds are the first of their
kind in the reinforcement learning setting to have
the number of corruptions show up additively
with respect to min{

√
T ,PolicyGapComplexity}

rather than multiplicatively. Our results follow
from a general algorithmic framework that com-
bines corruption-robust policy elimination meta-
algorithms, and plug-in reward-free exploration
sub-algorithms. Replacing the meta-algorithm
or sub-algorithm may extend the framework to
address other corrupted settings with potentially
more structure.

1. Introduction
Reinforcement learning (RL) studies the problem where
the learner interacts with the environment sequentially and
aims to improve its decision making strategy over time.
This problem has usually been modelled as a Markov De-
cision Process (MDP) with unknown transition functions.
In this paper, we consider the classical episodic reinforce-
ment learning with a finite horizon. Within each episode,
the learner sequentially observes the current state at each
stage, plays an action, receives the reward according to the
current state-action pair, and then transitions to the next

*Equal contribution 1Paul G. Allen School of Computer
Science & Engineering, University of Washington. Corre-
spondence to: Yifang Chen <yifangc@cs.washington.edu>,
Simon S. Du <ssdu@cs.washington.edu>, Kevin Jamieson
<jamieson@cs.washington.edu>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

stage according to the underlying transition function.

The majority of the literature in learning in MDPs studies
stationary environments, where the underlying unknown
transition function and reward function are fixed. The re-
wards and the next states are independently and identically
distributed given the current state and the learner’s chosen
action. Under this setting, the goal is to minimize the regret,
which is the difference between the learner’s cumulative
rewards and the total rewards of the optimal policy (Braf-
man & Tennenholtz, 2002; Azar et al., 2017; Jin et al., 2018;
Ok et al., 2018; Zanette & Brunskill, 2019; Simchowitz
& Jamieson, 2019; Zhang et al., 2020). However, these
techniques are vulnerable to corruptions on the rewards or
the transitions. Recently, Rosenberg & Mansour (2019);
Jin et al. (2020); Lee et al. (2020) gave provably efficient
algorithms for the setting of adversarial rewards and fixed
unknown transitions. Although their algorithms are robust
to corruptions on rewards, they heavily rely on the assump-
tion that the transitions are not corrupted.

The most relevant work is by Lykouris et al. (2020) who gave
the first set of results on episodic reinforcement learning
that achieve robustness to corruptions on both the rewards
and the transition functions. Their regret is defined as the
difference between the learner’s accumulated rewards and
the total rewards of the optimal fixed policy with respect to
the uncorrupted underlying rewards and transition functions.
Their algorithm is efficient and works for tabular RL and its
linear variants. Unfortunately, their algorithm is not optimal
in terms of the corruption level. Firstly, their corruption
level C is defined as the total number of corrupted episodes.
Ideally, we would like the regret to depend on more fine-
grained characterizations of corruptions such as the total
magnitude of corruptions on the rewards (Cr) and transi-
tion functions (Cp). Secondly, their regret bound scales
Õ
(
C
√
T + C2

)
in the worst case, where the corruption

level C appears both additively and multiplicatively. They
state in the paper that it is unclear whether one can obtain
additive dependence alone in tabular RL. In this paper, we
address this open problem.

Our contribution: To the best of our knowledge, this is
the first work for the episodic tabular RL setting that obtains
a regret bound that scales only additively with respect to the

Improved Corruption Robust Algorithms for Episodic Reinforcement Learning

number of corruptions. This result is significant because
it demonstrates that a learner can be highly robust to the
corruptions, even though the magnitude and number of cor-
rupted episodes are unknown to the learner. Our detailed
contributions are shown as follows. Note that we omit all
S,A, H dependence for clarity.

• We first propose a corruption robust reward-free explo-
ration algorithm ESTALL such that for a given ε > 0,
ESTALL returns

(
ε+ (Cp + Cr)ε2

)
-close estimations

for all policies within a given policy set Π. If the total
magnitude of corruptions to the transition functions
satisfies Cp ≤ Õ(1/ε) then the algorithm requires a
sample complexity of just Õ(log |Π|/ε2). On the other
hand, if Cp > Õ(1/ε) then the algorithm will fail to
complete within the expected sample complexity, pro-
viding the learner with a lower bound on the level of
corruptions.

• We propose two meta-algorithms for RL inspired by
the corruption robust algorithms for multi-armed ban-
dits (Gupta et al., 2019; Bogunovic et al., 2020),
both of which use ESTALL as a sub-routine. The
first meta-algorithm BARBAR-RL guarantees an
Õ
(

min{
√
T ,PolicyGapComplexity}+(1+Cp)(Cp+

Cr)
)

regret when the adversary must decide whether to
corrupt the episode before seeing the learner’s chosen
deterministic policy at the current episode. The sec-
ond meta-algorithm BRUTEPOLICYELIMINATION-RL
guarantees an Õ

(√
T + (Cp + Cr)2

)
regret when

the adaptive adversary can decide when and how much
to corrupt the episode after seeing the learner’s chosen
action and deterministic policy at each stage of the
current episode.1

• Finally, comparing with (Lykouris et al., 2020) who
defined the corruption level as the total number of
corrupted episodes, our bounds depend on much finer
definitions based on the magnitudes of corruptions on
the reward and the transition (Cr and Cp).

Related Work: In addition to worst-case
√
T dependent

regret, Lykouris et al. (2020) also achieves an instance-
dependent bound in terms of GapComplexity for tabular
RL by using the UCB type algorithm and the analysis tech-
niques developed in Simchowitz & Jamieson (2019). It
remains unclear whether non-UCB type algorithms, for ex-
ample, policy-elimination type methods, can also achieve
the instance-dependent bound.

Other than the instance-dependent bounds, our regret
bounds’ dependency on |S|, |A| and H are not optimal com-
pared to the existing works including (Azar et al., 2017;

1This is a stronger adversary than the one studied in Lykouris
et al. (2020).

Jin et al., 2018; Ok et al., 2018; Zanette & Brunskill, 2019;
Zhang et al., 2020). Whether their techniques can be used
in our framework or our policy-elimination-based methods
require an entirely different analysis remains unclear.

While the literature on corrupted RL is limited, the corrup-
tion robust algorithms have been well studied in multi-arm
bandits (MAB) settings, which is a special case of episodic
tabular reinforcement learning with horizon H = 1. Cor-
rupted MAB problems are relatively simpler than corrupted
RL because we are no longer required to deal with the
corruption on transition functions. In the MAB setting, ob-
taining a

√
T regret bound with some C dependence terms,

applying either additively or multiplicatively, is quite easily
obtained by appealing to algorithms from the adversarial
bandits literature such as the classical EXP-3 algorithm
(Auer et al., 2002) that can achieve Õ(

√
T) for adversarial

rewards. Therefore, the majority of works in the corrupted
MAB setting seek a ∆a-dependent regret which scales only
logarithmically with T , where ∆a is the gap between the ex-
pected reward of action a and the optimal arm. Despite the
simplified setting of corrupted MAB relative to RL, many of
the techniques used in those works still provide inspiration
for corrupted RL problems.

We will briefly review the most relevant corrupted
MAB works here. Lykouris et al. (2018) achieves a
Õ
(∑

a6=a∗
CK
∆a

)
regret bound by using the multi-layer ac-

tive arm elimination. Lykouris et al. (2020)’s corrupted RL
work referenced above is built upon this technique. Gupta
et al. (2019) achieves Õ(

∑
a6=a∗

1
∆a

+ KC) by adopting
a sampling strategy based on the estimated gap instead of
eliminating arms permanently. One of our results is built
on this technique by regarding each policy as an arm. Fi-
nally, Zimmert & Seldin (2019) achieves a near-optimal

result Õ
(∑

a 6=a∗
1

∆a
+
√∑

a6=a∗
C

∆a

)
by using Follow-

the-Regularized Leader with Tsallis Entropy. Note that
their work actually solves a more difficult problem called
best-of-both-worlds, which can achieve near-optimal result
simultaneously for both adversarial and stochastic rewards.
The similar technique has been adopted in Jin & Luo (2020),
which achieves Õ(GapComplexity+

√
C · GapComplexity)

when the transition function is known. Unfortunately,
whether it is possible to extend such techniques to the
unknown transition setting remains unclear. Besides the
corrupted MAB setting, Lee et al. (2021) considers linear
bandits which achieves an near-optimal result in terms of
corruptions Õ

(
min{d

√
T ,GapComplexity}+ C

)
.

Note that all of these works presented above consider a
weak adversary which must decide the corruption for each
round (or episodes) before observing the learner’s chosen
action (or policy). Some works (e.g. (Liu & Shroff, 2019;
Bogunovic et al., 2020)) consider a stronger adversary which

Improved Corruption Robust Algorithms for Episodic Reinforcement Learning

can decide the corruption after seeing the learner’s current
behavior. In particular, Bogunovic et al. (2020) achieves a
near-optimal regret Õ(

√
dT+Cd3/2+C2) for linear bandits

by using arm elimination with an enlarged confidence bound.
One of our results also considers this stronger adversary
setting and adopts a similar technique.

Finally, our reward-free exploration sub-algorithm is based
on the algorithm in Wang et al. (2020) by again using the tra-
jectory synthesis idea. But just as in the original algorithm,
this exploration sub-algorithm is inefficient. Algorithms pro-
posed in Kaufmann et al. (2020) and Ménard et al. (2020)
can efficiently achieve an ε-close estimation for each policy
given a policy set Π when no corruption exists. But whether
this type of algorithm can be made robust to corruptions at
least as good as ESTALL remains unknown. We provide
some discussion in Appendix E.

Structure of the paper: In Section 2, we formally de-
fine our settings and the regret objective. In Section 3, we
describe the meta-algorithm BARBAR-RL for the non-
cheated adversary and show a sketch analysis. We also
briefly state the BRUTEPOLICYELIMINATION-RL algo-
rithm and its result, postponing the details into the Ap-
pendix C because it essentially uses the same key techniques
as ones in BARBAR-RL analysis. In Section 4, we give a
formal description of the reward-free exploration algorithm
ESTALL as well as its sketch analysis.

2. Preliminaries
Episodic reinforcement learning. Let M =
(S,A, P,R,H, s1) be an episodic Markov Decision
Process (MDP) where S is the finite state space, A is
the finite action space, P : S × A × [H] → ∆(S) is the
transition operator which takes a state-action-step pair and
returns a distribution over states, R : S ×A → ∆(R) is the
reward distribution and the H is the episodic length. For
convenience, we assume that the trajectory always starts
from a single state s0, that is, P (s1 = s) = 0 for all s 6= s0.
It can be reduced from more general setting by adding an
arbitrary starting state.

We have total T episodes. At each episode t ∈ [T],
a deterministic non-stationary policy π chooses an ac-
tion a ∈ A based on the current state s ∈ S and
the step h ∈ [H]. Formally, π = {πh}Hh=1 where
for each h ∈ [H], πh : S → A maps a given
state to an action. The policy π induces a random tra-
jectory s1, a1, r1, s2, a2, r2, . . . , sH , aH , rH , sH+1 where
a1 = π1(s1), r1 ∼ R(s1, a1), s2 ∼ P (·|s1, a1, 1), a2 =
π2(s2), r2 ∼ R(s2, a2), . . . , aH = πH(sH), rH ∼
R(sH , aH), sH+1 ∼ P (·|sH , aH , H). We define the set
of all possible policies as Π = AS×[H].

Finally, we assume the bounded total reward that rh ≥ 0 for
all h ∈ [H] and

∑H
h=1 rh ∈ [0, H].

Episodic RL with corruption. When no corruption
happens, all the samples are consistently generated
by a nominal MDP M∗ = (S,A, P ∗, R∗, H, s1).
Here we assume the MDP is stationary, that is
P (·|s, a, h) = P (·|s, a, h′), R(s, a, h) = R(s, a, h′)
for all h, h′ ∈ [H].

In the corrupted setting, before episode t, the adver-
sary decides whether to corrupt the episode, in which case
the corresponding MDP Mt = (S,A, Pt, Rt, H, s1) can
be arbitrary. Notice that although the nominal MDPM∗ is
a stationary MDP, we generally allow the corruptedMt to
be non-stationary. We define the corruption numerically at
episode t as

crt =

H∑
h=2

sup
(s,a)∈S×A

|Rt(s, a, h)−R∗(s, a)|

+ sup
a∈A
|Rt(s0, a, 1)−R∗(s0, a)|

cpt =

H∑
h=2

sup
(s,a)∈S×A

‖Pt(·|s, a, h)− P ∗(·|s, a)‖1

+ sup
a∈A
‖Pt(·|s0, a, 1)− P ∗(·|s0, a)‖1

Notice that we define the corruption on transition and re-
wards separately because the main difficulty in RL setting
comes from corruptions on the transition function. Also,
compared to the corruption definition in Lykouris et al.
(2020), which merely captures whether an episode has been
corrupted or not, our definition is based on the real-valued
magnitude of the corruption. Finally, bothM∗ andMt, as
well as the corruption levels cpt , c

r
t are unknown to learner.

The adversary can always adaptively decide to corrupt the
current episode based on the learner’s strategy and the ob-
servable history of the previous episode from 1 to t − 1,
which is the same setting as in Lykouris et al. (2020). But
the adversary can be even stronger, that is, it can decide
corruption cpt , c

r
t after seeing learner’s chosen policy in each

episode or even seeing learner’s state and chosen action
at each stage in each episode. Here we called it “cheated
adversary”. Otherwise, we call it “non-cheated adversary”
for adversary who decides corruption before seeing learner’s
chosen deterministic policy.

Other Conventions and Notations. We use the super-
script rp as a shorthand to suggest a term holds for both
reward and transition corruptions simultaneously. We
define the total corruption for any time interval I as
CrpI =

∑
t∈I c

rp
t and simply denote Crp[0,T] as Crp. For

any policy π, we write the value function under M as

Improved Corruption Robust Algorithms for Episodic Reinforcement Learning

VM,π(s1), and denote VMt,π(s1) as V πt (s1), VM
∗,π(s1)

as V π∗ (s1). Also we denote V ∗(s1) = maxπ∈Π V
π
∗ (s1)

and ∆π = V ∗(s1)− V π∗ (s1). Because we assume a deter-
ministic start state, in the remainder of the paper we omit s1.

Regret. In this paper, we will focus on the the regret that
is only evaluated on the nominal MDP, defined as following,

RegT :=

T∑
t=1

V ∗ − V πt∗

This is the same definition as in (Lykouris et al., 2020).

An ε-net for Policies. Using the same idea as in Section
5.1 of Wang et al. (2020), we can construct an ε-net of non-
stationary policies, denoted as Πε. As proved in their work,
Πε satisfied the following properties

|Πε| ≤ min{(H/ε+ 1)|S|
2|A|+|S||A|, |A|H|S|} (1)

V ∗ − max
π∈Πε

V π∗ ≤ 8H2|S|ε (2)

The first property enables us to reduce the sample complex-
ity when H � |A|, |S|. The second property ensures that,
as long as ε is small enough, the best policy inside Πε is
close to the true optimal policy. In the remainder of the
paper, we will only consider policies inside Π1/T instead of
the whole policy space AS×[H].

3. Main Algorithms and Results
We present two algorithms: the first for the non-cheated
and the second for the cheated. Recall that the difference
between these settings is the strength of the adversary. The
non-cheated must decide the corruption before seeing the
learner’s current action (or chosen policy) while the cheated
can decide afterwards. Thus, for the more challenging set-
ting of a cheated adversary, we expect a larger regret bound.

3.1. The Algorithm and the Result for Non-cheated
Adversary

Algorithm 1 is based on the multi-arm bandits algorithm
BARBAR proposed in Gupta et al. (2019). In BARBAR,
instead of permanently eliminating an arm, the learner will
continue pulling each arm with a certain probability de-
fined by its estimated gap. Specifically, in an epoch m
with length 22m, an arm a with an estimated gap ∆̂m

a

will be pulled roughly 1/(∆̂m
a)2 times and suffer roughly

total corruption in epoch m
22m(∆̂m

a)2
amount of corruptions due to the ran-

domness, so the estimation error of arm a will decrease
when the the epoch length doubles, as long as the total
amount of corruptions is sublinear. Therefore, close-to-
optimal arms that suffered from large corruptions initially

Algorithm 1 BARBAR-RL
1: Input: time horizon T , confidence δoverall
2: Construct a 1/T -net for non-stationary policies, de-

noted as Π1/T .
3: Initialize S1 = {0},Π1

0 = Π1/T . And for j ∈ [log T],
initialize εj = 2−j .εjest = εj/128

4: Set λ1 = 6|S||A| log(H2|S||A|T) and λ2 =
12 ln(8T/δoverall)

5: for epoch m = 1, 2, . . . do
6: Set δmj = (|Πm

j |δoverall)/(5|Π1/T |T) for all j ∈
Sm

7: Set Fmj =
8|S|2H4|A|2 ln(2|Πmj |/δ

m
j)

(εjest)
2

for all j ∈ Sm.
8: Set nmj = 2λ1λ2F

m
j for all j ∈ Sm.

9: Set Nm =
∑
j∈Sm n

m
j and T sm = T sm−1 +Nm−1

10: Initialize an independent sub-algorithm for each j ∈
Sm as ESTALLmj = EstAll(εjest, δ

m
j , F

m
j ,Π

m
j)

11: for t = T sm, T
s
m + 1, . . . , T sm +Nm − 1 do

12: Run ESTALLmj .CONTINUE with probability
qtj = nmj /Nm

13: end for
14: if there exists unfinished ESTALLmj then
15: Set T sm = t+ 1 and repeat the whole process from

line 10. . So each repeat is a sub-epoch.
16: else
17: Obtain r̂m(π) for all π.
18: end if
19: Set r̂m∗ = maxπ∈Π1/T

{r̂m(π)− 1
16∆̂m−1

π }
20: Set jm(π) = inf{j|2−j < max{2−m, r̂m∗ − r̂mπ }}

for all π, and let ∆̂m
π = 2−j

m(π)

21: Add π into Πm+1
jm(π) for all π and set Sm+1 =⋃

π j
m(π)

22: end for

can recover and be correctly estimated later, instead of being
permanently eliminated at the very beginning.

In our algorithm, we regard each policy π as an arm and
perform the same type of sampling strategy. We denote
each repeat from Line 11 to 13 in epoch m as a sub-epoch
Ekm with length Õ(22m). Then in any Ekm, each policy π
with estimated gap ∆̂m

π will be simulated roughly 1/(∆̂m
π)2

times and will suffer roughly
Cr
Ekm

+Cp
Ekm

22m(∆̂m
π)2

amount of cor-

ruptions. While it suffices to rollout each π for O(1/ε2)
episodes to get an ε-close estimation, this will result in a
O(|Π1/T |) dependence in regret. In this work, we achieve
an O(log(|Π1/T |)) dependence by utilizing the shared in-
formation between policies.

To be specific, at the end of each epoch m, we divide the
policies into several subsets according to their current esti-
mated policy gap (Line 19 to 21). For example, policies in
Πm+1
j all have estimated policy gaps close to 2−j . These

Improved Corruption Robust Algorithms for Episodic Reinforcement Learning

subsets will be used for random sampling in the next epoch.
And here we use Sm+1 as a collection of the indices of these
subsets.

Now suppose there exists a “perfect” oracle which guaran-
tees an ε-close estimation on each policy uniformly inside
some input policy set Πest, with onlyO(log(Πest)/ε

2) sam-
ple complexity. Then, by calling such an oracle on each
subset of polices Πm

j , we will able to achieve the simu-
lation goal stated above. Here we propose a reward-free
exploration algorithm ESTALL as the sub-algorithm, whose
performance is close to such a “perfect” oracle when the
the amount of corruptions is relatively small, and still guar-
antees some sublinear regret otherwise. (See Section 4 for
details)

ESTALLmj . INIT

– Start and run an independent sub-algorithm ac-
cording to the inputs as described in Algorithm 2 until
some policy π needs to interact with the environment.
– Suspend this sub-algorithm and set π awaiting.

ESTALLmj . FINISH

– Return “finish” when each π ∈ Πm
j gets an

estimation r̂(π) as defined in Line 15 in Algorithm 2.

ESTALLmj .CONTINUE

If ESTALLmj is suspended
—- Rollout the awaiting π once, which caused the
suspension
—- Continue running the ESTALLmj as described in
Algorithm 2 until the next ROLLOUT is met, which
means that there is some policy π′ that needs to interact
with the environment
—- Suspend the algorithm again and let π′ be the new
awaiting policy
Else . ESTALLmj has finished
—- Rollout any π ∈ Πm

j randomly
end

To be specific, at the beginning of each sub-epoch Ekm, the
learner initializes a set of parallel sub-algorithms denoted
as {ESTALLmj } corresponding to the constructed subset of
policies (Line 10). Here δmj and Fmj set in Line 6 and 7
represent a failure probability and a parameter related to the
number of roll-outs, given as inputs to ESTALLmj , which is

described in Section 4 in detail. And nmj set in Line 8 is the
expected number of times ESTALLmj will interact with the
environment. As described before, such an interaction strat-
egy is carefully randomized according to the estimated gap
of policies inside this sub-algorithm (Line 12). Then after
roughly nmj = Õ(log(|Πm

j |)/ε2j) interactions, ESTALLmj
returns one of the following conditions with probability at
least 1− δmj :

• an
(
εj + (CrEkm

+ Cp
Ekm

)ε2j

)
-close estimation on each

π, denoted as r̂m(π), when ESTALLmj has finished. (
from Theorem 4)

• an unfinished ESTALLmj , which implies that (CrEkm
+

Cp
Ekm

) ≥ Ω̃(1/εj). (from Theorem 3)

In the first case, we have achieved the desired uniform es-
timation with r̂m(π) on each policy. (Line 16 and 17) The
algorithm will then construct a new subset of policies and
go to the next epoch. In the second case, we will repeat the
sub-epoch until we successfully obtain uniform estimation
on each policy. (Line 14 and 15) Due to the lower bound
on (CrEkm

+ Cp
Ekm

), we can show that the regret caused by
discarded sub-epochs can be upper bounded in terms of the
amount of corruption.

Theorem 1. By running this algorithm in the non-cheated
setting, with probability at least 1 − δoverall, the regret is
bounded by

Õ
(
|S|2|A| 32H2 min{

√
H,
√
|S||A|} ln(1/δoverall)(?)

)
+ Õ

(
|S|2|A|2H2 ln(1/δoverall)C

p
)

+ Õ (|S||A| ln(1/δoverall)C
r)

+ Õ
(

(Cp)2

H
+
CpCr

H2

)
where Õ hides log factors on T, |S|, |A|, H , and

? = min{
√
T ,

1

minπ∈Π ∆π
}.

We note that the PolicyGapComplexity, 1
minπ∈Π ∆π

, has also
been used in some previous work (Jaksch et al., 2010). If we
let Π be all deterministic policies, the PolicyGapComplexity
will be close to the GapComplexity defined in Simchowitz
& Jamieson (2019) in some non-trivial cases, for example,
when all the policies visit a subset of states at step 2 with
uniform probability. Otherwise, it can be much larger than
the GapComplexity. We postpone the discussion on their
relation to Appendix B.7.

The dependence on |S|, |A|, H is not optimal com-
pared to many existing tabular RL results without

Improved Corruption Robust Algorithms for Episodic Reinforcement Learning

corruptions, but compared to Lykouris et al. (2020), our
result scales better in terms of H . Most importantly,
this is the first result we are aware of in the corrupted
setting where the amount of corruptions contributes only
additively to the regret bound instead of multiplying

√
T

as in Lykouris et al. (2020). Conceptually, our result also
suggests that corruptions on transition functions have
much more influence on the regret than the corruptions on
rewards.

Finally, we provide some intuition for why the
Õ
(

(Cp)2

H + CpCr

H2

)
terms appear in the bound: Suppose

in some epoch there was more than O(
√
Nm) amount of

corruptions, but all the sub-algorithms still happened to fin-
ish (e.g., if the adversary changed the transition function in
an undetectable way). Furthermore, in the next epoch, the
adversary manipulates the corruptions to force the algorithm
to restart the sub-algorithms again and again. Under this
described scenario, the algorithm is repeatedly using the
data from previous corrupted epochs without any chance to
correct them, which causes the (Cp)2 and CpCr terms. In
addition, since cpt scales with the horizon H and this regret
term depends on the number of times the learner restarts sub-
algorithms, when the total corruption budget Cp is fixed,
we will have H in the denominators.

3.2. The Algorithm and the Result for Cheated
Adversary

Algorithm Overview: In Algorithm 1, we avoid perma-
nently eliminating an policy. Instead, we use a random
policy sampling strategy to ensure that, the corruptions that
affected any given policy estimation in the early stages can
be corrected for later. However, in the cheated setting, the
randomness of policy sampling no longer works because
now the adversary decides when to corrupt after seeing the
sampled policy. Thus, we propose BRUTE-FORCE POLICY
ELIMINATION , which is based on the traditional policy
elimination method that permanently eliminates policies,
but with an enlarged confidence range of Õ(

√
HT). There-

fore, the best policy will never be eliminated as long as
Cp + Cr ≤ Õ(

√
HT). But such a brute-force method will

lead to a regret that scales like (Cr)2 instead of Cr. As
before, we still need a uniform estimation of each policy
with only a O(log |Π|/ε2) sample complexity. Fortunately,
the same approach still works, which is, running a set of
sub-algorithms in parallel and restarting them when there is
an unfinished one. The algorithm and analysis techniques
are very similar as in the non-cheated adversary case, and
therefore, we postpone the details into Appendix C.

Theorem 2. By running this algorithm in the cheated set-
ting, with probability at least 1−δoverall, the regret is upper

bounded by

Õ
(
|S|2|A|3/2H2 min{

√
H,
√
|S||A|} ln(1/δoverall)

√
T
)

+ Õ
(

(Cr)2

|S||A|H3
+ |S||A|H(Cp)2

)

Compared with Theorem 1, Theorem 2 suffers an additional
(Cr)2

H3|S||A| regret and also has additionalH2|S||A|multiplica-
tive dependence on (cp)2 terms, to account for the cheated
adversary.

3.3. Analysis Sketch for Theorem 1

We give a proof sketch for Theorem 1 here and postpone
the details to Appendix B.

Step 1: Let Γm denote the number of sub-epochs in epoch
m. Firstly, appealing to standard concentration inequalities
and the random policy sampling strategy, we show that the
following events hold with high probability. Note that to
aid the exposition, the events defined below are somewhat
different than the ones defined in the Appendix.

Eest :={
∀m,π :

|r̂m(π)− V π∗ |/4
≤ λ1λ2(Cr

EΓm
m

+ Cp
EΓm
m

)/Nm + ∆̂m−1
π /64

}
Eunfinished :={
∀m,∀k ∈ [Γm − 1] :

Cp
Ekm

≥
√

ln(10T |Π1/T |/δoverall)
16λ1λ2

Nm

}

Here Eest suggests that, at the end of epoch m, we can
have Õ

(
∆̂m−1
π + (Cp

EΓm
m

+ Cr
EΓm
m

)ε2m

)
-close estimation

on every policy. And Eunfinished suggests that for each
unfinished sub-epochs Ekm, its length can always be upper
bounded by Õ

(
(Cp

Ekm
)2
)

.

Step 2: Now we can decompose the regret into

Reg ≤ 3

2

M∑
m=1

∑
j∈Sm

∆̊m
j n

m,Γm
j︸ ︷︷ ︸

NON-REPEAT TERM

+
3

2

M∑
m=1

Γm−1∑
k=1

∑
j∈Sm

∆̊m
j n

m,k
j︸ ︷︷ ︸

REPEAT TERM

+O(Low order terms induced by ε-net of policies)

Improved Corruption Robust Algorithms for Episodic Reinforcement Learning

where ∆̊m
j = maxπ∈Πmj

(
maxπ̊∈Π1/T

V π̊∗ − V π∗
)
. The

non-repeat term represents the sub-epochs where the sub-
algorithms complete and estimate all the policy values
successfully. Given Eest, by using similar techniques
as in Gupta et al. (2019), we have ∆̊m

j ≤ O(εj) +

O

λ1λ2

∑m−1
s=1

(
HCp

E
Γs
s

+Cr
E

Γs
s

)
16m−s−1Ns

, where the second

term is a discounted corruption rate. It matches our in-
tuition that the influence from early corrupted estimations
will decay as we doubling the epoch. Thus we can bound the
non-repeat term by Õ(

√
T+Cr+Cp). The repeat term rep-

resents the regret from sub-epochs when the sub-algorithms
restart. Fortunately, according to Eunfinished, this only oc-
curs when the corruption level is beyond some threshold.
In this case, intuitively, discarding the data collected in the
sub-epoch won’t hurt too much since the estimation itself is
not accurate. Thus the repeat term can by upper bounded by
Õ(Cp(Cr + Cp)).

4. The Sub-algorithm and the Results
In this section, we give a detailed description for a reward-
free exploration algorithm ESTALL. As stated in the pre-
vious section, we use this algorithm as a black-box sub-
algorithm and any improvements in this sub-algorithm
would improve the overall regret bounds as well. In a
sub-epoch Ekm, we run a set of independent copies in
parallel, each denoted as ESTALLmj . As described in
ESTALLmj .CONTINUE, for each copy ESTALLmj , we will
run it offline until some policy needs to interact with
the environment. In this case, we will suspend the algo-
rithm and make the policy awaiting hold until the next
ESTALLmj .CONTINUE has been called. Then we will again
continue running ESTALLmj offline and repeat the process
above until finished.

4.1. Algorithms

This algorithm follows the same idea as one in Wang et al.
(2020). That is, we adaptively build an exploration policy
set ΠD and collect samples by only implementing the poli-
cies inside ΠD, as shown in ROLLOUT (Algorithm 4). Then
we are able to evaluate many policies simultaneously on the
collected data, as shown in SIMULATE (Algorithm 3). The
original version in Wang et al. (2020), however, requires
O(poly(|S||A|H) log(Π)/ε3est) to get a uniform εest-close
estimation on each policy values. This is because the orig-
inal algorithm allocates O(poly(H) log(Π)/ε2est) indepen-
dent sub-algorithms called SIMONE, each with sample com-
plexity O(poly(|S||A|H)/εest), and all the data collected
in each SIMONE will only be used to simulate one corre-
sponding trajectory of any π.

We improve this algorithm in terms of εest by the fact

Algorithm 2 ESTALL
1: Input: target estimation error εest, confidence pa-

rameter δest, number of simulate trajectories Fest ≥
8|S|2H4|A|2 log(2|Πest|/δest)

ε2est
and policy set Πest.

2: Set τ = 6, which is a parameter related to ROLLOUT
3: Initialize empty buffers Ds,a for all (s, a) ∈ S ×A and

let D = {Ds,a}(s,a)∈S×A.
4: Initialize an empty exploration policy set ΠD
5: for π ∈ Π do
6: {zπi }i∈[F] ← SIMULATE(π,D, Fest)
7: if ∃(s, a),

∑Fest
i=1 1[zπi is Fail at (s, a)] ≥

τεest
|S||A|HFest then

8: {zπi }i∈[Fest],D ← ROLLOUT(π, τ,D, Fest)
9: ΠD ← ΠD

⋃
{π}

. Note that ΠD is not used in actual algorithm
implement, but just for analysis convenience

10: end if
11: end for
12: for each trajectory z = (s1, a1, r1), (s2, a2, r2), . . . in
{zπi }(i,π)∈|Fest|×Πest do

13: Calculate

r(z) =

{
0 z is Fail∑H

h=1 rh otherwise

14: end for
15: Calculate r̂(π) = 1

Fest

∑Fest
i=1 r(z

π
i) for all π ∈ Π

16: return {r̂(π)}π∈Π

Improved Corruption Robust Algorithms for Episodic Reinforcement Learning

that, due to the properties of an MDP, data collected in
the one trajectory can be used to simulate different inde-
pendent trajectories of any π. Therefore, instead of updat-
ing exploration policy set ΠD based on the failure num-
ber on a whole trajectory, we do updates based on the
failure number on each state-action pairs. (Line 7 in Al-
gorithm 2) Then we show that the size of ΠD is at most
Õ(poly(|S||A|)) and each π ∈ ΠD will interact with envi-
ronment Õ

(
poly(|S||A|H) log(1/δest)/ε

2
est

)
times.

Here Fest is the number of trajectories we at least need to
simulate each π ∈ Π in order to get a desired estimation.
Therefore, we need to rollout each π ∈ ΠD at least Fest
times. However, while this number is sufficient for simu-
lating π ∈ ΠD enough times, it does not account for the
fact that other policies in ΠD may need additional data to
simulate on. As a consequence we need to repeat the Fest
rollouts τ times to ensure we have enough data (τ = 6
suffices).

Algorithm 3 SIMULATE(π,D, F)
1: for (s, a) ∈ S ×A do
2: Mark all elements in Ds,a as unused,
3: end for
4: for h ∈ [H] do
5: for simulated trajectory i ∈ [F] do
6: if all elements in DSh,π(sh) are marked as used

then
7: Mark Fail at sh for i-th trajectory simulation of

π, denote as Fail(sh, πh(sh), i)
8: else
9: Set (sih+1, r

i
h) to be the first unused element in

DSh,πh(sh) and mark it as used
10: end if
11: end for
12: end for
13: return

(si1, π(s1)i, ri1), (si2, π(s2)i, ri2), . . . , (siH , π(sH)i, riH)
or
(si1, π(s1)i, ri1), (si2, π(s2)i, ri2), . . . ,
(Fail(sh, π(sh), i)),
for all simulated trajectory i ∈ [F].

4.2. Results and Sketch Analysis

Theorem 3 (Sample complexity). Suppose Fest ≥
8|S|2H4|A|2 log(2|Πest|/δest)

ε2est
and τ ≥ 6. If the Cpest ≤

εestFest
2|S||A|H2 , then with probability at least 1−δest, the number
of (non-simulated) roll-outs in the environment is at most

|S||A|Festτ log(H|S||A|/εest)

times. This also implies that if the algorithm interacts more
than the above number of times, then with probability at
least 1− δest, Cpest > εestFest

2|S||A|H2 .

Algorithm 4 ROLLOUT(π,τ ,D,F)
1: for j ∈ [Fτ] do
2: Sample the j-th trajectory for π and

collect H samples denoted as zπj =
(s1, a1, r1), (s2, s2, r2), . . . , (sH , aH , rH).

3: for h ∈ [H] do
4: Update Dsh,ah ← Dsh,ah ∪ {(sh+1, rh)}
5: end for
6: end for
7: return updated D and the uniformly chosen F trajecto-

ries {zπj }j∈[F]}.

Proof Sketch: Here we provide a proof sketch for the non-
corrupted setting and postpone the details including how to
deal with Cpest ≤ εestFest

2|S||A|H2 into Appendix D. Notice that,
every time the condition in Line 7 in Algorithm 2 is satisfied,
we will add the corresponding π into the exploration set ΠD
and rollout π in the environment Festτ times. So the key
is to show that, without the presence of corruptions, the
number of times the condition in Line 7 in Algorithm 2 has
been satisfied scales like O(log |Πest|) and not O(|Πest|).

Define fπ(s, a) as the random variable describing
the total number of times a single trajectory in-
duced by π visits (s, a) under the MDP M∗. If∑Fest
i=1 1[zπi is Fail at (s, a)] ≥ τεest

|S||A|HFest for some fixed
(s, a) and π, then there are only two cases. In case 1,
|Ds,a| = 0 and E[fπ(s, a)] ≥ Ω

(
εest
|S||A|HFest

)
. So calling

ROLLOUT(π, τ,D, Fest) will make |Ds,a| increase to at

least o
(

εest
|S||A|HFest

)
with high probability. In case 2,

|Ds,a| is roughly smaller than 2E[fπ(s, a)]Fest. So calling
ROLLOUT(π, τ,D, Fest) will make |Ds,a| double with
high probability. (Notice here we say “roughly” because
in the actual proof, we consider some lower bound of
|Ds,a| instead of |Ds,a| directly.) Thus, |Ds,a| starting
in the worst case at about εest

|S||A|HFest will eventually
double until it reaches HFest, at which time the simulation
will never fail. Therefore, the total number of polices
added into |ΠD| due to the failure at (s, a) is about
log2((HFest)/(

εest
|S||A|HFest) = log2(H2|S||A|/εest)).

Noting that there are |S||A| number of state-action pairs,
and Festτ trajectories are taken per added policy, we
conclude the proof.

Theorem 4 (Estimation correctness). Suppose Fest ≥
8|S|2H4|A|2 log(2|Πest|/δest)

ε2est
and τ ≥ 6. Then for all π ∈ Π,

with probability at least 1− δest,∣∣r̂(π)− V π(s1)
∣∣ ≤ (1 + τ)εest + (HCpest + Crest)/Fest

Proof Sketch: We provide a proof sketch here and post-
pone the details until Appendix D. By definition, r̂(π) =

Improved Corruption Robust Algorithms for Episodic Reinforcement Learning

1
Fest

∑Fest
i=1 r(z

π
i) and {r(zπi)}Festi=1 is a sequence of inde-

pendent random variables. We denote their expected values
E[r(zπi)] as {V πi }

Fest
i=1 . Here V πi is not a true value function

but an “average value function” whose rewards and tran-
sition functions are the average of rewards and transition
functions generated by the MDPs under different times (so
some are corrupted).

Now, for those π ∈ ΠD, we can use Hoeffding’s inequal-
ity to directly bound

∣∣r̂(π) − 1
Fest

∑Fest
i=1 V

π
i

∣∣. For those
π /∈ ΠD, if none of them are failed, we can again use Hoeffd-
ing’s inequality to directly bound

∣∣r̂(π)− 1
Fest

∑Fest
i=1 V

π
i

∣∣.
Otherwise, because the policy fails at most εestτF/H|S||A|
times at each (s, a) according to Line 7 in Algorithm 2,
there will be at most τεestFest/H trajectories with fails
when computing r̂(π). Thus, r̂(π) is changed at most by
τεest from the no-failure case and we get the following,

Prob

[∣∣r̂(π)−
∑Fest
i=1 V

π
i

Fest

∣∣ ≥ (1 + τ)εest

]
≤ δest/2|Πest|

Now we can decompose out target result into,

∣∣r̂(π)− V π
∣∣ ≤ ∣∣r̂(π)−

∑Fest
i=1 V

π
i

Fest

∣∣+
∣∣∑Fest

i=1 V
π
i

Fest
− V π

∣∣
The first term can be upper bounded by the previous results.
The second term can be upper bounded by the total corrup-
tions. Finally, by taking union bound over all policy in Πest,
we get our target result.

5. Discussion
Since our bound in the non-cheated setting scales like
O((Cp)2), one natural open question is to obtain an O(Cp)
regret bound. Second, the computational complexity of our
algorithms scale with |Π| due to the reward-free exploration
sub-algorithm we use. Thus, finding an efficient algorithm
is also an interesting problem. Finally, our algorithm is not
instance-dependent, so whether we can achieve some regret
of the form Õ (GapComplexity + (Cp + 1)(Cp + Cr))
also remains open.

Acknowledgements
The work of KJ is supported in part by NSF RI 1907907.
YC want to thank Yuanhao Wang, Chen-yu Wei and Daogao
Liu for inspiring discussions.

References
Auer, P., Cesa-Bianchi, N., Freund, Y., and Schapire, R. E.

The nonstochastic multiarmed bandit problem. SIAM
journal on computing, 32(1):48–77, 2002.

Azar, M. G., Osband, I., and Munos, R. Minimax regret

bounds for reinforcement learning. In International Con-
ference on Machine Learning, pp. 263–272. PMLR, 2017.

Bogunovic, I., Losalka, A., Krause, A., and Scarlett, J.
Stochastic linear bandits robust to adversarial attacks,
2020.

Brafman, R. I. and Tennenholtz, M. R-max-a general poly-
nomial time algorithm for near-optimal reinforcement
learning. Journal of Machine Learning Research, 3(Oct):
213–231, 2002.

Gupta, A., Koren, T., and Talwar, K. Better algorithms
for stochastic bandits with adversarial corruptions. In
Conference on Learning Theory, pp. 1562–1578. PMLR,
2019.

Jaksch, T., Ortner, R., and Auer, P. Near-optimal regret
bounds for reinforcement learning. Journal of Machine
Learning Research, 11(4), 2010.

Jin, C., Allen-Zhu, Z., Bubeck, S., and Jordan, M. I. Is
q-learning provably efficient? In Proceedings of the
32nd International Conference on Neural Information
Processing Systems, pp. 4868–4878, 2018.

Jin, C., Jin, T., Luo, H., Sra, S., and Yu, T. Learning adver-
sarial Markov decision processes with bandit feedback
and unknown transition. In III, H. D. and Singh, A. (eds.),
Proceedings of the 37th International Conference on Ma-
chine Learning, volume 119 of Proceedings of Machine
Learning Research, pp. 4860–4869. PMLR, 13–18 Jul
2020.

Jin, T. and Luo, H. Simultaneously learning stochastic and
adversarial episodic mdps with known transition. Ad-
vances in Neural Information Processing Systems, 33,
2020.

Kaufmann, E., Ménard, P., Domingues, O. D., Jonsson,
A., Leurent, E., and Valko, M. Adaptive reward-free
exploration, 2020.

Lee, C.-W., Luo, H., Wei, C.-Y., and Zhang, M. Bias no
more: high-probability data-dependent regret bounds for
adversarial bandits and mdps. Advances in Neural Infor-
mation Processing Systems, 2020.

Lee, C.-W., Luo, H., Wei, C.-Y., Zhang, M., and Zhang,
X. Achieving near instance-optimality and minimax-
optimality in stochastic and adversarial linear bandits
simultaneously, 2021.

Liu, F. and Shroff, N. Data poisoning attacks on stochastic
bandits. In International Conference on Machine Learn-
ing, pp. 4042–4050. PMLR, 2019.

Improved Corruption Robust Algorithms for Episodic Reinforcement Learning

Lykouris, T., Mirrokni, V., and Paes Leme, R. Stochastic
bandits robust to adversarial corruptions. In Proceedings
of the 50th Annual ACM SIGACT Symposium on Theory
of Computing, pp. 114–122, 2018.

Lykouris, T., Simchowitz, M., Slivkins, A., and Sun, W.
Corruption robust exploration in episodic reinforcement
learning, 2020.

Ménard, P., Domingues, O. D., Jonsson, A., Kaufmann, E.,
Leurent, E., and Valko, M. Fast active learning for pure
exploration in reinforcement learning, 2020.

Ok, J., Proutiere, A., and Tranos, D. Exploration in struc-
tured reinforcement learning. In 32nd Conference on
Neural Information Processing Systems (NIPS), DEC
02-08, 2018, Montreal, CANADA, volume 31. Neural
Information Processing Systems (NIPS), 2018.

Rosenberg, A. and Mansour, Y. Online convex optimization
in adversarial markov decision processes. In Interna-
tional Conference on Machine Learning, pp. 5478–5486.
PMLR, 2019.

Simchowitz, M. and Jamieson, K. G. Non-asymptotic gap-
dependent regret bounds for tabular mdps. In Advances
in Neural Information Processing Systems 32: Annual
Conference on Neural Information Processing Systems
2019, NeurIPS 2019, December 8-14, 2019, Vancouver,
BC, Canada, pp. 1151–1160, 2019.

Wang, R., Du, S. S., Yang, L. F., and Kakade, S. M. Is long
horizon reinforcement learning more difficult than short
horizon reinforcement learning?, 2020.

Xu, H., Ma, T., and Du, S. S. Fine-grained gap-dependent
bounds for tabular mdps via adaptive multi-step bootstrap.
arXiv preprint arXiv:2102.04692, 2021.

Zanette, A. and Brunskill, E. Tighter problem-dependent
regret bounds in reinforcement learning without domain
knowledge using value function bounds. In Interna-
tional Conference on Machine Learning, pp. 7304–7312.
PMLR, 2019.

Zhang, Z., Ji, X., and Du, S. S. Is reinforcement learning
more difficult than bandits? a near-optimal algorithm
escaping the curse of horizon, 2020.

Zimmert, J. and Seldin, Y. An optimal algorithm for stochas-
tic and adversarial bandits. In The 22nd International
Conference on Artificial Intelligence and Statistics, pp.
467–475. PMLR, 2019.

