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Abstract
User interests are usually dynamic in the real
world, which poses both theoretical and practical
challenges for learning accurate preferences from
rich behavior data. Among existing user behavior
modeling solutions, attention networks are widely
adopted for its effectiveness and relative simplic-
ity. Despite being extensively studied, existing
attentions still suffer from two limitations: i) con-
ventional attentions mainly take into account the
spatial correlation between user behaviors, regard-
less the distance between those behaviors in the
continuous time space; and ii) these attentions
mostly provide a dense and undistinguished dis-
tribution over all past behaviors then attentively
encode them into the output latent representations.
This is however not suitable in practical scenar-
ios where a user’s future actions are relevant to
a small subset of her/his historical behaviors. In
this paper, we propose a novel attention network,
named self-modulating attention, that models the
complex and non-linearly evolving dynamic user
preferences. We empirically demonstrate the ef-
fectiveness of our method on top-N sequential rec-
ommendation tasks, and the results on three large-
scale real-world datasets show that our model can
achieve state-of-the-art performance.

1. Introduction
Preference learning is of critical importance in modern ma-
chine learning applications, such as online advertising, E-
commerce and social media. Often, users’ preferences are
not static and evolve over time due to a variety of reasons.
For example, a user’s interest in a particular brand might
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fade away due to maturity or a change in lifestyle. Nonethe-
less, it is difficult to model all causal aspects explicitly
(Widmer & Kubat, 1996; Koren, 2009; Wu et al., 2017).

To model the dynamics in user preferences, many research
works (Kang & McAuley, 2018; Ying et al., 2018; Zhou
et al., 2018; Zhang et al., 2019) develop different attention
mechanisms to learn the sequential patterns of how users’
future actions are interacted with previous behaviors, and
so far have achieved state-of-the-art performance on many
benchmark datasets. The majority of these attentions (im-
plicitly) assume that the underlying sequential patterns are
time independent(Kumar et al., 2019; Li et al., 2020; Chang
et al., 2020). This is however contradicted with the fact that
more recent behaviors will have more impact on the future
actions, or more specifically identical behavior sequences of
two users with different time intervals should have different
implications on their current and future decisions.

To tackle the challenging problem, recent approaches gener-
alize the notion of positional embedding to continuous time
(Xu et al., 2019; Shukla & Marlin, 2021). The idea behind
these approaches is to encode periodic patterns dependent on
the progression of time into a high-dimensional vector space
(i.e., time embedding), then by using translation-invariant
random Fourier features (Rahimi & Recht, 2007; Yu et al.,
2016) to approximately measure the temporal distance be-
tween user behaviors in the sequence.

Orthogonal to prior studies, we focus on two pertinent ques-
tions fundamental to attention-based preference learning in
continuous time space: (i) how can attentions model the im-
pact of both sequential positions and continuous timestamps
in an explicit manner? — This matters a lot for business, as
it helps to better understand users and their needs (Zhang
& Chen, 2020; Arrieta et al., 2020; Chen et al., 2021a); and
(ii) how can attentions identify sparse behaviors interacted
with future actions? — Existing techniques in this direction
mainly base on sparsemax (Martins & Astudillo, 2016; Nic-
ulae & Blondel, 2017) to yield sparse distributions over past
behaviors. These approaches tend to preserve very limited
temporal information which leads to the difficulty to capture
complex and fine-grained temporal dynamics.

In this paper, we propose a novel attention mechanism,



Learning Self-Modulating Attention in Continuous Time Space with Applications to Sequential Recommendation

named self-modulating attention, to model the complex evo-
lution of user preferences over time. More specifically, our
attention explicitly digests temporal dynamics via a condi-
tional intensity function that specifies whether the observed
behaviors are relevant with users’ future interests at a given
time point: high (low) intensities of the behaviors amplify
(attenuate) their contributions in the output representations.
Here the term self-modulating is meant to encompass above
positive and negative effects of a single sequence to compute
the representation of the same sequence. We further propose
continuous time regularization to penalize intensities, as the
source of supervised signal for preference learning is mostly
coming from the behavior data that is independent of time.

Intuition. Existing attention mechanism is based on the
correlation between the query and keys (or between the
past and current events for sequential behavior modeling),
while such correlation is not modeled as a function of time.
However, for real-world behavior modeling e.g. sequen-
tial recommendation in the continuous time space, a user’s
behavior pattern may vary over time.

Theoretical Motivation. More interestingly, in this paper
we theoretically show (see details in Theorem 1) under a
bounded impact of the past behavior to future actions, more
sparse behaviors can lead to higher generalization ability
for a prediction model. This theory motivates us to design
a mechanism for more effectively uncovering such truly
useful past behaviors in a more discriminative manner.

Technical Implementation. Based on the above intuitive
and theoretical analysis, in this paper we aim to develop a
time sensitive attention mechanism to adaptively and pre-
dictively re-weight the past behaviors for their impact to
current scoring. The temporal point process is used for
its interpretable and rigorous Bayesian nature. The condi-
tional intensity function is used to modulate and soften the
time-varying attention in continuous time space.

The key contributions of this paper are as follows:

• We establish a theoretical bound for attention based ap-
proaches in preference learning, showing the benefits of
bounded and sparsified impact of behavior history.

• To better explore the behavior history, we develop a no-
tion of self-modulating attention, with the classic attention
as a special case of our model. Our work concerns modeling
attentions informed by time-dependent uncertainties.

• To effectively incorporate the temporal model into pref-
erence learning, we develop a continuous time regularizer
to fill the gap between traditional preference learning and
continuous-time temporal process modeling.

• Top-N recommendation results on benchmark datasets
demonstrate that our self-modulating attention outperforms
state-of-the-art methods by a notable margin, and it can also
be reused as an orthogonal plug-in for existing methods.

2. Related Work
User modeling is of crucial importance in many online appli-
cations such as advertising, E-commerce and social media.
In general, the goal of user modeling is to learn user rep-
resentations from the complex and abundant behavior data
(Adomavicius & Tuzhilin, 2005; Su & Khoshgoftaar, 2009).

Traditional Recommendation Approaches. Traditional
approaches usually assume that user preference is static,
and collaborative filtering (CF) (Herlocker et al., 1999; Sar-
war et al., 2001) is one of the most popular approaches due
to ease of implementation and quality of recommendation.
Among existing CF solutions, matrix approximation based
methods (Koren, 2008; Koren et al., 2009; Chen et al., 2015;
Li et al., 2017; 2021) have achieved state-of-the-art perfor-
mance in many benchmark datasets, especial for Netflix
prize data (Bennett & Lanning, 2007). However, in practice,
user preferences often drift over time due to various reasons.

Sequential Recommendation Approaches. To address
the problem, FPMC (He & McAuley, 2016) and its hier-
archical version HRM (Wang et al., 2015), propose to use
Markov chains to model sequential patterns by learning user-
specific transition matrices. These approaches have been
proved to be able to capture short-term patterns. The major
concern behind them is the potential state space explosion
intractability in face of different possible sequences over
items (He et al., 2017a; Wu et al., 2017; Chen et al., 2021b).

Another emerging line focuses on modeling sequential pat-
terns by using recurrent neural networks. For example, RRN
(Wu et al., 2017) and GRU4REC (Hidasi et al., 2016) exploit
LSTM (Hochreiter & Schmidhuber, 1997) or GRU (Chung
et al., 2014) module to capture dynamic user preferences
dependent on sequence positions. Meanwhile, SHAN (Ying
et al., 2018), RUM (Chen et al., 2018), DIN (Zhou et al.,
2018) and SASREC (Kang & McAuley, 2018) introduce
attention mechanisms to sequential recommendation prob-
lems. Compared with recurrent networks, attentions have
shorter path to access distant positions, and thereby achieve
superior performance in many cases (Vaswani et al., 2017).

Temporal Recommendation Approaches. Compared to
sequential recommendation problem that has been well stud-
ied, relatively less attention has been paid to temporal rec-
ommendation algorithms. The prominent work timeSVD++
(Koren, 2009) proposes the use of explicit temporal bias
to model the discrete time dynamics. Apart from hand
engineered features, the authors in (Lu et al., 2016) de-
velop a vector auto-regressive model to predict future user
preferences. Empirical results have shown state-of-the-art
performance on many benchmark datasets, but the costly
computational overhead and memory use make it hard to
support large-scale industrial applications.

Another line of works follow the idea of positional em-
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bedding which designs time embedding to capture tem-
poral information, with attention mechanisms for end-to-
end learning (Liu et al., 2020). The authors in (Li et al.,
2020) divide the time into intervals and project them to
low-dimensional space. This treatment discretizes the time
and reduces the power of modeling fine-grained temporal
information (Trivedi et al., 2019; Chang et al., 2020). By
contrast, the works (Xu et al., 2019; Shukla & Marlin, 2021)
learn functions of continuous time to capture the dynamics.

Distinct from the above approaches, our method involves re-
weighting of attention coefficients according to the intensity
function of temporal point processes (Daley & Vere-Jones,
2003), such that self-modulation can be achieved based on
continuous time information. Thanks to the intensity pow-
ered by neural networks, our self-modulating attention is
enabled to model complex evolving dynamics in continuous
time space.

Temporal point process has been shown powerful for tem-
poral modeling. The work (Zhou et al., 2013) deals with
mutual-excitation of event sequences, with a regularizer on
the sparseness and low-rank assumption of mutual correla-
tions. As the rise of deep learning, recurrent neural networks
are widely adopted to model temporal dynamics (Mei & Eis-
ner, 2017; Trivedi et al., 2017; Xiao et al., 2017), which
are further replaced or enhanced by attentions (Zhang et al.,
2020; Zuo et al., 2020). We argue that these works are in
general orthogonal to ours, as they focus on the modeling
of event times rather than preference learning. In fact, our
work can enjoy the advances in (Zhang et al., 2020; Zuo
et al., 2020) to improve the expressiveness.

This paper focuses on developing a new attention dependent
on both sequential positions and continuous timestamps.
More specifically, we generalize the formulation of exist-
ing attentions by introducing the intensity function, which
specifies if user tastes on the items are changed or not. Com-
pared to existing sequential recommendation models, the
difference lies in the ability to model temporal dynamics in
the continuous time space.

3. Notations and Preliminaries
Throughout this paper, we denote scalars by either lower-
case or uppercase letters, vectors by boldface lowercase
letters, and matrices by boldface uppercase letters. Unless
otherwise specified, all the vectors are column vectors.

Let S = {(tj , ij)}Lj=1 be a user behavior sequence, each
pair (tj , ij) denotes that item ij is rated at time tj . Then
the attentions can be generally defined by, given any query
vector q and the sequence S:

Att(q
∣∣S) =

n∑
j′=1

p(vj′
∣∣S)vj′ = Ep(v|S)v, (1)

where n is the number of items and the distribution p(v|S)
attentively aggregates all the value vectors {vj′}nj′=1.

In the scaled dot-product attention (Vaswani et al., 2017),
p(vj′ |S) equals to η exp(q>kj′/

√
d) if the item j′ is in the

sequence S and equals to zero otherwise, where η is used
for normalization i.e., η−1 =

∑
(t,i)∈S exp(q>ki/

√
d). In

the masked version, we should use p(vj′ |Ht) whereHt =
{(tj , ij)

∣∣tj < t} signifies the history up to time t.

In the vast literature of sequential recommendation, atten-
tion mechanisms have been widely adopted to capture the
dynamic user preferences. Most of these approaches (Ying
et al., 2018; Kang & McAuley, 2018; Ma et al., 2019) can
be generally formulated as follows:

R̂ = PVB and Pu,i = p(vi

∣∣H(u)
t ), (2)

where R̂ denotes the estimate of the underlying matrix R
with m users and n items, P ∈ Rm×n signifies the cor-
relations between the past behaviors and future actions,
V ∈ Rn×d denotes the value matrix, and B ∈ Rd×n acts
as the output transformation matrix and can also be viewed
as item feature matrix. Notably, the nonlinear projection
φ(PV,B) as in (He et al., 2017b), can also be formed as
Eq. (2). This is because the ranking score is usually a non-
negative measure, so that it can be approximated by the
inner product of random Fourier feature matrices (Rahimi
& Recht, 2007; Yu et al., 2016; Choromanski et al., 2020).

Remark. We continue to study the generalization bound of
attention-based models in the form of Eq. (2). Mathemati-
cally, we set ρ to bound the number of non-zero entries in
P that characterizes sequential patterns, and µ to bound the
impact of each historical behavior. As proved in Theorem
1, the generalization error of these models decreases with
both ρ and µ. This result is consistent with (Lee et al., 2013;
Li et al., 2016) — penalizing the model parameters with
`2-norm can usually improve the model performance by
avoiding overfitting. Perhaps more importantly, the theo-
rem shows that it is beneficial to limit a user’s future action
correlated with a small subset of past behaviors.

Theorem 1 (Generalization Bound). Suppose that the loss
function ` is L-Lipschitz, and for the estimate R̂ on an ran-
dom example set Ω we bound ρ|Ω| = supP∈F

∑
(u,i)∈Ω ‖

Pi,∗ ‖0 and µ = sup(u,i,k)∈Ω |Pu,k(VB)k,j |, then with
probability at least 1− δ, we have the bound:

E
[
`(R, R̂)

]
≤ EΩ

[
`(R, R̂)

]
+O

(
Lµ

√
Cρ ln |Ω|
|Ω|

+

√
ln(1/δ)

|Ω|

) (3)

where C = d(m+ n) log(48emn).
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4. Methodology
In this section, we first formulate the generalized attention
in continuous time space, which has been rarely studied
before. Then we introduce a specific implementation, called
self-modulating layer (SMLayer), followed by a continuous
time regularization for preference learning, making it more
tailored to the sequential recommendation problem.

4.1. Notations

Recall that S = {(tj , ij)}Lj=1 denote a user’s behavior se-
quence of size L, in which each pair (tj , ij) means that
the given user clicks/likes/views item ij at time tj . Then,
we further define Ht = {(tj , ij)|tj < t} that signifies the
history up to time t. The goal of self-modulating attention
is to model the impact of sequential positions as well as
continuous timestamps.

We recall that user preferences evolve over time and the
interests on the items might wane, such that some past be-
haviors should not make contributions to the output user rep-
resentations at some time, even though they are semantically
correlated. To remedy such challenge, one straightforward
idea is to directly inform the correlation p(vij

∣∣Ht) with the
expected number of occurrence E[N(t, t + dt)

∣∣Ht−,vij ]
conditional on the historyHt−, whereHt− = Ht∪{tj+1 /∈
(tj , t)} and N(t, t+ dt) ∈ {0, 1} denotes the number of oc-
currences for item ij in an infinitesimal interval.

4.2. Generalizing Attention to Continuous Time Space

Following this idea, we make an adjustment for classic
attentions (Chorowski et al., 2015; Vaswani et al., 2017;
Xu et al., 2019) to capture both sequential and temporal
dynamics, which is devised as follows:

E
p(v
∣∣Ht)

[
E
[
N(t, t+ dt)

∣∣Ht−,v
]
v

]
(a)
=E

p(v
∣∣Ht)

[
p
(
tj+1 ∈ [t, t+ dt]

∣∣Ht−,v
)
v

]

(b)
=E

p(v
∣∣Ht)

p
(
tj+1 ∈ [t, t+ dt]

∣∣Ht,v
)

p
(
tj+1 /∈ (tj , t)

∣∣Ht,v
) v

(c)
=E

p(v
∣∣Ht)

f(t
∣∣Ht,v)dt

S(t
∣∣Ht,v)

v

(d)
=E

p(v
∣∣Ht)

vλ∗(t
∣∣Ht,v)dt, (4)

in which (a) holds due to the fact that N(tj , tj +dt) is either
zero or one in the infinitesimal interval; (b) holds due to

Bayes’ theorem; and (c) - (d) hold due to

p
(
tj+1 ∈ [t, t+ dt]

∣∣Ht,v
)

= f(t
∣∣Ht,v)dt

p
(
tj+1 /∈ (tj , t)

∣∣Ht,v
)

= S(t
∣∣Ht,v)

f(t
∣∣Ht,v)

S(t
∣∣Ht,v)

. = λ∗(t
∣∣Ht,v),

(5)

where S(t
∣∣Ht,v) and λ∗(t

∣∣Ht,v) are called survival func-
tion and conditional intensity function respectively, in the
literature of temporal point process (Aalen et al., 2008;
Kleinbaum & Klein, 2010).

In general, dynamic processes will be characterized by the
conditional intensity function λ∗(t

∣∣Ht). Within a short time
window [t, t+ dt), λ∗(t) represents the occurrence rate of
a new event given historyHt that

λ∗(t
∣∣Ht) =

p(N(t+ dt)−N(t) = 1|Ht)

dt
, (6)

where N(t) is the counting process and ∗ reminds it is his-
tory dependent. Here we omit v for its generality.

Using the generalized formulation of conventional atten-
tions, we can deal with the uncertainty over time and are
able to predict future user preferences at time t by

Ãtt(q,
∣∣Ht) = E

p(v
∣∣Ht)

vλ∗(t
∣∣Ht,v), (7)

or future user preferences during time interval (tj , t] by

Ãtt(q,
∣∣Ht) = E

p(v
∣∣Ht)

v

∫ t

tj

λ∗(s
∣∣Ht,v) ds, (8)

where the integral is challenging to compute and proper
approximations are needed which will be discussed later.

Remark. We here discuss the characteristics of our pro-
posed self-modulating attention: (i) the conditional inten-
sity function λ∗(t

∣∣Ht,v) models temporal dynamics in an
explicit manner, which acts as a role of time-dependent
modulating factor, amplifying or attenuating the impact of
past behaviors. This helps to derive the explanations be-
hind the model predictions and the results are highlighted
in the experiment sections; (ii) The intensities equal to zero
can help to detect the sparse structures in the correlations
between past behaviors and future actions, while the inten-
sities less than one, can help to reduce the contribution of
the behaviors when computing the predictions. As shown in
Theorem 1, these two properties provide improved model
generalization ability.

4.3. Self-modulating Layer

The conditional intensity of a temporal point process is
often designed to capture the phenomena of interest, for
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example Poisson process, Hawkes process (Hawkes, 1971;
Mei & Eisner, 2017; Zhou et al., 2013) and Self-correction
process (Isham & Westcott, 1979). In our case, we imple-
ment the intensity function as a neural layer, named self-
modulating layer (SMLayer), which can be stacked on the
attentions. By doing so, intermediate representations of the
attentions can be reused for computational efficiency, and
moreover this makes SMLayer a general building block for
the broader applications.

We use Y ∈ RL×d to denote the embeddings of the input
sequence S = {(tj , ij)}Lj=1. As our model still needs to
be aware of positional information, we choose to use the
positional encoding as adopted in (Vaswani et al., 2017):

Zi,j =

{
sin(i/10000j/d), if i is even,
cos(i/10000j−1/d), if i is odd.

(9)

After the initial embedding and positional encoding layer,
we will have the input embedding X, which is then passed
to the self-attention module to compute the intermediate
representations

X = concat
(

[Y,Z]
)

Q = XWQ, K = XWK , Vseq = XWV

H = softmax(
QK>√

d
)Vseq.

where all W are projection matrices, Q,K,Vseq are sep-
arately the query, key and values matrices obtained by dif-
ferent transformations of the input X, and H is the output
representations of conventional attentions, where each row
corresponds to a particular user behavior. Note that to ensure
causality, we mask the future information.

Before the next step, we first denote the jth row of the
self-attention output H by h(tj), which corresponds to the
representation of the sub-sequence {(ij′ , tj′)}jj′=1 up to the
time tj . To model the continuous time temporal dynamics,
the intermediate representation h(tj) is fed through item-
wise feed-forward neural network

gk(t) = σ

WG
k h(tj)︸ ︷︷ ︸

Endogenous

+bG
k (t− tj)︸ ︷︷ ︸

Exogenous

 , (10)

where the endogenous correlation with the potential next
item k is captured by the term WG

k h(tj), which evolves in
the embedding space with respect to its previous behaviors
in the sequence and not in a random fashion. In the mean-
time, bG

k (t−tj) are used to capture the exogenous force that
reacts on the potential next item k during the time interval
[tj , t). By combining WG

k h(tj) and bG
k (t − tj) together,

the output representation gk(t) is expressive to better char-
acterize both of the sequential and temporal dynamics in the
continuous time space.

Lastly, the conditional intensity of each potential next item
k can be computed in the following function

λ∗(t
∣∣Ht,vk) = fk(w>k gk(t) + µk), (11)

where wk is the model parameter that serves for the item
k, µk signifies the base rate that the item k appears in the
future, and fk is the activation function. We notice that the
choice of activation function should consider two critical
criteria: i) the intensity should be non-negative and ii) the
dynamics on different items evolve at different scales. To
account for this, we adopt the softplus function

fk(x) = φk log (1 + exp(x/φk)) , (12)

where the parameter φk captures the timescale difference.

Remark. In practice because the number of items is always
very large, Eq. (10 - 11) require considerable computational
time and memory use, not suitable for large-scale online
systems. One of the feasible solutions is to cluster the
items into groups using spectral clustering techniques (Shi
& Malik, 2000; Chen et al., 2010), and replace the item-wise
feed-forward neural networks with group-wise feed-forward
neural networks. This makes sense because the items in the
same group are densely connected to each other but sparsely
connected to the items from different groups.

4.4. Continuous Time Regularization for Preference
Learning

In preference learning, the model parameters are usually
optimized by minimizing the reconstruction error (Mackey
et al., 2011; Lee et al., 2013; Li et al., 2016; Chen et al.,
2016). The only source of supervised signal is from the
behavior data (i.e., R) that is independent of time. Hence,
the intensity function learned in such protocol might prob-
ably diverge from the complex continuous-time patterns
contained in the data.

To remedy the problem, we propose the continuous time
regularization R(Θ) which maximizes the log-likelihood of
the timestamps {tj}Lj=1 in the given sequence, defined by

R(Θ;u) =

L∑
j=1

log λ∗kj
(tj
∣∣H(u)

j )−
∫ tL

t1

λ∗(tj
∣∣H(u)

j )dt

where H(u)
j = {(ti, ii)

∣∣ti < tj} is the subsequence up to
time tj . The first term in the right hand signifies the log-
likelihood of the behavior history, where kj signifies the
identity of item ij or the group it belongs to. The sec-
ond term represents the log-survival probabilities where
λ∗(tj

∣∣H(u)
tj ) =

∑
k λ
∗
k(tj

∣∣H(u)
j ). Concretely, if we are

given the sequences ofm users, the model parameters can be
optimized by minimizing the following objective function

min
Θ

`(R, R̂)− γEu∈[1,m]R(Θ;u), (13)
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Table 1. Statistics of the public datasets for evaluation.

Dataset #Users #Items #Interactions

Amazon 211,384 18,490 1.6M
Koubei 212,831 10,213 1.8M
Tmall 320,497 21,876 7,6M

where γ is the regularization parameter.

The challenge in optimizing Eq. (13) is to compute the
integral Λ =

∫ tL
t1
λ∗(tj

∣∣H(u)
j )dt. Due to the softplus used

in Eq. (11), there is no closed-form solution for this integral.

We consider two techniques to approximate the integral Λ.

1) Monte Carlo integration (Metropolis & Ulam, 1949;
Robert & Casella, 2013). It randomly draws a set of sam-
ples {vi}Ni=1 in each interval (tj−1, tj) to yield an unbiased
estimation of Λ, i.e., E Λ̃MC = Λ

Λ̃MC =

L∑
j=2

(tj − tj−1)
( 1

N

N∑
i=1

λ∗(vi
∣∣H(u)

j )
)

; (14)

2) Numerical integration method (Stoer & Bulirsch,
2013). It is usually biased but fast due to the elimination of
sampling. For example, trapezoidal rule approximates the
integral using linear functions

Λ̃NU =

L∑
j=2

tj − tj−1

2

(
λ∗(tj

∣∣H(u)
j ) + λ∗(tj−1

∣∣H(u)
j−1)

)
.

(15)

In our experiments, we find that the approximation defined
in Eq. (15) performs comparable to Eq. (14) while con-
suming less training time. Hence we choose the numerical
integration in our main approach. We conjecture the reason
is that the softplus function is highly smoothed and the bias
introduced by linear approximations is relatively small.

5. Experiments
This section evaluates the quantitative and qualitative results
of our self-modulating attention against many state-of-the-
art baselines on three large-scale real-world datasets. All
experiments are run on a machine with E5-2678 CPU, RTX
2080 and 188G RAM.

5.1. Benchmark Datasets

We use three real-world datasets which are processed in
line with (Weimer et al., 2007; Liang et al., 2018; Steck,
2019): (1) Amazon Electronics1 is a user review dataset,

1http://jmcauley.ucsd.edu/data/amazon/

where we binarize the explicit data and only keep users and
items who have at least 5 historical records; (2) Koubei2 is
a user behavior dataset, where we keep users with at least 5
records and items that have been purchased by at least 100
users; and (3) Tmall3 is a user click dataset, where we keep
users who click at least 10 items and items which have been
seen by at least 200 users. Table 1 shows the statistics.

5.2. Evaluation Protocol

We study the performance using strong generalization pro-
tocol (Weimer et al., 2007; Liang et al., 2018; Steck, 2019),
where the models are evaluated on the users that are not
present at training time. To do so, we split the users into
training/validation/test sets with the ratio 8 : 1 : 1. Then, we
use all the data from the training users to optimize the model
parameters, whereas for validation/test users, we keep the
last record of each user to test and the rest to learn neces-
sary representations for the model. In addition, we select
model hyper-parameters and architectures using the valida-
tion users, and we report the results on test users for the
model that achieves the best results on the validation users.

Two ranking-based metrics are used: Hit Rate (HR) and
normalized discounted cumulative gain (NDCG). Notably,
in our experiment protocol, the metrics Precision and Recall
have the same tendency with Hit Rate. In the following, we
report HR@10 and NDCG@10 for all the models.

5.3. Comparing Methods

We compare our proposed attention to state-of-the-art base-
lines, where we select the continuous time regularization
parameter over {1e-4, 1e-5, 1e-6}. For the sake of fairness,
the embedding size of all attentions are set to 50. In addition,
we summarize the implementation details of the compared
baselines as follows:

• GRU4REC (Hidasi et al., 2016) is one of state-the-of-
art sequential recommendation approaches, which relies on
GRU module (Chung et al., 2014) to capture the sequential
patterns in user preferences. We use the program provided
by the author4. Grid search of factor size over {50, 100, ...,
300}, learning rate over {1e-4, 1e-3, 1e-2} and dropout rate
over {0.1, ... ,0.5} is performed to select the best parameters.

• DIN (Zhou et al., 2018) is among the best sequential
recommendation models that build upon attentions. The
implementation is public and provided by the authors5. We
finetune the model by grid search learning rate and dropout
rate over {0.5, 1.0, 1.5, 2.0} and {0.1, ... ,0.5}.
• SHAN (Ying et al., 2018) proposes hierarchical attentions

2https://tianchi.aliyun.com/dataset/dataDetail?dataId=53
3https://tianchi.aliyun.com/dataset/dataDetail?dataId=35680
4https://github.com/hidasib/GRU4Rec
5https://github.com/zhougr1993/DeepInterestNetwork
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Table 2. Ablation study on the Amazon, Koubei and Tmall datasets. The proposed self-modulating layer (SMLayer) and continuous-time
regularization (CTReg) are adapted to attention-based DIN (Zhou et al., 2018) and SASREC (Kang & McAuley, 2018) models. The
performance is evaluated in terms of HR@10 and NDCG@10.

DIN SASREC

Dataset Origin +SMLayer +CTReg Origin +SMLayer +CTReg

H
R

Amazon 0.21955 0.22065 0.21985 0.25595 0.26545 0.26058
Koubei 0.32665 0.33940 0.33780 0.35455 0.36194 0.36235
Tmall 0.48460 0.49033 0.49157 0.50433 0.51218 0.51347

N
D

C
G Amazon 0.13443 0.13383 0.13296 0.16131 0.16475 0.16529

Koubei 0.24186 0.25444 0.25411 0.27070 0.27862 0.28083
Tmall 0.33855 0.34580 0.35062 0.34326 0.35214 0.35811

Table 3. Performance comparison between the baselines and our proposed method on the Amazon, Koubei and Tmall datasets in terms of
HR@10 and NDCG@10. Boldfaces mean that the method performs statistically significantly better under t-tests, at the level of 95%
confidence level. We emphasize the comparison against SASREC+, a variant of SASREC equipped with functional time embedding (Xu
et al., 2019) which captures continuous-time temporal dynamics.

Amazon Koubei Tmall

Model HR NDCG HR NDCG HR NDCG

SHAN (Ying et al., 2018) 0.19250 0.11724 0.28150 0.20256 0.37316 0.25840
DIN (Zhou et al., 2018) 0.21955 0.13443 0.32665 0.24186 0.48460 0.33855
GRU4REC (Hidasi et al., 2016) 0.24380 0.15822 0.32655 0.27052 0.46877 0.33746

SASREC (Kang & McAuley, 2018) 0.25595 0.16131 0.35455 0.27070 0.50433 0.34326
SASREC+ (Xu et al., 2019) 0.25820 0.16204 0.35690 0.27148 0.50607 0.34328
SASREC w/ ours. 0.26545 0.16529 0.36235 0.28083 0.51347 0.35811

to model multi-level user representations. The source code
is also provided by the authors6. After grid search, we find
the parameter settings in the original paper provide the best
results in our experiments.

• SASREC (Kang & McAuley, 2018) applies the Trans-
former (Vaswani et al., 2017) into the sequential recommen-
dation task and has achieved state-of-the-art performance
in many benchmark datasets. We use the software pro-
vided by the authors in our experiments7. We adopt the
default architecture used in its original paper where three
transformer blocks are used. We further search the optimal
hyper-parameters by ranging learning rate over {1e-4, 5e-4,
..., 1e-2} and dropout rate from 0.1 to 0.5.

• SASREC+ (Xu et al., 2019) equips SASREC with time
embedding8, analogous to positional embedding. This ap-
proach models continuous-time dynamics in the form of
random Fourier features. In our experiments, we concate-

6https://github.com/uctoronto/SHAN
7https://github.com/kang205/SASRec
8https://github.com/StatsDLMathsRecomSys/Self-attention-

with-Functional-Time-Representation-Learning

nate both time and positional embedding with the attention
input embedding for the improved model accuracy. We em-
phasize the comparison to SASREC+, since it is probably
most closely related to our work.

5.4. Ablation Study

We evaluate each of the two components of self-modulating
attention in continuous time space, namely continuous time
regularization (CTReg) and self-modulating layer (SM-
Layer). Ideally, our attention can be used to improve any
attention mechanisms by simply stacking SMLayer and
adjusting loss function with CTReg. To demonstrate the
adaptability of our proposed attention, we equip DIN and
SASREC progressively with SMLayer and CTReg.

Table 3 reports the results of HR@10 and NDCG@10 on the
Amazon, Koubei and Tmall datasets. We can see that SM-
Layer achieves the consistent improvement in both HR@10
and NDCG@10 over both DIN and SASREC across all
the three datasets. Especially, SMLayer helps to improve
HR@10 and NDCG@10 of DIN by a margin greater than
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Figure 1. Example of user preference intensities on Koubei. The
user usually purchases the items from category c4 for all the time,
and he/she starts to repeatedly buy the items from category c6 after
time t9. The darker color corresponds to the higher intensity.

0.01. On the other hand, CTReg can also boost the per-
formance in most cases. One exception is on the Amazon
dataset. The reason is perhaps due to the fact that Amazon
is made of user reviews, and there are nearly 5.39% users
wrote the reviews of all the purchased items at the same
time. Meanwhile, with using CTReg, the conditional inten-
sity has to be enforced to fit such nuisance patterns. This
will inevitably make the optimization procedure prone to
overfitting, leading to the degradation of the performance.

The above experiments indicate that both the continuous
time self-modulating layer and regularization are flexible
and have the ability to improve the model performance. In
our analysis, the reasons why our proposed attentions can
further improve the recommendation accuracy is mainly
due to (1) continuous time self-modulating layer models the
impact of both sequential positions and continuous times-
tamps, so that the model expressiveness is improved; and
(2) continuous time regularization enforces the intensity
function dependent on the sequence timestamps, so that the
intensities can accurately modulate historical behaviors to
make attentive contributions to the predictions of the model.

5.5. Quantitative Study

This study evaluates the accuracy of the proposed method by
comparing it with five state-of-the-art methods summarized
previously, i.e., SHAN (Ying et al., 2018), DIN (Zhou et al.,
2018), GRU4REC (Hidasi et al., 2016), SASREC (Kang
& McAuley, 2018) and SASREC+ (Xu et al., 2019). Each
of the methods is configured by using default parameters
provided in the original paper or optimal parameters which
produce the best results in grid search. We note again that
for the sake of fairness, the embedding size d of query, key,
value matrix is set to 50 for all attentions.

Table 3 presents HR@10 and NDCG@10 of all models
on the Amazon, Koubei and Tmall datasets. This study
shows that the SASREC method with our self-modulating
attention outperforms on all the datasets. Note that DIN

and SHAN perform worse than the results reported in their
origin paper. The difference is caused by the experiment
protocol. We evaluate the models on the users that are not
present at training time. This setup is more difficult than
that where test users and training users are overlapped.

More importantly, we emphasize the comparison between
our method and SASREC+ which employs functional time
embedding (Xu et al., 2019) to capture temporal dynamics.
The empirical results demonstrate the superiority of our self-
modulating attention. We believe this is owed to the design
of intensity function, powered by neural networks, which is
expressive enough to model complex evolving dynamics in
the continuous time space.

5.6. Qualitative Study

We also qualitatively analyze the self-modulating attention
outputs. Fig. 1 shows the intensities of a user on Koubei
evolve alone the time. We note that the reported user usually
purchases the items from the category c4 for all the time,
start to repeatedly buy the items from category c6 after t9.

At the first glimpse, the intensities are relatively sparse and
most of them are less than one. We recall that intensities
less than one will attenuate the corresponding past behavior
making contributions to the output ranking score, whereas
intensities equal to zero can help to derive sparse interac-
tions between the past behaviors and future actions. As
demonstrated in Theorem 1, this makes potentials for the
improved generalization capacity.

One can see that for category c4, intensity function assigns
larger weights to more recent behaviors. This coincides
with a common experience that more recent behaviors have
more impact on the future actions. On the other hand, the
intensities for category c13 remain zero for a long time, then
increase to nearly 0.4 during (t9, t11), and finally diminish
back to zero after time t11. This demonstrates the our self-
modulating attention takes the timestamps into account and
has the ability to cancel the impact of the items that the user
might not be interested in during certain time interval.

6. Conclusion
We have proposed a novel attention mechanism in continu-
ous time space, entitled self-modulating attention, to model
the non-linearly evolving dynamics, especially for user pref-
erences. The key contribution lies in the generalized formu-
lation of conventional attentions, and the development of
self-modulating layer and continuous time regularization.
We also provide theoretical generalization bound showing
the advantage of our method. Extensive experiments on
the top-N recommendation task have demonstrated the ef-
fectiveness and flexibility of our proposed self-modulating
attention mechanism in continuous time space.
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