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Abstract

We consider distributed non-convex optimization
where a network of agents aims at minimizing a
global function over the Stiefel manifold. The
global function is represented as a finite sum of
smooth local functions, where each local function
is associated with one agent and agents commu-
nicate with each other over an undirected con-
nected graph. The problem is non-convex as local
functions are possibly non-convex (but smooth)
and the Steifel manifold is a non-convex set. We
present a decentralized Riemannian stochastic gra-
dient method (DRSGD) with the convergence rate
of O(1/

√
K) to a stationary point. To have exact

convergence with constant stepsize, we also pro-
pose a decentralized Riemannian gradient track-
ing algorithm (DRGTA) with the convergence
rate of O(1/K) to a stationary point. We use
multi-step consensus to preserve the iteration in
the local consensus region. DRGTA is the first
decentralized algorithm with exact convergence
for distributed optimization on Stiefel manifold.

1. Introduction
Distributed optimization has received significant attention
in the past few years in machine learning, control and sig-
nal processing. There are mainly two scenarios where dis-
tributed algorithms are necessary: (i). the data is geographi-
cally distributed over networks and/or (ii). the computation
on a single (centralized) server is too expensive (large-scale
data setting). In this paper, we consider the following multi-
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agent optimization problem

min
1

n

n∑
i=1

fi(xi)

s.t. x1 = x2 = . . . = xn,

xi ∈M, ∀i = 1, . . . , n,

(1.1)

where fi has L−Lipschitz continuous gradient in Euclidean
space andM := St(d, r) = {x ∈ Rd×r : x>x = Ir} is the
Stiefel manifold. Unlike the Euclidean distributed setting,
problem (1.1) is defined on the Stiefel manifold, which is a
non-convex set. Many important applications can be writ-
ten in the form (1.1), e.g., decentralized spectral analysis
(Kempe & McSherry, 2008; Gang & Bajwa, 2021), dictio-
nary learning (Raja & Bajwa, 2015), eigenvalue estimation
of the covariance matrix (Penna & Stańczak, 2014) in wire-
less sensor networks, and deep neural networks with or-
thogonal constraint (Arjovsky et al., 2016; Vorontsov et al.,
2017; Huang et al., 2018).

Problem (1.1) can generally represent a risk minimization.
One approach to solving (1.1) is collecting all variables to
a central server and running a centralized algorithm. In
this work, however, we consider the decentralized setting.
Our motivations are two-fold: (i). In some applications,
the datasets are collected, stored and manipulated in a dis-
tributed manner. Due to privacy concerns and/or inability to
gather all data in a central node, centralized methods cannot
be implemented. In a decentralized implementation, local
parameter vectors (and not data) can be shared amongst
neighboring nodes. In this setting, prior to our work, it was
not clear how to design a converging decentralized algorithm
for problem (1.1), nor was it clear how such an algorithm
scales w.r.t the connectivity of the network. (ii). The other
popular reason to study decentralized setting is to accelerate
the computation for stochastic algorithms in modern com-
putational architectures. (Lian et al., 2017) proved that the
decentralized SGD (D-PSGD) algorithm can achieve a lin-
ear speedup w.r.t n if the iteration number is large enough,
and the convergence rate is the same as centralized SGD
(C-PSGD). Due to the communication efficiency, D-PSGD
is more efficient than C-PSGD.
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1.1. Our Contributions

In this paper, we focus on designing efficient decentralized
algorithms to solve (1.1) over any connected undirected
network. Since Stiefel manifold is nonconvex, the existing
decentralized algorithms for Euclidean problems all fail for
problem (1.1) (see Section 1.2). We may directly use man-
ifold optimization tools, but the standard techniques from
Riemannian optimization use the vector transport for algo-
rithm design, which is unsatisfactory for our problem. We
use the fact that Stiefel manifold is embedded in Euclidean
space. As such, we combine the strategies of Euclidean
algorithms with some Riemannian optimization techniques.
Based on the above observations, one key innovation is to
project every update direction onto the tangent space, so that
we can leverage the retraction property in Lemma 2.3. This
step distinguishes our algorithm from Euclidean algorithms.
Our contributions are as follows:

1. We show the linear speedup of the decentralized
stochastic Riemannian gradient method (Algorithm 1)
w.r.t n for solving (1.1). Specifically, the iteration
complexity of obtaining an ε−stationary point (see
Definition 2.2) is O(1/ε2) in expectation 1.

2. To achieve exact convergence with constant stepsize,
we propose a gradient tracking algorithm (DRGTA)
(Algorithm 2) for solving (1.1). For DRGTA, the itera-
tion complexity of obtaining an ε−stationary point is
O(1/ε) 1.

3. We develop new Lipschitz inequalities for the Rieman-
nian gradient in Lemma 2.4, which will be of indepen-
dent interest. The benefit of Lemma 2.4 is to provide
us with simple analysis.

Importantly, both of the proposed algorithms are retraction-
based and DRGTA is vector transport-free. These two
features make the algorithms computationally cheap and
conceptually simple. DRGTA is the first decentralized algo-
rithm with exact convergence for distributed optimization
on the Stiefel manifold.

1.2. Related works

Decentralized optimization has been well-studied in Eu-
clidean space. The decentralized (sub)-gradient methods
were studied in (Tsitsiklis et al., 1986; Nedic et al., 2010;
Yuan et al., 2016; Chen et al., 2021b) and a distributed dual
averaging subgradient method was proposed in (Duchi et al.,
2011). However, with a constant stepsize β > 0, these
methods can only converge to a O( β

1−σ2
)−neighborhood

of a stationary point, where σ2 is a network parameter (see
Assumption 1). To achieve exact convergence with a fixed

1 We have omitted the dependence on network parameters here.

stepsize, gradient tracking algorithms were proposed in (Shi
et al., 2015; Xu et al., 2015; Di Lorenzo & Scutari, 2016;
Qu & Li, 2017; Nedic et al., 2017; Yuan et al., 2018), to
name a few. The convergence analysis can be unified via a
primal-dual framework (Alghunaim et al., 2020). Another
way to use the constant stepsize is decentralized ADMM
and its variants (Mota et al., 2013; Chang et al., 2014; Shi
et al., 2014; Aybat et al., 2017). Also, decentralized stochas-
tic gradient method for non-convex smooth problems were
well-studied in (Lian et al., 2017; Assran et al., 2019; Sun
et al., 2020; Xin et al., 2020), etc. We refer to the survey
paper (Nedić et al., 2018) for a complete review on the
state-of-the-art algorithms and the role of network topology.

The problem (1.1) can be thought as a constrained decen-
tralized problem in Euclidean space, but since the Stiefel
manifold constraint is non-convex, none of the above works
can solve the problem. On the other hand, we can also
treat (1.1) as a smooth problem over the Stiefel manifold.
However, the constraint x1 = x2 = . . . = xn is difficult
to handle due to the lack of linearity on M. Since the
Stiefel manifold is an embedded submanifold in Euclidean
space, our viewpoint is to treat the problem in Euclidean
space and develop new tools based on Riemannian mani-
fold optimization (Edelman et al., 1998; Absil et al., 2009;
Boumal et al., 2019). For the optimization problem (1.1), a
decentralized Riemannian gradient tracking algorithm was
presented in (Shah, 2017). The vector transport operation
should be used in (Shah, 2017), which yields expensive com-
putation as well as analysis difficulty. Moreover, they need
to use asymptotically infinite number of communication
steps. A Riemannian gossip algorithm was also proposed
for subspace learning on Grassmann manifold (Mishra et al.,
2019), but no convergence rate was obtained. Other dis-
tributed algorithms were specifically designed either for the
PCA problem (Penna & Stańczak, 2014; Raja & Bajwa,
2015; Gang & Bajwa, 2021) or in centralized topology (Fan
et al., 2019; Huang & Pan, 2020; Wang et al., 2020). For
aforementioned decentralized algorithms, diminishing step-
size or asymptotically infinite number of communication
steps should be utilized to get the exact solution. Different
from all these works, DRGTA requires a finite number of
communications using a constant step-size in each iteration.
After submitting our manuscript, we found that the paper
(Ye & Zhang, 2021) proposed a linearly convergent method
called Decentralized Exact PCA which can also use finite-
step consensus. But it is only designed for the decentralized
PCA problem.

As a special case of problem (1.1), the Riemannian con-
sensus problem is well-studied; see (Sarlette & Sepulchre,
2009; Tron et al., 2012; Markdahl et al., 2020; Chen et al.,
2021a). Recently, it was shown in (Chen et al., 2021a)
that the multi-step consensus algorithm (DRCS) converges
linearly to the global consensus in a local region.
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Definition 1.1 (Consensus). Consensus is the configuration
where xi = xj ∈ M for all i, j ∈ [n]. We define the
consensus set as follows

X ∗ := {x ∈Mn : x1 = x2 = . . . = xn}. (1.2)

Specifically, DRCS iterates {xk} have the following conver-
gence property in a neighborhood of X ∗

dist(xk+1,X ∗) ≤ ϑ · dist(xk,X ∗), ϑ ∈ (0, 1), (1.3)

where dist2(x,X ∗) := miny∈M
1
n

∑n
i=1 ‖y − xi‖2F and

x> = (x>1 x>2 . . . x>n ). The linear rate of DRCS sheds
some lights on designing the decentralized Riemannain gra-
dient method on Stiefel manifold. More details will be
provided in Section 3.

2. Preliminaries
Notation: The undirected connected graph G = (V, E) is
composed of |V| = n nodes representing agents. We use x
to denote the collection of all local variables xi by stacking
them, i.e., x> = (x>1 x>2 . . . x>n ). The n−fold Cartesian
product ofMwith itself is denoted asMn =M×. . .×M.
We use [n] := {1, 2, . . . , n}. For x ∈ Mn, we denote the
i−th block by [x]i = xi. We denote the tangent space of
M at point x as TxM and the normal space as NxM. The
inner product on TxM is induced by the Euclidean inner
product 〈x, y〉 = Tr(x>y). Denote ‖ · ‖F as the Frobenius
norm and ‖·‖2 as the operator norm. The Euclidean gradient
of function g(x) is ∇g(x) and the Riemannian gradient is
gradg(x). Let Ir and 0r be the r×r identity matrix and zero
matrix, respectively. And let 1n denote the n dimensional
vector of all ones.

The network structure is modeled using a matrix, denoted
by W , which satisfies the following assumption.

Assumption 1. We assume that the undirected graph G is
connected and W is doubly stochastic, i.e., (i) W = W>;
(ii) Wij ≥ 0 and 1 > Wii > 0 for all i, j; (iii) Eigenvalues
of W lie in (−1, 1]. The second largest singular value σ2 of
W lies in σ2 ∈ [0, 1).

We now introduce some preliminaries of Riemannian mani-
fold and fundamental lemmas.

2.1. Induced Arithmetic Mean

Denote the Euclidean average point of x1, . . . , xn by

x̂ :=
1

n

n∑
i=1

xi. (2.1)

To measure the degree of consensus, the error
∑n
i=1 ‖xi −

x̂‖2F is typically used in the Euclidean decentralized algo-
rithms. Instead, here we use the induced arithmetic mean

(IAM) (Sarlette & Sepulchre, 2009) on St(d, r), defined as
follows

x̄ := argmin
y∈St(d,r)

n∑
i=1

‖y − xi‖2F = PSt(x̂), (IAM)

where PSt(·) is the orthogonal projection onto St(d, r). De-
fine

x̄ = 1n ⊗ x̄. (2.2)

Then the distance between x and X ∗ is given by

dist2(x,X ∗) = min
y∈St(d,r)

1

n

n∑
i=1

‖y − xi‖2F =
1

n
‖x− x̄‖2F.

Furthermore, we define the lF,∞ distance between x and x̄
as

‖x− x̄‖F,∞ = max
i∈[n]
‖xi − x̄‖F. (lF,∞)

We will develop the analysis of decentralized Riemannian
gradient descent by studying the error distance ‖x − x̄‖F
and ‖x− x̄‖F,∞.

2.2. Optimality Condition

Next, we introduce the optimality condition on manifoldM.
Consider the following centralized optimization problem
over a matrix manifoldM

minh(x) s.t. x ∈M. (2.3)

Since we use the metric on tangent space TxM induced
from the Euclidean inner product 〈·, ·〉, the Riemannian
gradient gradh(x) on St(d, r) is given by gradh(x) =
PTxM∇h(x), where PTxM is the orthogonal projection
onto TxM. More specifically, we have

PTxMy = y − 1

2
x(x>y + y>x),

for any y ∈ Rd×r; see (Edelman et al., 1998; Absil et al.,
2009). The necessary first-order optimality condition of
problem (2.3) is given as follows.

Proposition 2.1. (Yang et al., 2014; Boumal et al., 2019)
Let x ∈ M be a local optimum for (2.3). If h is differen-
tiable at x, then gradh(x) = 0.

Therefore, x is a first-order critical point (or critical point)
if gradh(x) = 0. Let x̄ be the IAM of x. We define the ε−
stationary point of problem (1.1) as follows.

Definition 2.2 (ε-Stationarity). We say that x> =
(x>1 x>2 . . . x>n ) is an ε− stationary point of problem (1.1)
if the following holds:

1

n

n∑
i=1

‖xi − x̄‖2F ≤ ε ∀i, j ∈ [n]
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and
‖gradf(x̄)‖2F ≤ ε,

where we use the notation f(x̄) := 1
n

∑n
i=1 fi(x̄).

2.3. Basic Lemmas

Our goal is to develop the decentralized version of cen-
tralized Riemannian gradient descent on St(d, r). The cen-
tralized Riemannian gradient descent (Absil et al., 2009;
Boumal et al., 2019) iterates as

xk+1 = Rxk
(−αgradh(xk)),

i.e., updating along a negative Riemannian gradient direc-
tion on the tangent space, and then performing an operation
called retractionRxk

to ensure feasibility. We use the def-
inition of retraction in (Boumal et al., 2019, Definition 1).
The retraction is the relaxation of exponential mapping, and
more importantly, it is computationally cheaper. We also as-
sume the second-order boundedness of retraction. It means
that

Rx(ξ) = x+ ξ +O(‖ξ‖2F).

That is, Rx(ξ) is locally a good approximation of x + ξ.
Such approximation is well enough to take the place of
exponential map for the first-order algorithms.

Lemma 2.3. (Boumal et al., 2019; Liu et al., 2019) LetR
be a second-order retraction over St(d, r). We then have

‖Rx(ξ)− (x+ ξ)‖F ≤M‖ξ‖2F,
∀x ∈ St(d, r),∀ξ ∈ TxM.

(P1)

Moreover, if the retraction is the polar decomposition, for
all x ∈ St(d, r) and ξ ∈ TxM, the following inequality
holds for any y ∈ St(d, r) (Li et al., 2019, Lemma 1):

‖Rx(ξ)− y‖F ≤ ‖x+ ξ − y‖F. (2.4)

In the sequel, retraction refers to the polar retraction to
present a simple analysis, unless otherwise noted. More
details on the polar retraction is provided in appendix A.
Throughout the paper, we assume that every fi(x) is Lips-
chitz smooth.

Assumption 2. Each fi(x) has L−Lipschitz continuous
gradient, and let D := maxx∈St(d,r) ‖∇fi(x)‖F. There-
fore, ∇f(x) is also L-Lipschitz continuous and D ≥
maxx∈St(d,r) ‖∇f(x)‖F.

We have two similar Lipschitz continuous inequalities on
Stiefel manifold as the Euclidean-type ones (Nesterov,
2013). We provide the proof in Appendix.

Lemma 2.4 (Lipschitz-type inequalities). For any x, y ∈
St(n, d) and ξ ∈ TxM, if f(x) is L−Lipschitz smooth in

Euclidean space, then there exists a constant Lg = L+ Ln
such that

|f(y)− [f(x) + 〈gradf(x), y − x〉]| ≤ Lg
2
‖y − x‖2F,

(2.5)
where Ln = maxx∈St(d,r) ‖∇f(x)‖2. Moreover, define
LG := L+ 2Ln. Then, one has

‖gradf(x)− gradf(y)‖F ≤ LG‖y − x‖F. (2.6)

The difference between two Riemannian gradients is not
well-defined on general manifold. However, since the Stiefel
manifold is embedded in Euclidean space, we are free to
do so. Another similar inequality as (2.5) is the restricted
Lipschitz-type gradient presented in (Boumal et al., 2019,
Lemma 4). But they do not provide an inequality as (2.6).
One could also consider the following Lipschitz inequality
(see (Zhang & Sra, 2016; Absil et al., 2009))

‖Px→ygradf(x)− gradf(y)‖F ≤ L′gdg(x, y),

where Px→y : TxM→ TyM is the vector transport and
dg(x, y) is the geodesic distance. Since involving vector
transport and geodesic distance brings computational and
conceptual difficulties, we choose to use the form of (2.6) for
simplicity. In fact, Lg , L̃g and L′g are the same up to a con-
stant. A detailed comparison is provided in appendix C.1.

We will use Lemma 2.3 and Lemma 2.4 to present a parallel
analysis to the decentralized Euclidean gradient methods
(Nedic et al., 2010; 2017; Lian et al., 2017).

3. Review of consensus on Stiefel manifold
Decentralized gradient-based algorithms (Tsitsiklis et al.,
1986; Nedic et al., 2010; Yuan et al., 2016; Shi et al., 2015;
Nedic et al., 2017; Lian et al., 2017) rely on the linear
convergence of consensus iteration in Euclidean space.

The consensus problem over St(d, r) is to minimize the
quadratic loss function on Stiefel manifold

minϕt(x) :=
1

4

n∑
i=1

n∑
j=1

W t
ij‖xi − xj‖2F

s.t. xi ∈M, ∀i ∈ [n],

(3.1)

where the superscript t ≥ 1 is an integer used to denote the
t-th power of the doubly stochastic matrix W . Note that t
is introduced to provide flexibility for algorithm design and
analysis, and computing W t

ij corresponds to performing t
steps of communication on the tangent space. For consensus
on the Steifel manifold, the Riemannian gradient method
DRCS was proposed in (Chen et al., 2021a), where for any
i ∈ [n],

xi,k+1 = Rxi,k
(αPTxi

M(

n∑
j=1

W t
ijxj,k)). (3.2)



Decentralized Riemannian Gradient Descent on the Stiefel Manifold

DRCS converges almost surely to consensus when r ≤
2
3d− 1 with random initialization (Markdahl et al., 2020).
However, to study decentralized optimization problem (1.1),
the local Q-linear convergence of DRCS is more important.
Due to the nonconvexity ofM, the Q-linear rate of DRCS
holds in a local region defined as follows

N : = N1 ∩N2, (3.3)

N1 : = {x : ‖x− x̄‖2F ≤ nδ2
1}, (3.4)

N2 : = {x : ‖x− x̄‖F,∞ ≤ δ2}, (3.5)

where δ1, δ2 satisfy

δ1 ≤
1

5
√
r
δ2 and δ2 ≤

1

6
. (3.6)

The following convergence result of DRCS can be found in
(Chen et al., 2021a, Theorem 2). The formal statement is
provided in Fact B.1 in Appendix.

Fact 3.1. (Informal) Under Assumption 1, for some ᾱ ∈
(0, 1], if α ≤ ᾱ and t ≥ dlogσ2

( 1
2
√
n

)e, the sequence {xk}
in (3.2) achieves consensus linearly if the initialization satis-
fies x0 ∈ N defined in (3.3). That is, there exists ρt ∈ (0, 1)
such that xk ∈ N for all k ≥ 0 and

‖xk+1 − x̄k+1‖F ≤ ρt‖xk − x̄k‖F. (3.7)

4. Decentralized Riemannian gradient descent
Using the results of consensus problem on Stiefel mani-
fold, we can combine the ideas of decentralized gradient
method in Euclidean space with the Stiefel manifold opti-
mization. In this section, we propose a distributed Rieman-
nian stochastic gradient method for solving problem (1.1),
which is described in Algorithm 1.

Algorithm 1 Decentralized Riemannian Stochastic Gradi-
ent Descent (DRSGD) for Solving (1.1)

1: Input: initial point x0 ∈ N , an integer t ≥
logσ2

( 1
2
√
n

), 0 < α ≤ ᾱ, where ᾱ is given in Fact 3.1.
2: for k = 0, . . .{for each node i ∈ [n], in parallel} do
3: Choose diminishing stepsize βk = O(1/

√
k)

4: Compute stochastic Riemannian gradient vi,k satis-
fying Evi,k = gradfi(xi,k)

5: Update
xi,k+1 = Rxi,k (αPTxi,k

M(
∑n

j=1 W
t
ijxj,k)− βkvi,k)

6: end for

Since we need all the local variables to be equal according
to the constraint in (1.1), the initial point x0 should be
in the consensus region N . One can simply initialize all
agents from the same point. The line 5 in Algorithm 1
first performs a consensus step and then updates the local

variable using Riemannian stochastic gradient direction vi,k.
The consensus step and computation of Riemannian gradient
can be done in parallel2. The consensus stepsize α satisfies
α ≤ ᾱ, which is the same as the consensus algorithm. The
constant ᾱ is given in Fact B.1 in Appendix. Moreover,
α = 1 works in practice for any W satisfying Assumption 1.
If x1 = . . . = xn = z, we denote

f(z) :=
1

n

n∑
i=1

fi(z).

Moreover, we need the following assumptions on the
stochastic Riemannian gradient vi,k and the stepsize βk.

Assumption 3. 1. The stochastic gradient vi,k is unbi-
ased, i.e., Evi,k = gradfi(xi,k) for all i ∈ [n], k and
vi,k is independent of vj,k for any i 6= j. Moreover, the
variance is bounded: E‖vi,k − gradfi(xi,k)‖2F ≤ Ξ2

for some Ξ > 0.

2. We assume a uniform upper bound on ‖vi,k‖F exists,
and maxx∈St(d,r) ‖vi,k‖F ≤ D for each i ∈ [n] and k.

The Lipschitz smoothness of fi(x) in Assumption 2 and
unbiased gradients are quite standard in the literature. And
Lemma 2.4 suggests that gradfi is LG-Lipschitz continu-
ous. Also, the boundedness of ‖vi,k‖F is a weak assumption
given that Stiefel manifold is compact. One common exam-
ple is the finite-sum form: fi = 1

mi

∑mi

j=1 fij , where fij is
smooth and mi is the number of functions fij at local agent
i. Then the stochastic gradient vi,k is uniformly sampled
from gradfij(xi,k), j ∈ [mi]. We emphasize that the uni-
form boundedness of gradient is not needed for problems
in Euclidean space, but Lipschitz continuity is necessary
(Hong et al., 2020).

The step 5 can be seen as applying Riemannian gradient
method to solve the following problem

min
x∈Mn

βkf(x) + αϕt(x).

Similar to the analysis of DGD in Euclidean space, we need
to ensure that ‖xk − x̄k‖F → 0. Hence, the effect of f
should be diminishing. The following assumption on the
stepsize is also needed to get an ε− solution.

Assumption 4 (Diminishing stepsize). The stepsize βk > 0

2One could also exchange the order of gradient step and com-
munication step, i.e., xi,k+ 1

2
= Rxi,k (−βkvi,k), xi,k+1 =

Rx
i,k+1

2

(αPTx
i,k+1

2

M(
∑n

j=1 W
t
ijxj,k+ 1

2
)). Our analysis can

also apply to this kind of update if x0 ∈ ρtN , where ρtN denotes
regionN with the shrunken radius ρtδ1, ρtδ2. For the Euclidean
algorithms, when the graph is complete with W = 1n1>n /n, the
above updates are the same as centralized gradient step. However,
they are different on Stiefel manifold.
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is non-increasing and
∞∑
k=0

βk =∞, lim
k→∞

βk = 0, lim
k→∞

βk+1

βk
= 1.

The assumption limk→∞
βk+1

βk
= 1 is required to show the

bound 1
n‖xk − x̄k‖2F = O(

β2
kD

2

(1−ρt)2 ), see Lemma D.3 in
Appendix.

To proceed, we first need to guarantee that xk ∈ N , where
N is the consensus contraction region defined in (3.3).
Therefore, uniform bound D and the multi-step consen-
sus requirement t ≥ dlogσ2

( 1
2
√
n

)e are necessary in our
convergence analysis. With appropriate stepsizes α and βk,
we get the following lemma using the consensus results in
Fact 3.1. We provide the proof in Appendix.
Lemma 4.1. Under Assumptions 1 to 4, let the step-
size α satisfy 0 < α ≤ ᾱ, βk satisfy 0 ≤ βk ≤
min{ 1−ρt

D δ1,
αδ1
5D },∀k ≥ 0, and t ≥ dlogσ2

( 1
2
√
n

)e. If
x0 ∈ N , it follows that xk ∈ N for all k ≥ 0 generated by
Algorithm 1 and

‖xk+1 − x̄k+1‖F ≤ ρk+1
t ‖x0 − x̄0‖F +

√
nD

k∑
l=0

ρk−lt βl.

We have βk = O( 1−ρt
D ) when α = O(1). Note that t ≥

dlogσ2
( 1

2
√
n

)e implies ρt = O(1); see appendix B. When
βk = β is constant, Lemma 4.1 suggests that xk converges
linearly to an O(β)-neighborhood of x̄k.

We present the convergence of Algorithm 1. The proof is
based on the new Lipschitz inequalities for the Riemannian
gradient in Lemma 2.4 and the properties of retraction in
Lemma 2.3. We provide it in Appendix.
Theorem 4.2. Under Assumptions 1 to 4, suppose x0 ∈ N ,
t ≥ dlogσ2

( 1
2
√
n

)e, 0 < α ≤ ᾱ. If

βk =
1√
k + 1

·min{ 1

5Lg
,
αδ1
5D

,
1− ρt
D

δ1}, (4.1)

it follows that

min
k≤K

E‖gradf(x̄k)‖2F ≤
4(f(x̄0)− f∗) +

6LgΞ2

n

∑K
k=0 β

2
k∑K

k=0 βk
(4.2)

+
(2CD2L2

G + 4T1D
4)
∑K

k=0 β
3
k + 4T2LgD

4∑K
k=0 β

4
k∑K

k=0 βk
,

where C = O( 1
(1−ρt)2 ) is given in Lemma D.3 in Appendix.

And T1 = 2(4
√
r + 6α)2C2 + 8M2 and T2 = 201α2C2 +

9M2. Therefore, with stepsize βk = O(1/
√
k), we have

min
k≤K

E‖gradf(x̄k)‖2F = O
(
f(x̄0)− f∗

β̃
√
K + 1

+
Ξ2 ln(K + 1)

n
√
K + 1

)
+O

(
max{D2, L2

G} · (C + T1 + T2)√
K + 1

)
,

where β̃ = min{1/Lg, (1− ρt)/D}.

Theorem 4.2 together with Lemma D.3 implies that the iter-
ation complexity of obtaining an ε−stationary point defined
in Definition 2.2 is O(1/ε2) in expectation. The commu-
nication round per iteration is t ≥ dlogσ2

( 1
2
√
n

)e since we
need to ensure xk ∈ N . For sparse networks, t can be
O(n2 log n) (Chen et al., 2021a).
Note that in Assumption 3, the uniform bound D is required
for every vi,k. This is used in the proof of Lemma 4.1. We
can prove a weaker version of Theorem 4.2 without assum-
ing bounded variance Ξ in Assumption 3. However, we
hope to provide a parallel analysis as the D-PSGD (Lian
et al., 2017) to show the linear speedup of DRSGD can be
achieved w.r.t the network size n. With the bounded vari-
ance assumption, we have an O(Ξ2

n ) term in (4.2). This
reveals the role of the batch size n in DRSGD. Follow-
ing (Lian et al., 2017), if we use the constant stepsize
βk = 1

2LG+
√

(K+1)/n
where K is sufficiently large, we

can obtain the following result

min
k=0,...,K

E‖gradf(x̄k)‖2F

≤ 8LG(f(x̄0)− f∗)
K + 1

+
8(f(x̄0)− f∗ + 3LG

2 )Ξ√
n(K + 1)

.

More details are provided in Corollary D.5 in Appendix.
Therefore, if K is sufficiently large, the convergence rate is
O(1/

√
nK). To obtain an ε−stationary point, the computa-

tional complexity of single node is O( 1
nε2 ). Moreover, K

should be proportional to O(1/Ξ) in Corollary D.5. This
also means that in deterministic setting (Ξ = 0), the linear
speedup cannot be obtained.

One remaining issue is that the communication round t ≥
dlogσ2

( 1
2
√
n

)e is too large. In practice, we find that t = 1

performs well as shown in the experiments in Section 6. We
conjecture that when the stepsize is small enough, DRSGD
will not deviate from the consensus algorithm DRCS too
much. We will theoretically study this in the future.

5. Gradient tracking on Stiefel manifold
In this section, we study the decentralized gradient tracking
method, which is based on the DIGing algorithm (Qu & Li,
2017; Nedic et al., 2017) for solving Euclidean problems.
With an auxiliary gradient tracking sequence to estimate the
full gradient, the constant stepsize can be used and faster
convergence rate can be shown for the Euclidean algorithms
(Nedic et al., 2017; Shi et al., 2015). Our method, termed
Decentralized Riemannian Gradient Tracking Algorithm
(DRGTA), is described in Algorithm 2.

In Algorithm 2, the step 4 is to project the direction yi,k
onto the tangent space Txi,k

M, which follows a retrac-
tion update. The sequence {yi,k} is to approximate the
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Algorithm 2 Decentralized Riemannian Gradient Tracking
over Stiefel manifold (DRGTA) for Solving (1.1)

1: Input: initial point x0 ∈ N , an integer t ≥ logσ2
( 1

2
√
n

),
0 < α ≤ ᾱ and stepsize β according to (5.2).

2: Let yi,0 = gradfi(xi,0) on each node i ∈ [n].
3: for k = 0, . . .{for each node i ∈ [n], in parallel} do
4: Projection onto tangent space: vi,k = PTxi,k

Myi,k.
5: Update

xi,k+1 = Rxi,k (αPTxi,k
M(
∑n

j=1 W
t
ijxj,k)− βvi,k).

6: Riemannian gradient tracking:

yi,k+1 =

n∑
j=1

W t
ijyj,k + gradfi(xi,k+1)− gradfi(xi,k).

7: end for

Riemannian gradient gradfi(xi,k). More specifically, the
sequence {yk} tracks the average Riemannian gradient
1
n

∑n
i=1 gradfi(xi,k). Although it is not mathematically

sound to perform addition operation between tangent spaces
in differential geometry, we can view gradfi(xi,k) as the
projected Euclidean gradient. Note that yi,k is not necessar-
ily on the tangent space Txi,k

M. Therefore, it is important
to define vi,k = PTxi,k

Myi,k so that we can use the prop-
erties of retraction in Lemma 2.3. Such a projection onto
tangent space, followed by the retraction operation, distin-
guishes the algorithm from the Euclidean space gradient
tracking algorithms. Multi-step consensus of gradient is
also required in step 5 and step 6. The consensus stepsize α
satisfies the same condition as that of Algorithm 1.

5.1. Convergence of Riemannian gradient tracking

We first briefly revisit the idea of gradient tracking (GT)
algorithm DIGing in Euclidean space. Note that if we con-
sider the decentralized optimization problem (1.1) without
the Stiefel manifold constraint, then Algorithm 2 is exactly
the same as the DIGing. Since the Riemannian gradient
gradfi becomes simply the Euclidean gradient ∇fi and
projection onto the tangent space and retraction are not
needed. The main advantage of Euclidean gradient tracking
algorithm is that one can use constant stepsize β > 0, which
is due to following observation: for all k ≥ 0, it follows that

1

n

n∑
i=1

yi,k =
1

n

n∑
i=1

∇fi(xi,k).

That is, the average of sequence yi,k is the same as that
of ∇fi(xi,k). It can be shown that the following inexact
gradient sequence converges to a stationary point (Nedic
et al., 2017)

xi,k+1 =

n∑
i=1

Wijxj,k − β
1

n

n∑
i=1

∇fi(xi,k).

However, the average of gradient information is unavail-
able in the decentralized setting. Therefore, GT uses
1
n

∑n
i=1 yi,k to approximate 1

n

∑n
i=1∇fi(xi,k). Inspired

by this, yi,k is used to approximate the Riemannian gradi-
ent, i.e., if

yi,k+1 =

n∑
j=1

W t
ijyj,k + gradfi(xi,k+1)− gradfi(xi,k),

then it follows that

1

n

n∑
i=1

yi,k =
1

n

n∑
i=1

gradfi(xi,k) i.e. ŷk = ĝk.

Therefore, {yk} tracks the average of Riemannian gradient,
and if ‖ĝk‖F → 0 and the sequence {xk} achieves con-
sensus, then xk also converges to a critical point. This is
because

‖gradf(x̄k)‖2F ≤ 2‖ĝk‖2F + 2‖gradf(x̄k)− ĝk‖2F
(2.6)
≤ 2‖ĝk‖2F +

2L2
G

n
‖xk − x̄k‖2F.

The above observations will play important roles in the
convergence analysis. To achieve consensus, we still need
multi-step consensus in DRGTA. The multi-step consensus
also helps us to show the uniform boundedness of yi,k and
vi,k, i ∈ [n] for all k ≥ 0, which is important to guarantee
xk ∈ N . We get that the sequence stays in consensus
region N in Lemma 5.1. We provide the proof in Appendix.

Lemma 5.1 (Uniform bound of yi and stay in N ). Un-
der Assumptions 1 and 2, let x0 ∈ N , t ≥ logσ2

( 1
2
√
n

),
α satisfy 0 < α ≤ ᾱ, β satisfy 0 ≤ β ≤ β̄ :=
min{ 1−ρt

LG+2D δ1,
αδ1

5(LG+2D)}, then ‖yi,k‖F ≤ LG + 2D for
all i ∈ [n] and xk ∈ N for all k ≥ 0. Moreover, we have

1

n
‖xk − x̄k‖2F ≤ C1(LG + 2D)2β2, (5.1)

for some C1 = O( 1
(1−ρt)2 ), and C1 is independent of LG

and D.

We present the O(1/ε) iteration complexity to obtain the
ε−stationary point of (1.1) as follows. The proof of DIGing
can be unified by the primal-dual framework (Alghunaim
et al., 2020). However, DRGTA cannot be rewritten in the
primal-dual form. The proof is mainly established with the
help of Lemma 2.4 and the properties of IAM. We provide
it in Appendix.

Theorem 5.2. Under Assumptions 1 and 2, let x0 ∈ N ,
t ≥ dlogσ2

( 1
2
√
n

)e, 0 < α ≤ ᾱ, and

0 < β ≤ min{β̄, 1

8LG
,

1

4LG(2G3 + (8C̃0 + 1
2 C̃2)αδ1)

},

(5.2)
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where β̄ is given in Lemma 5.1. Then it follows that for the
sequences generated by Algorithm 2

min
k=0,...,K

1

n
‖yk‖2F ≤

8(f(x̄0)− f∗ + C̃4 + G4LG)

β ·K
,

(5.3)

min
k≤K

1

n
‖xk − x̄k‖2F

≤ 8β(f(x̄0)− f∗ + C̃4 + G4LG)C̃0 + C̃1

K
,

(5.4)

min
k≤K
‖gradf(x̄k)‖2F

≤ (16 + α2δ2
1C̃0)(f(x̄0)− f∗ + C̃4 + G4LG) + C̃1LG

β ·K
,

(5.5)
where the constants above are given by

G3 = G1C̃0 + G0C̃0 + G2,

G4 =
G0C̃0δ

2
1α

2

25
+ C̃1(G1 + 4rC1),

C̃0 =
2

(1− ρt)2
, C̃1 =

2

1− ρ2
t

· 1

n
‖x0 − x̄0‖2F,

C̃2 =
2

(1− σt2)2
, C̃3 =

2

1− σ2t
2

· 1

n
‖y0 − Ĝ0‖2F,

C̃4 = (8α2C̃1C̃2L
2
G + C̃3) · β

2
= O(

LG
(1− σt2)2

).

The constants G0 = O(r2C1) , G1 = O(r2C1) and G2 =
O(M) are given in Lemma E.2 in the appendix. We have
G3 = O( r2C1

(1−ρt)2 + M) and G4 = O(
r2C1δ

2
1

1−ρ2t
). Recall that

β ≤ β̄ is required to guarantee that the sequence {xk}
always stays in the consensus region N . And note that ρt
is the linear rate of Riemannian consensus, which is greater
than σt2. The stepsize β follows

β = O(min{ 1− ρt
LG + 2D

,
(1− ρt)2

LG
· 1

r2C1 +M(1− ρt)2
}).

This matches the bound of DIGing (Qu & Li, 2017; Nedic
et al., 2017). Then Theorem 5.2 suggests that the consensus
error rate is O( 1

(r2C1+M)LG
· f(x̄0)−f∗

K +
‖x0−x̄0‖2F
n(1−ρ2t )K

) and
the convergence rate of min

k=0,...,K
‖gradf(x̄k)‖2F is given by

O( (r2C1+M)(LG+2D)(f(x̄0)−f∗))
K(1−ρt)2 +

‖x0−x̄0‖2F
n(1−ρt)4T +

r2C1δ
2
1LG

K(1−ρt)6 ).
Moreover, if the initial points satisfy x1,0 = x2,0 = . . . =

xn,0, we have C̃1 = C̃3 = C̃4 = 0.

6. Numerical experiment
We consider the following decentralized eigenvector prob-
lem:

min
x∈Mn

− 1

2n

n∑
i=1

x>i A
>
i Aixi, s.t. x1 = . . . = xn,

(6.1)
whereAi ∈ Rmi×d, i ∈ [n] is the local data matrix for agent
i and mi is the sample size. Denote the global data matrix
by A := [A>1 A>2 . . . A

>
n ]>. It is known that the global

minimizer of (6.1) is given by the first r leading eigenvec-
tors of A>A =

∑n
i=1A

>
i Ai, denoted by x∗. DRSGD and

DRGTA are proved to only converge to the critical points,
but we find that they always converge to x∗ in our experi-
ments. Denote the column space of a matrix x by [x]. To
measure the quality of the solution, the distance between
column space [x] and [y] can be defined via the canonical
correlations between x ∈ Rd×r and y ∈ Rd×r(Golub &
Zha, 1995). One can define it by

ds(x, y) := min
Q∈O(r)

‖uQ− v‖F,

where O(r) is the orthogonal group, u and v are the
orthogonal basis of [x] and [y], respectively. In the sequel,
we fix α = 1 and generate the initial points uniformly
randomly satisfying x1,0 = . . . = xn,0 ∈ M. If full
batch gradient is used in Algorithm 1, we call it DRDGD,
otherwise one stochastic gradient is uniformly sampled
without replacement in DRSGD. In DRSGD, one epoach
represents the number of complete passes through the
dataset, while one iteration is used in the deterministic
algorithms. For DRSGD, we set the maximum epoch to
200 and early stop it if ds(x̄k, x∗) ≤ 10−5. For DRGTA
and DRDGD, we set the maximum iteration number to
104 and the termination condition is ds(x̄k, x∗) ≤ 10−8

or ‖gradf(x̄k)‖F ≤ 10−8. We set βk = β̂
1
n

∑n
i=1mi

for

DRGTA and DRDGD where β̂ will be specified later. For
DRSGD, we set β = β̂√

200
. Due to the space limit, we

show the results on the ring graph, and select the weight
matrix W to be the Metroplis constant weight (Shi et al.,
2015). More comparisons on different networks and dataset
are provided in Appendix. For reproducibility of results,
our code is made available at https://github.com/
chenshixiang/Decentralized_Riemannian_
gradient_descent_on_Stiefel_manifold.

6.1. Synthetic data

We report the convergence results of DRSGD, DRDGD
and DRGTA with different t and β̂ on synthetic data. We
fix m1 = . . . = mn = 1000, d = 100 and r = 5 and
generate m1 × n i.i.d samples following standard multi-
variate Gaussian distribution to obtain A. Let A = USV >
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Figure 1. Synthetic data, agents number n = 32, eigengap ∆ = 0.8.

be the truncated SVD. Given an eigengap ∆ ∈ (0, 1), we
modify the singular values of A to be a geometric sequence,
i.e. Si,i = S0,0 ×∆i/2, i ∈ [d]. Typically, larger ∆ results
in more difficult problem.

In Figure 1, we show the results of DRSGD, DRDGD and
DRGTA on the data with n = 32 and ∆ = 0.8. The y-axis
is the log-scale distance. The first four lines in each testing
case are for the ring graph, and the last one is on a complete
graph with equally weighted matrix, which aims to show the
case of t→∞. In Figure 1(a), when fixing β̂, it is shown
that that smaller β̂ produces higher accuracy, which verifies
Theorem 4.2. We see DRSGD performs almost the same
with different t ∈ {1, 10,∞}. For the two deterministic
algorithms DRDGD and DRGTA, we see that DRDGD can
use larger β̂ if more communication rounds t is used in
Figure 1(b),(c). DRDGD cannot achieve exact convergence
with constant stepsize, while DRGTA successfully solves
the problem using t ∈ {10,∞}, β̂ = 0.05.

6.2. Real-world data

We provide some numerical results on the MNIST dataset
(LeCun). For simplicity, we fix t = 1 and r = 5 in this
section. The graph is still the ring and W is the Metropolis
constant weight matrix. For MNIST, there are 60000 sam-
ples and the dimension is given by d = 784. We normalize
the data matrix such that the elements are in [0, 1]. The data
set is evenly partitioned into n subsets. The stepsizes of
DRDGD and DRGTA are set to β = β̂

60000 .

We demonstrate the linear speedup of DRSGD for different
n. The experiments are evaluated in a HPC cluster, where
each computation node is an Intel Xeon 6248R CPU. The
computation nodes are connected by Mellanox HDR 100
InfiniBand. We use 2 CPU cores each computation node in
the HPC cluster. And we treat one CPU core as one network
node in our problem. The codes are implemented in python
with mpi4py (Dalcı́n et al., 2005).

We set the maximum epoch as 300 in all experiments. The
stepsize is set to β =

√
n

10000
√

300
β̂, where β̂ is tuned for the

best performance. The results in Figure 2 are log ds(x̄k, x
∗)

v.s. epoch and log ds(x̄k, x
∗) v.s. CPU time, respec-

tively. As we see in Figure 2(a), the solutions accuracy
of n = 16, 32, 60 are almost the same, while the CPU time
in Figure 2(b) can be accelerated by nearly linear ratio.

0 50 100 150 200 250 300
Epoch

10−2

10−1

100
DRSGD, n=16, ̂β= 0.6
DRSGD, n=32, ̂β= 0.8
DRSGD, n=60, ̂β= 1.0

(a) epoch

0 100 200 300
CPU time (seconds)

10−2
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100
DRSGD, n=16, ̂β= 0.6
DRSGD, n=32, ̂β= 0.8
DRSGD, n=60, ̂β= 1.0

(b) time

Figure 2. Comparison results of different number of nodes on
MNIST. Ring graph associated with Metropolis constant weight
matrix, t = 1, β =

√
n

10000
√

300
β̂.

7. Conclusions
We proposed two decentralized Riemannian gradient meth-
ods and established their convergence rates. Future stud-
ies include several directions. Firstly, for the eigenvector
problem (6.1), it will be interesting to establish the linear
convergence of DRGTA. Secondly, our algorithms rely on
the Q-linear rate of the Riemannian consensus algorithm in
(Chen et al., 2021a). In the future work, we will explore
other manifolds, especially those embedded in Euclidean
space.
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