Decentralized Riemannian Gradient Descent on the Stiefel Manifold

A. About the polar retraction

Given the polar decomposition of z + ¢ = QH, where Q € R%*" is orthogonal and H € R"*" is positive definite. The
polar retraction is the polar factor

R(§)=Q=(z+ &I +£¢72 (A.1)

which is also the orthogonal projection of  + £ onto St(d, r). The computation complexity is O(dr?). (Liu et al., 2019,
Append. E) showed that if ||£||[r < 1 then M = 1 for polar retraction. The boundedness of £ can be verified in our
convergence analysis. Therefore, we have M = 1 in this paper.

B. More details on linear rate of consensus

The following results were provided in (Chen et al., 2021).
If there exists an integer ¢ > 0 such that

maX||Z —1/n)(z; — HF<maXZ|

1
< <X — X||F,00, B.1
1€[n] 9 ‘X XHR (B.1)

then it suffices to show the sequence {x; } of DRCS satisfying x;, € N with ¢ > [log,, (ﬁﬂ steps of communication.

Denote the smallest eigenvalue of Wt by A, (W?), the constant L, is given by
Ly =1-\,(W). (B.2)

It is the Lipschitz constant of V! (x). Since L; € (0, 2], if A,,(W?") is unknown, one can use L; = 2. Define the second
largest eigenvalue of W by Ao (W?) and
e = 1— )\Q(Wt)

The formal statement of Fact 3.1 is given as follows.

Fact B.1. (Chen et al., 2021) Under Assumption 1, let the stepsize « satisfy 0 < a < a = mm{u , ,ﬁ} and
t> ﬂogoz(%\/ﬁﬂ, where v € [0,1], ® = 2 — 85 and M is given in Lemma 2.3. The sequence {x;} of (3 2) achieves
consensus linearly if the initialization satisfies xo € N defined by (3.6). That is, we have x;, € N for all k > 0 and

k1 — Xrt1llF < [Ixk — agrade® (xi) — Xk ||r

< V1 =2(1 = v)ay||xk — Xkl F,

(B.3)

where ;= (1 — 4r62)(1 — &
If v = 1/2, we have & < & := min {% 1,1/M} and

pr=+1—ma.

Recall that M is the constant given in Lemma 2.3. We also have M = O(1) which is discussed in appendix A. If &« = 1 is
—0—02

admissible, then the rate is p; = which is worse that the Euclidean rate 4. Moreover, it was shown in (Chen et al.,

2021) in a smaller region, i.e., ¢’ (x ) = O(oh) and ||x — %||2 = O(1), it follows asymptotically p; = o with a = 1. For
simplicity, we will only discuss the convergence of our proposed algorithms using (B.3) with v = 1/2. Note that this may
imply & < 1, but we find that a = 1 always works for our proposed algorithms.

C. Proofs for Section 2

Denote Py, r as the orthogonal projection onto the normal space N, M. One can rewrite the projection P, (y— ), Vy €
St(d,r) (Chen et al., 2021) as follows

Promly—z) =y —x—Pn,m(y — )
(P2)

=y~ o+ ale 1) (@ )
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This implies that
Promly — ) =y — 2+ O(|ly — z[?)-
The relationship (P2) helps us to prove Lemma 2.4.

Proof of Lemma 2.4. Firstly, since V f(x) is L—Lipschitz in Euclidean space, one has

17) ~ (@) + {97 @),y — )]l < 5y — =} .
Since gradf(z) = Pr, mV f(z), we have
(grad f(2), y — ) = (V7 (@), Praaly — o)
© 1))+ (VI Sl ) - 2) ).

Using
(V1) qoly =0 =0) ) S IVF@a el - 3l = oI} < IV o - o1}
implies
(gradf @),y =) = (V@) y =)l < 5 max [V F@)l- 1y = ol €

where ||V f(x)]||2 represents the operator norm of V f(x). Since St(d,r) is a compact set and V f(z) is continuous, we
denote L, = max,cst(d,r) [|Vf(2)]|2. Let Ly = L,, + L. Combining (C.1) with (C.2) yields

|f(y) = [f (2) + (grad f(z),y — 2)]| < %Hy — | (C3)
Secondly, using grad f(z) = V f(x) — Py, mV f(z) and grad f(y) = Vf(y) — Pn,mV f(y) implies

|grad f(z) — gradf(y)||r
<|IVF(@) = VIEWe + 1PN, mV () = Pn,m V)
=|Vf(z) = VIlF+ %HI(ITVJ"(Z/) + Vi) )=y VW) + V) e
f(

V(@) = Vi)l +2Ln|z - ylle (C4)
(L +2Ln) [z =yl

IA A

In (C.4) we used

lz(z "V f(y) + V() 2) —yly Vi) + Vi) Yl

<llz((z =) "V + V) (@ =y)lle+ 1@ =9 V) + V) )l
<ALnz =yl

The proof is completed. O

C.1. Comparison on different Lipschitz-type inequalities

Using Taylor’s Theorem(Absil et al., 2009, Lemma 7.4.7), qu corresponds to the leading eigenvalue of Riemannian Hessian.
According to (Absil et al., 2013), it follows for any n € T, M that

Hessf(x)[n] = Pr,, (Dgradh(z)[n])

C.5
— Pr VR @)y — 0 Py V(@) — ok (7P V@) + (P, A T),
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where Py, is the orthogonal projection onto the normal space N, M. Since x% (nTPNmV fzi)+ (PN, Vf (x))Tn) €
N, M, we have

(. Hess (@)l = (09 @) = (™ PV 50)) = (0.9 0h) = (g (VS )+ 950) ).

(C.6)
where we use Pr, V2 f(x)n = V2f(x)n — Py, V2 f(x)n. Therefore, we get

Ly < Anax (V2 f(2)) + Jax (VS (@)ll2 =L+ L. (C.7)

The restricted inequality proposed in (Boumal et al., 2019) is related to the pull back function g(¢) := f(R.(§)), whose

Lipschitz constant L, relies on the retraction. Specifically, L, = MZL + 2M L,,, where M is a constant related to the
retraction, M and L,, are the same constants in Lemma 2.3.

C.2. Technical lemmas

Lemma C.1. (Chen et al., 2021) For any x € St(d,r)™, let & = L 3" | x; be the Euclidean mean and denote X = 1,, ® &.
Similarly, let X = 1,, ® T, where T is the IAM defined in (IAM). Moreover, if || x — X||7 < n/2, one has

o 2k -

1z — Z[|F - (P1)

The following lemma will be useful to bound the Euclidean distance between two average points Zj and Zg 1.

Lemma C.2. (Chen et al., 2021) Suppose X,y € N1, where N7 is defined in (3.4). Then we have

L & —gl
.
1—2(5% YI||F,

Iz —ylFr <
where X and iy are the IAM of x1,...,xy and Y1, . . . , Yn, respectively.

We also need the following bounds for grad?(x).
Lemma C.3. (Chen et al., 2021) For any x € St(d, r)", it follows that

1Y " gradg! (z:)|r < Lilx — %7 (C.8)
=1

and

lgrade’ (x)l|r < Lellx — |IF, (€.9)

where Ly is the constant given in (B.2). Moreover, suppose x € N, where N is defined by (3.5). We then have

max lgrade; (x)[|F < 262. (C.10)
1€en

Applying Lemma C.2 to the update rule of our algorithms gives the following lemma.

Lemma Cd4. Ifx; € N, %11 € N7 and ;41 = R, (—agrade! (xy) + Bus i), where u; g, € Ty, (M, 0 < a < 47,
0<B. Letu) = (uy, ... u,,)and Gy = = >°7" ;. It follows that

_ _ 1 2L%2a + Lo
|Zr — Zrgllr < ( d !

_ R 2M B2
7 I = a4 Blall+ 2 el
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Proof. From Lemma 2.3 and Lemma C.3, we have

Zr — Zry1llr
1 & 1 &
< |4 = _ d t ; A - . d t ;
<2k + - ;1( agradey; (Xk) + Bui k) — Ter1llr + ||n ;1( agrady; (xx) + Bui k) ||k

(Pl) M
Z lagradef (xi) + Buikllf + all* Zgrad% xp) e+ Bl aw|r

=1 =1

2Ma? 2M 32 1 )
+ [ + al~ > grade! (xx) |k + Bllixlle

i=1

n

< — lgrade’ (xi) |17

©o6CH 2LIMa? + Lia _ 2M 32

I, — 7 + [kl + Bl

Therefore, it follows from Lemma C.2 that

1 (2L§a + Lo

_ _ 1 . . _ w2 . 2M 32 9
Zk — Zrr1llr < mﬂxk — Eplle < 7 2 ¢ = Xl + Bllaklle + ——l[uxllz ) ,

where we use the fact that a < 4. O

D. Proofs for Section 4

‘We use the notations

1
T TIT 4
Vi =[U1g o Ukl s Ok = - E Viks

R R
gix = gradfi(z, k) and Gy = - Z!]i,k.

The following lemma is useful to show x;, € A for all k.
Lemma D.1. (Chen et al., 2021, Lemma 11) Given any x € Na, where Ny is defined in (3.5), ift > [log,,, (7)1 we have

0
max||z —1/n) xJHF<E2 (D.1)

i€[n]
Lemma D.2. Under the same conditions of Fact B.1, if x;, € N and
Tik+1 = Ra, , (—agradel(xy) — Buik), Vi€ [n],
where v i, € Ty, , M, the following holds
k1 — X1 llr < pellxi — Xellr + Brll vl .
Proof. By the definition of IAM, we have

k41 = K l[F < llcisn — %l

= Z IR, . (—agradg](xi) — Brvix) — Txllf

(D2)
(2<4)Z |lzix — agradet(xx) — Brvik — Tk
i=1
Letvi = [v]) ... v, ,]T. Then, we get
%41 — Kppallr < [Ixi — agrade® (xi) — Brve — X[l D3)

< ||xx — agrade® (xx) — X |lF + Brl|vi|r.
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By combining inequality (B.3) of Fact B.1, we get
1xk+1 = Xeg1lle < pellxe — Xelle + Brllvillr. (D.4)
The proof is completed.
O

Proof of Lemma 4.1 . We prove that x;, € N for all k£ > 0 by induction. Suppose x; € N, let us show x;1 € . Note
[lvillr < v/nD. Using Lemma D.2 yields

Ixk4+1 — Xit1llr < pellxke — Xkl + Bev/nD (D.5)
< ptv/né1 + Brv/nD
S \/5617

where the last inequality follows from (5 < %51. Hence x;11 € Ni. Secondly, let us verify x;1 € Na. It follows
from B < ‘“51 < 2D and o < 1 that

2.4) . (C.10) o )
1Xk+1 — XkllFoo < Helé[%)]( llagrade’ (zx.i)||r + BD < 2ady + 3 <1-47.
2 n

Then, we can use Lemma C.4 to get

1 2L2a + Lo
|Zr — Try1lr <

1— 262
1
= 1-262

Furthermore, since L; < 2, 8, < %, a<1/M,we get

_ . 2MpB;,
I = 5l + Bl + 2% vl

[(2L{ o + Lya)07 + BpD + 2M B D?] .

1 252 adq 1 252 1
= = < “ada 52 ) < 62 —ad D.6
I = Zralle < 755 <25 @1t > = 1-202 (625ra 2 5" 2)’ (06)
where the last inequality follows from §; < ﬁég. Then, one has
lZs k1 — Trgr|lF
<xik+1 — Tellp + 1Tk — Trsallp
2.4) - o
<||@ix — agrade!(xk) — Bevik — Tillr + | Tk — Zht1||F
1
<|wip — agradypt(xy) — Trl|p + 50[51 + 1Tk — Tht1]lr (D.7)
Now, we proceed by using the same lines in the proof of (Chen et al., 2021, Lemma 13) as follows
grad(pz Z lex] -Ti Z W’Ltj (l‘z - xj)—r(xi - xj)7 (DS)
j=1
and
i 5 — agrade} (xi) — Tx|r
D3) o
( (1 —a)(xsk — ZTk) + (T — Tg) +az :L']k—xk)-i- 2$”€Z xz,k_l'j,k)—r(fﬂi,k_xj,k)”l:
Jj=1 j=1
L - 1
<(1 = a)dy + &k — Zxlle + af D (W - —)sklle + IIQZ S@in —2in) " (@i — i) |6 (D.9)
j=1
1
(1—a)52+2a51t\f+a||z - )2k |lF + 2063 (D.10)
j=1

<(1- %)52+2a5$\/¥+2a5§, D.11)
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where (D.9) follows from « € [0, 1], (D.10) holds by Lemma C.1 and (D.11) follows from Lemma D.1. Combining this
with (D.7) implies

|Zi k+1 — Tt llp

«Q 1
<(1-5)%+ 2067 /r + 2083 + £+ 2 = Trsa [

(D 6) 1 1 252 1
1— =)d +2ad 2063 + —ad) + ——= | ——ads + ——ads | . D.12
= )2+a1ﬁ+0‘2+50‘1+1—25§<625ro‘2+25ﬁ0‘2> (0.12)
Therefore, substituting the conditions (3.6) on 1, d5 into (D.12) yields
% k41— Trpa|le < da
The proof of the first statement is completed. Finally, it follows from (D.5) that
[Xr+1 — Xey1lle < pellxie — Xille + Bev/nD
(D.13)
< i Ix0 — Rollr + \szpf ‘B
1=0

O

An immediate result of Lemma 4.1 is that the rate of consensus ||x; — Xz ||z = O(8}) if B = O(5%). The proof is similar
as (Liu et al., 2017, Proposition 8), we provide it for completeness.

Lemma D.3. Under Assumptions 1 to 4, for Algorithm 1, if xg € N, 0 < a < min{%, LLht> ﬂog@(ﬁﬂ and

s, 11—
Psiy, pe (o], (D.14)

P = mm{5D [CES A»

then there exists a constant C' > 0 such that * ||x), — ||} < CD?B} for any k > 0, where C is independent of D and n.

Proof of Lemma D.3. The proof relies on Lemma 4.1. Let ay, := ”"\"/%7;”“
It follows from (D.13) that
B ’“ B
-1 P
ap+1 < prag + D - <pitFag+ DY it (D.15)
Br+1 = B

Recall that 8, = O(1/D) and + ||lxg — %o || < 67, it follows that ag < 61/8y = O(D). Since lim o Bg;“ = 1, there
exists sufficiently large K such that
Bk

k+1
For 0 < k < K, there exists some C’ > 0 such that

<2, Vk>K.

ai < C'D?,

where C” is independent of D and n. For k > K, using (D.15) gives a; < CD?, where C = 2C’ + =) ) . Hence, we get
% — % ||3/n < CD?B2 forall k > 0, where C = (’)((1 o7 )- 0O

Lemma D.4. Under Assumptions 1 to 4, suppose x;, € N, t > flogo_z(ﬁ)], 0<a< min{%t, 1, %} Ifzipt1 =
R, . (—agrade! (x; 1) — Brvik), 0 < B < min{ =1 T Cg‘le } and By, > P41, where v, i, satisfies Assumption 3 and L is
given in Lemma 2.4. It follows that

Er f(Zr41) < f(@k) — *||9k||p - *||gradf(33k)||p

3L =2 C’D2
S g (2

where Lg is given in Lemma 2.4, C is given in Lemma D.3, T; = 2(4\/T + 6)?C? + 8M? and T; = 201a2C? + 9M?.

(D.16)

€+ TiD")B; + TaLy D" By,
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Note the variance term is in the order of (’)( ﬂ 2), since the gradient batch size is n.

Proof of Lemma D.4. Denote the conditional expectation E; v; , = E[v; ;|z; ] and E; := E[-|x;]. By invoking
Lemma 2.4, we have

L
Exf(Try1) < f(Zr) + (gradf(Tr), ExTrr1 — Tr) + 7g]Ek||ffk+1 — il

= f(zx) — (grad f(Zy), Brgr) + (gradf(Tr), Ex[Try1 — Tr + BrOx]) + %]Ek”jk—&-l — 7 ||

3 3 3 (D.17)
_ k _ k- k _ N
= f(@r) = 2 llgrad f(@)lIE — 2196l + 2 gradf (20) — gl
. L _ _

+ (grad f(Zy), ExTri1 — Tk + Brgr) + 79Ek||$k+1 — Zkll3,
where 05, = % Z?Zl v;,1 and we use £, 05, = gy, in the first equation.
Note that for 8 > 0, we have

_ _ _ . B _ 1 _ _ .
(grad f (T ), ExTrr1 — Tn + Brgr) < Zngradf(fﬂk)H% + EHEkkarl — T+ BrdlF-
Plugging this into (D.17) yields
Ekf(fkﬂ)
_ R 1 _ _ .
< f(@k) — ”gk”F - *Ilgr df (@) 7 1B IIgradf(wk) i 5. |Ex[Zri1 — T + Brin] I
=ay =asz (D'IS)
L
+ 7g Ei || Zes1 — Zell7 -
—_——
=as
Using Lemma 2.4 implies
1< ) L2,
a < > llgrad f(w;x) — grad f (zx) |7 < Il — X |f-

i=1
Secondly, we use the following inequality to derive the upper bound of as. From Lemma 4.1, we have x;1 € N. One has
1 Zr41 — Tk + Broxlle
<N Zk — @kllf + |1 Zhs1 — Tegalle + |28 — BrOr — Trgallr

®) 2 /7 B B R R R
L 2VT gy~ 42+ ir — e [3) + 15— B — 2 (D.19)
4
< 7 o, — a2+ i — B —
where we use ||x — Xg||2 > ||Xk+1 — Xk+1]|7 in the last inequality.
For the second term, since v; , € Ty, .M we have
1 — a, —
|2k — Brox — Tr41llr < - z; @ & — agradg(xy) — Brvik — Tigrille + ﬁ” Z;gradwf(xk)np
1= 1=
(Pl) M n
Z lagrade; (xx) + Brvikllf + *H > gradel (xi) e
=1 =1
€9 2Ma? 5 (D.20)
< lgrade” (x| + Elvelld + 7||Xk — xp||3

(€9 2L2Moz2 + Lo _ 2M
< 2S—tHXk _XkH12:+ ﬁk

Vil

Vil

10« 2M B2
< 7||Xk — Xpll7 + - g
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where we use o < ﬁ and L; < 2 in the last inequality. Plugging (D.20) into (D.19) yields

)2 Ik — Xl + 2( 1Vl (D.21)

_ _ . 4/ + 10«
| Zht1 — Zn + Bkka% < 2(% ?

2M 5}
n

Then, using Jensen’s inequality and || vg||z < nD? implies

4/ + 10a

az < Egl|Zr41 — T + Bidrllf] < 2( )?llxk — X llg + 8M2BED*.

Thirdly, invoking Lemma C.4 yields

- _ 1 10a )
o = Tl < 1 | o o = Rell + 28D+ Bl

— 262

Hence, it follows that

as < BiEx||0n I

2 [lOa

(1—263)2

2 [10&

(1 —26%2)2

(@) 2 {lOa
(1 —26%)2

(id) 4 10002

= T2 [

2
2
- 12 212
I — Xk||F+2M5kD] T

2
2 . . 2 .
Ik — %illf +2M B D } + REIOE BRExlok — grllf + =22 Bellgr 7
1 1

2 n
2 2 N
%k — i |If +2MBED ] + mﬂg ZEkHUi,k — gixll + mﬂ%”gkﬂg
i=1

2 2
o 4M2 4D4 252 21 A 2’
I = Rl AMBEDY | + (e SR+ g Al

where (i) and (ii) hold by the independence of v; ;, and bounded variance of Assumption 3, respectively. Therefore, by
combining a1, as, az with (D.18) implies that

. _ 1 L,
Bl (@) < F(8) — 2 ael2 — 2 ferad f@) R+ Sar + a0 + g
4 2 Br 2
_ ﬁk ﬂ k _ ﬁkL 2 4\[4— 1004 _
< 7 - (5 = o Eh - 2 lara @l + P52 e — sl + 2 (VO e —
2L 100a L
8M2 3D4 g = 4 4M2 4D4 9 252.
+ /Bk (1 — 25%)2 HX’f XkHF + Bk + (1 — 25%)271 k
By Lemma D.3, we have ||x), — X ||z < nCD?B3. It follows that
Er f(Zk+1)
_ B LyB3 2 B — 2
< _(EF _ __T9Fk _ Ik
< flo0) = (5 - el - 5 lerad 01
L= =2 CD?L2
+—C B+ |/ + (2(4Vr + 100)>C* + 8M?) D* | B}
(1 282)%n 2
L2 [100a*C*D* + 4M*D*] B}
= 252)
_ ~ N2 Bk — 2
< f(@g) — *||9k||p = leradf (@)l
3Lg: CD?L?

Br + [ 5 C + (2(4v/r +100)*C? + 8M?) D4] B3
+ (201a202D4 +9M2D*) LBy,

where we use W < 1.002 and By, < & L in the last inequality. The proof is completed. O
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Proof of Theorem 4.2. Using (D.16) implies

Exf(Trt1)

3L :2 CcD 2 2 (D22)
< f(e) ~ P lgrad s @ + 22

B+ ( 5 ¢+ TiD)B} + TaLyD* By,

Taking the expectation on all k£ and telescoping the right hand side give us for any K > 0

K K
B _ _ L,=?

S CEBarad (@)} < (o) — 1 + 2 Zﬁk s | 7D z B} + ToL,D* Z 8L,

k=0 k=0 k=0
where f* = mingegy(q,r) f(). Dividing both sides by ZK 5’“ yields

_ X 3Lq_ CD L? 4 4
) e f@o) =+ Zk 0B+ ( +TlD)Zk oBn + TaLyD Zk oﬂk
ppin Ellgradf(zi)le < ,’f B

~ K 2 =
Let § = min{1/Ly, 156 }. Noticing that £, = O(min{15¢*, 7L} ), el — 0(3=Uct), Shanlh — o( 22

and %’k ol _ (’)(\/IB(;H) The proof is completed. ]

The following corollary follows (Lian et al., 2017), in which the convergence results of constant stepsize [y, is given.

Corollary D.5. Under Assumptions 1 to 4, suppose x, € N, t > [log@(ﬁﬂ, 0 < a < a. If constant stepsize

Br=p= u%’
G+EV(K+1)/n

where

K+1> max{ = (max{3Lg, —

5D Doy, ot (CD'Li+ (2T + T)D*\’
ady’ 1—p ) 726\ 2(f(z0) — f*) +3Lc ’

if follows that

SLa(f(@) = ), 8(f(z0) — 1 + %e)=
K+1 T

in Elgradf(zx)|7 <
ppin  Ellgradf(zi)lF <

Proof. Since K + 1 > Z5 (max{3L¢, MDl, 112% 1)2, we have

0[51 1-—
5D’ D
forall k =0,1,..., K. Therefore, it follows that x;, € A for k = 0,1, ..., K. Using Theorem 4.2, we have

. 1
Br < min{ 37 ptél}

_mln E||grad f(zx)||7

k=0,
< 4({;;“2 1_);) + GLgf:2 + (2CD’L; + 4Ty D*)B* + 4T, L, D*3°
< BLa((@) = 1) | 4(f(@0) /)= 6Le=? | 20D°L, HUT F2RIDT )
- K+1 n(K +1) 2nLg + E \/TH (2Lg + EV/(K +1)/n)?
_ 8La(f(@0) = f*) | 4f(@0) = f* + *2)E  2nCD* Ly + (4T + 2T)nD* (D.24)

- K+1 n(K +1) E2(K+1) ’
where we use 8 < ﬁ < i in (D.23).

When

2
K+12273 CDQL?+(2T1 + T2)D* 7
26\ 2(f(Zo) — f*) +3Lg
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the second term in (D.24) is greater than the third term, we get

. — 2
nin Eflgradf (zy)[|

=0,...,

- SLa(f(a0) = 1) | BU(@) — "+ *e)=
= K+1 n(K +1)

)

which completes the proof. O

E. Proofs for Section 5
In this section, we use the following notations

gradfi(z1,x) Y1k 1

G = . = . — i,k
k : » Yk : - Zy k
grad fn (2n,x) Ynk =

1 . R
= Zgradfi(wi,k), G = (1, @ 1) g

Proof of Lemma 5.1. We prove it by induction. Let §_1 = g, one has ||y; o||[r < D and

. . N
15,0 = g-1llF < llgiolle + 1g-1lle < D+~ Zl 19;0llF < 2D
=

forall i € [n] by Assumption 2. Suppose for some & > 0, it follows that ||y; x|lp < 2D+ L and ||ys.x — Gr—1]lr < 2D+ L.

We note that the bound of v; becomes 2D + Lg here since [[vikllr = [|Pr, , . Following the

same argument in the proof of Lemma 4.1, we get xx11 € AN since 0 < a < min{%,l, ﬁ} and 0 < g <

. 1—pe ady
min{ 7 =556, 5(Lc+2D) 2

Then, we have

[ikt1 = gille = | Z ¢ Yik — g+ grad f(w k1) — grad f (zi ) |le
= Z Y(Wik — gre—1) + gradf(z; xr1) — grad f(zix)lF

i o5vnllyie — Ge-1llF + Lallig+1 — @ixlle

)

@4
< o5vnllyjk — Ge-1lle + La(ofgrade) (xi)

(c10) 1
*||yg k — Gk—1llr + 2Leads + LaB||yik|le

<2D + Lg) + 205Lg + 7510[

w\»—*

(3.6)
< D+ Lg.

Hence, ||y k+1llF < [|Yik+1 — Glle+1|gkllr < Le+2D, where we use || [r < < Ly+2D

forall i,k and x;, € N

Using the same argument of Lemma D.3, there exists some C; = O( (1—1,;,)2 ) that is independent of L and D such that

1
—[lxx = %xllit < C1(La +2D)*4% k> 0. (E.1)

The proof is completed. O
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Next, we present the relations between the consensus error and the gradient tracking error.

Lemma E.1. Under the same conditions of Lemma 5.1, one has the following error bounds for any k > 0:

1. Successive gradient error:
1Grt1 — Gillr < 2aLalxk — Xi|r + BLalykllF- (E2)

2. Successive tracking error:
[¥i+1 = Grgillr < ohllyr — Gillr + |Grgr — Gllr- (E.3)
3. Successive consensus error: for py = /1 —na € (0,1),
[%k+1 = Xt llr < pellxr — Xillr + BllyllF- (E4)
4. Associating yp., Gy, with above items:
Iyellr < lye — Gellr + Gl (E.5)
Proof of Lemma E.I. By Lemma 5.1, we know x;, € A for all k > 0.
1. Using Lemma 2.4 yields

Gr+1 — Gillr < Lel[Xk+1 — Xk [r-

By Lemma 2.3, it follows that

9)
%1 — Xk41llr < ellgrade’ (xi)[r + Blville < 2alx; — Xillr + Bllywlle,
where we use || vi |l < ||yx|r. Hence, the inequality (E.2) is proved.

2. Denote J = 1,1 . Note that

Vi1 — Grrr = ((In — J) @ L)Yk
= ((In—=J)© L) [(W' @ I)yk + Gry1 — Gy
= (W' = 0) @ L)y + ((In = J) @ I;)(Gr1 — Gi)

where we use (I, — J) @ I,) (W' @ I,,) = (W' — J) ® I,,. It follows that
1yt = Grsille < obllyr = Grlle + | Girr — Gl

3. Note that | vg||r < ||yx||r. Then the desired result follows the same line as that of Lemma D.2.

4. This follows from the triangle inequality.

O
To show Theorem 5.2, we firstly show a descent lemma. Note that an extra ||G||2 = n||gx||2 appears in (E.5), what is we

aim at bounding in the optimization problem (1.1). By combining with the following lemmas, we can quickly obtain the
final convergence result.

Lemma E.2. Under the same conditions of Lemma 5.1, it follows that
_ _ 2N~ 112 Lg — 2 Lg - 12 Lg 2 2 E6
F@rrr) < f(@r) = (B = ALeB ) gullr + Go— = xkr1 = Xrallp + G — =[xk = Xllp + G2 —=Blyellr,  (E-6)

2
where Gy = M ,G1=14+Gy +w+1301 1a Go = 2£/IGD+%1+5andC'1 is given in Lemma 5.1.
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Since D = maxgese(a,r |Vf(@)|[r < Vr - maxgesia,r) [IVf(2)ll2 = +/rL,. By the choice of «, the constants in
Lemma E.2 are given by Gy = O(r2C1) , G = O(r?Cy) and Go = O(M).
Proof of Lemma E.2. 1t follows from Lemma 2.4 that

X _ 1< _ L? _
195 — grad f(z))||7 < - > llgrad fi(zi ) — gradf (2|} < TGka — x| (E.7)
=1

By invoking Lemma 2.4 and noting L, < L, we also have

F(@hsn) < @)+ (gradf (@), Tass = 7a) + 22 |oss — 7l

< f(@k) + (Gk Torr — i) + (grad f(Zr) — G, Torr — Te) + LTGHZT%H — Z||}

< F(@0) + (G tnsr - 31) + - llgradf(@0) = gl + 5 o — E)
< F@n) + (G T — 7+ 2 o = mlE+ 2 g — 2l

B o X o R o Lg B 3Lg . B
= f(Tr) + (G, Thy1 — Tr) + (o, Th1 — Thg1 + Ty — Tg) + 7HX/€ — Xillf + TH%H — Z7

Note that for 8 > 0, we have
. . . B?L¢ . 1 .. 1 .
<gk; Tkl — Th+1 + T — $k> < THQ[«H]Q: + m”ﬂ% - xk”% + ﬂzTGka-H - xk+1||12:-

Plugging this into (E.8) yields

f(Zrt1)
_ L . B*Le . 1 . _ .
< f(@r) 4 (x> Trgr — Tr) +T”gk”}2? + BQTG(HC% — Zk|lf 4+ |1Zht1 — Tt llf)
—_———
=b1 ~ (E.9)

3Lq

1 [ Zrg1 — Zil|7 -

L¢g _
+ THXk - Xk”]% +

:=bg

Firstly, we have
by = (G, Thy1 — Tk — Bgr + BJr)

. IR
—BllgxlF + <gk, =~ [wiker = (wig — Brik = agradgoz(xk))}>

i=1

(E.10)

+ <Qk, % > Bk —vik) — agrad<ﬂf(xk)]> :

=1
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Since y; 1 — Vi € Ny, , M, it follows that

Zi,k

<§k, g > Wik —vik) - agradsﬁﬁ(xk)>

=1

€8 B & 2a0 . _
= Z 9 — grad fi(wik), yie = vige) + —Grlle - lIxw — X ||7
1 B2 LG
= nlo Z I — grad (o2 + 22E 3 1P, vkl + —nxk — |2
=1

71 B?Le 2aD

< g S leeadfy o) - emad o) I+ o Py + 22 s — 3
i=1j=1

Lg +2aD B 27

A

where we use Lemma 2.4 in the last inequality. This, together with (E.10) and (C.8) implies

R LS Lg +2Da _ B%Lg
by < ~ Bl + <gk, =3 ik — ok — Bui - agradso§<xk>>1> + 2 = sl + =yl
n im1 n n
. D& La+ 2D« _ 62LG
< —BllgrlE + - D llzik — agradgl(xe) — Bvig — @i e + —————IIx — Xllf yellE
=1
®1) . MD & L¢ +2Da _
—BllgxllF + — > llagradef(x) + Buillf + ————IIxx — %x |7 + I
=1
(C8) . 2M Do 2M Dj3? Lg +2Da _ B?L¢
< —BlgeliE + = lrade ()l + = llynlE + =T e = RellE + vl
(€9) N SMDo? +2Da + Lg _ (2MD + Lg)3?
< —Bllgeli? + ; Ik — % + <= =L
(E.11)

where we use ||gx|lr < D.

Secondly, we use the following inequality to derive the upper bound of bs. From Lemma 5.1, we have x;1 € N. One has

1Zk — Zxllf + | Zrtr — Ergr I
(P1) 4y (E.12)
< 2 —5 ([]xx — Rellg + [ Xk+1 — Xeg1]f)-

We then obtain

by < 4r

= nQBQLG (ka - ik‘”é + ||Xk+1 - ik-&-l”é)-

Thirdly, invoking Lemma C.4 and o < 1/M yields

1 10a

1Zk — Zrrilr £ ——5 ||Xk Xp||7 + 2+ Bllowll| -
1— 257
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Then, it follows from 8|y ||r < O‘T‘sl that

3Lg 2 100 oM, 1P 9 o
by < 0o 2M5° 2
35 ((1_255)2 [ e = el + — = llyll| + a _25%)25 (| 5x |2

3Le  [100a2 i (Mas, )2 3L ) o
< oy | M = mali o+ QL ) 4 P 2l + o - )
1 1
SLG 1000&2 — 14 (Madlb’)Q 2 3LG 2011~ 112 1 2
< o |t it + SR )+ 2 2l + Ll

where we use J; = gx and ||0 — 9|2 < %”,PNI kyzk”% < Lygl|Z. It follows from (5.1) that

Cha25?
i = % ll? < C1(Le +2D)°6° < ===t
where we use 8 < E,(Lgiiw)' Therefore, we get
4r(Lg + 2D)2C _ _
by < UG LDV (1o 2+ as — Rea [2): (E.13)
nLG
and - 5
3L 4C 61 2, 91 o 2 3Lg 2001 24 1 2
by < _ i __sba =
35 1 - 200)2 %K — Xk llf + 10”5 Iyells| + i 25%)25 (19w llF + nHkaF)
13LaCh 820 7 %4y B
cL101¢x _ A 3
< s - xR+ §L652||9k||% + 2 - La Byl

n
where we use o < ﬁ and @ < 1.002. Therefore, by combining the upper bound of by, b2, b3 with (E.9) implies

B?L¢

f(@ry1) < f(@g) + 01+ 5

. Lg _
19k [1F + b2 + 7\\% — X |7 + bs

4 L6 2DYCL 4 9o+ 8M Da? + 13LaChéia’
n

62
2MD + (F +5)L¢g

< f(@k) — (B —4LeB)||gnllE +

47”(LG + 2D)201
+
nLG

Ik — X |2

B2y l3-

IXk+1 — Xgt1 H% +

The proof is completed.

O

To proceed, we need the following recursive lemma, which is helpful to combine Lemma E.1 and Lemma E.2. Itis a

little different from the original one in (Xu et al., 2015). We only change \/ Zf:o u? and \/ Zf:o w? to be Zf:o u? and
k

Dlimo Wi

Lemma E.3. (Xu et al., 2015, Lemma 2) Let {uy, }r>0 and {wy, }r>0 be two positive scalar sequences such that for all
k>0

U1 < MUk + Wi,
where ) € (0,1) is the decaying factor. Let T'(k) = Zf:o u? and Q(k) = Zf:o w?. Then we have
(k) < coQUk) + c1,

where cy = (1_277) and c, = #u%

Proof of Theorem 5.2. Applying Lemma E.3 to (E.4) yields

LXK g K
= —xl2 < Cy- = 24 C E.15
nkZ—OHXk xk|lf < Co - ;OHYkHFJF 15 (E.15)
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2w llx0 — %ol

where C = ﬁ and C; = =

It follows from Lemma E.2 that

f(Zr41)
. GiL g Lo "R GoL
< f(@0) — (B — 4LaB?) anknF . Gank—kaF C2E N ek — Riel|E + 22 G62Z\ka||%
k=0 k=1 k=0
(E.15) ChL ~
< f(zo) — (B —4LcP? ZH%HF +(6:Co + GoCo + Go) = Z||YkH12:+ S GﬁnHYKHHF + C1(G1 + Go) L

k=0

ﬂ K I 52 K

_ ~ G

< £(@0) = 537 IullE + 6= 3 el + Gl
k=0 k=0

(E.16)
2 2 ~ ~
where we use 3 < min{ g7, MLZ%} By i1l < n(Le +2D)?32 < 612”‘5" and Gs := G1Cy + GoCy + G- and
Gy = M + Cl(gl + 4rC4) in the last inequality.
We are going to associate ||gx ||Z with || yx||2. By (E.5), we get
K | X | X s
- Z 19x 1l = - Z Gl < - Z lyr — Grllf — o Z lyl? (E.17)
k=0 k=0 k=0 k=0
Again, applying Lemma E.3 to (E.3) yields
1 & . Ll R
- 2_: lye — Gl < Cars kz_: |Gr+1 — Grllg + Cs
2 el 3 8a’L? 282 L¢ C
<Gyt S (80l — ullt + 267 Ll vl) +
k=0
E15) 51 )
< (8a2CyCy 4 2C5) L2372~ Z Iyxll2 +8a2CiCoL, + Cs
~ 1~ 1 U ~
< (8Co + 5Cr)adi Laf~ Z lyllf + 802 CrCa L + Cs,
k=0
where Cy = (1_% and C5 = —2; Llyo — Go||2. The last line is due to 8 < "‘51 and a2Cy < Cy < ﬁ < 5.
y v
Plugging this into (E.17) implies
K K
. 1o L1 171 gy
— > llgkllf < [(8Co + yC2)adilef - 5| — D vkl +8a*CiCoLE + Cs. (E.18)
k=0
Hence, it follows from equation (E.16) that
f(Zk+1)
(E18) 1 .
T g (2 [293 + (8Co + 02)@51} LGﬂ) Z Ilyxll# + (8&20102L + 03) + GsLa E.19

K
1
gﬁ Z Iyl + 2 (802Gl + Cs) + GaLe
=0

1
4Lg(2g3 + (800 + %62)0151) ’

where the last inequality is due to 5 <
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Then, we get
K

Z ol <5 Z lysllf < (@) = £* + Ca + GaLa, (E.20)

k=

B
8

where Cy = (8a2C1CoLZ + C5)8 = (’)((;6_1:52) and f* = mingegq(a, f(2). This implies

R T L A (E21)
It then follows from (E.15) that
(Juin %ka xyp < SO @) = f;‘ +Gila)Co+Cr

Finally, noticing 5 < gfé and

lgrad f (z)[IF < 2l|gxllf + 2llerad f(zx) — gl < 2/1gxlE + %Ilm - %
We finally have

i sy < LA EIo4 Gt Gibe) ke,
The proof is completed. U

F. Supplementary numerical results

We report the numerical results on different networks and data size in this section.

F.1. Synthetic data

Figure 3 shows the results on the same data set as that of Figure 1. However, the network is an Erdos-Rényi model ER(n, p),
which means the probability of each edge is included in the graph with probability p. The Metropolis constant matrix is
associated with the graph. Since the ER(32,0.3) is more well-connected than the ring graph, we see that the results for
different ¢t € {1,10, 00} are almost the same except for DRDGD with B = 0.05. Moreover, the solutions accuracy and
convergence rate of DRDGD and DRGTA are better than those shown in Figure 1.

—4— DRSGD, t=1, $=0.01 100 —4~ DRDGD, t=1, f=0.01
10° DRSGD, t=1, =0.1 DRDGD, t=1, #=0.05 101
—— DRSGD, t=10, =0.01 10-1 —+= DRDGD, t=10,[?=0,01
=10, B= —e— DRDGD, t=10, # =0.05
101 —— DRSGD, t=10, 4=0.1 DRy o 103
—— complete, B=0.1 102 plete, f=0.
— DRGTA, t=1, f=0.01
105 1 Ge
10-2 10-3 DRGTA, t=1, =005
—= DRGTA, t=10, #=0.01
10-4 ; 10-7 = DRGTA,t=10, #=0.05
10-3 Wﬁm}ﬂ %‘\?L —— complete, f=0.05
0 50 100 150 200 0 2500 5000 7500 10000 0 2500 5000 7500 10000
Epoch Iteration Iteration
(a) DRSGD (b) DRDGD (c) DRGTA

Figure 3. Synthetic data, agents number n = 32, eigengap A = 0.8, Graph: ER(32,0.3).

In Figure 4, we show the results when the initial point does not satisfy xqg € A. Specifically, we randomly generate
21,0, --,Tn,0 0N M, and the other settings are the same as Figure 1. Surprisingly, we find that the proposed algorithms still
converge. As suggested by (Markdahl et al., 2020; Chen et al., 2021), the consensus algorithm can achieve global consensus
with random initialization when r < %d — 1. The iteration in DRSGD and DRGTA is a perturbation of the consensus
iteration. It will be interesting to study it further.
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DRDGD, t=1, #=0.01
DRDGD, t=1, f=0.05 10-1
DRDGD, t=10, # = 0.01
DRDGD, t=10, 3 = 0.05
complete, /3 =0.05

—4— DRSGD, t=1, $=0.01
DRSGD, t=1, $=0.1

—— DRSGD, t=10, =0.01

—e— DRSGD, t=10, f=0.1

100 10°

1071
10-3

complete, E =0.1

107 ~ \ —i— DRGTA, t=1, f=0.01
~ 5 "
1072 S 10 DRGTA, t=1, §=0.05
1073 W —= DRGTA, t=10, f = 0.01
oo a2 e ey t
So 1077 \\ == DRGTA, t=10, 8 =0.05
10-3 1074 ~ \‘ —— complete, §=0.05
0 50 100 150 200 0 2500 5000 7500 10000 0 2500 5000 7500 10000
Epoch Iteration Iteration
(a) DRSGD (b) DRDGD (c) DRGTA

Figure 4. Synthetic data, agents number n = 32, eigengap A = 0.8, Graph: Ring.

F.2. Real-world data

We compare our algorithms with a recently proposed algorithm decentralized Sanger’s algorithm (DSA) (Gang & Bajwa,
2021), which is a Euclidean-type algorithm. To solve the eigenvector problem (6.1), DSA is shown to converge linearly
to a neighborhood of the optimal solution. The computation of DSA iteration is cheaper than DRDGD since there is no
retraction step. For simplicity, we fix ¢t = 1 and r = 5 in this section.

We provide some numerical results on the MNIST dataset(LeCun). The graph is still the ring and W is the Metropolis
constant weight matrix. The data set is evenly partitioned into n subsets. The stepsizes of DRDGD and DRGTA are set to

8 = o000

The results for MNIST data set with n = 20, 40 are shown in Figure 5. We see that the convergence rate of DSA and
DRDGD are almost the same and DRGTA with B = 0.1 can achieve the most accurate solution. When n becomes larger,
the convergence rate of all algorithms is slower. Although the computation of DSA is cheaper than DRDGD, we find that
when B = 0.5,n = 20, DSA does not converge, which is not shown in the Figure 5 (a). This is probably because DSA is
not a feasible method and needs carefully tuned stepsize.

1 100 J
-1] \
10 \ .
\ 1074
\ N
10_37 —-.——v—-.——.———.——.-——.——‘ 10_2< -
N, —— DRDGD, t=1, §=0.1
. — DRDGD, t=1,4=01 10-3 1 DRDGD, t=1,6=05 _ _,_ _ . __, _.
1071 DRDGD, t=1, §=0.5 —i= DRGTA, t=1, =01 >
~ ~ ~
—i= DRGTA, t=1,=0.1 \ 10-4{ —e— DRGTA, t=1, =0.5 SO
10-7{ =e= DRGTA, t=1,3=0.5 \\\ —— DSA, t=1, 3=0.5 \\\
—— DSA, t=1, 3=0.1 \, 1074 o~ psa,t=1, 4=0.1 S~
0 2500 5000 7500 10000 0 2500 5000 7500 10000
Iteration Iteration
(a) MNIST, n = 20, ring graph (b) MNIST, n = 40, ring graph

Figure 5. Numerical results of DRDGD, DRGTA, DSA on MNIST data set.

Finally, we demonstrate that DRSGD is indeed faster than the centralized Riemannian stochastic gradient descent(CRSGD).
We implemented the standard parameter server-based synchronous CRSGD using mpidpy. One node will serve as the
parameter server in our implementation. In Figure 6, we show the comparison results between DRSGD and CRSGD. The

settings of DRSGD are the same as those in Figure 2. And the stepsize of CRSGD is given by 5 = ﬁ B For
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different number of nodes, we tuned the stepsize B to get the best one.

We see that convergence rate of DRSGD and CRSGD are the same w.r.t the epoch number in 6 (a). This means that they can

both achieve linear speedup. In Figure 6 (b), DRSGD is faster than CRSGD in CPU time. This is because DRSGD needs
fewer number of communications between nodes than CRSGD.

——- CRSGD, n=16, $=0.6 CRSGD, n=16, §=0.6
100 ~—- CRSGD, n=32, $=0.9 1004 CRSGD, n=32, f=0.9
——- CRSGD, n=60, f=1.1 CRSGD, n=60, f=1.1
—— DRSGD, n=16, f=0.6 DRSGD, n=16, 8= 0.6
1071 —— DRSGD, n=32, =0.8 10714 DRSGD, n=32, =0.8
DRSGD, n=60, 8 =1.0 DRSGD, n=60, f=1.0
10724 10724 .
~$\ .
¥y,
) A A ey A
0 50 100 150 200 250 300 0 50 100 150 200 250 300 350
Epoch CPU time (seconds)
(a) Epoch (b) time

Figure 6. Comparison results of different number of nodes on MNIST. Ring graph associated with Metropolis constant weight matrix,
— — N
t=1p8= 10000+/300 B.



