Supplementary Materials

A Glossary
The glossary is given in Table 6 below.

Symbol Used for
X Input covariates X € X.
Y Label Y € ).
Ps Source distribution of (X,Y") with density ps and expectation E,.
P Target distribution of (X, Y") with density p; and expectation E;.
D, Labeled “validation” source dataset {(z3,y; )}, of size ns drawn IID from Ps.
D Unlabeled “reference” target dataset {z!}7, of size n; drawn IID from Py (-|Y).
fo Fixed model fy : X — ) with 6 independent of D, D;.
Lo Function 4y : X x ) — R that evaluates performance of f.
Ly L = Eq¢ [€o(X,Y)], the performance of fy on the target population P; to be estimated.
g(X) Properties of X that undergo distribution shift, are relevant to the learning task,
and are identified by the user.
h(X) Properties of X that shift, are relevant, but are not identified by the user.
a(X) Properties of X that shift but are irrelevant to the learning task.
b(X) Properties of X that do not undergo distribution shift.
9(X) Slicing functions g(X) = {g1(X), ... gx(X)} whereeach g; : X — {—1,1}
noisily captures g; (X).
w(X) w(X) = %, weighting based on density ratio of g.
Ly Ly, =E, [w(X)l(X,Y)], approximation of £; reweighted using g,
Ds,, Ds, Partition of D, where the former ns, samples are used for learning w(X) and
the latter ns, samples are used for evaluating £, empirically.
w(X) Estimated weight function using Algorithm 1 on D, and D, .
L, Ly = ﬁ S (252 ) e (452, y5?), estimate of L.
G Dependency graph G = (g, E) over the slicing functions.
o(g) Vector of potentials on g in (2) (singleton on each g; and pairwise on each edge in E).
s, Pt Canonical parameters in (2) corresponding to Ps, P; respectively.
1) Difference in canonical parameters, i.e. ¥: — 5.
ol ol Correction matrix approximating the difference in g; and g; for Ps, P,
ie ol(a, B) = ps(9: = algi = B) V «, B € {—1, 1} and similarly for o}.
E° Conditional “expectation” using correction matrices, i.e.
ES [7(9)[3] = [7(9) [1%_, oi(g:, :)dg for any function 7(g).
g g estimated from g and correction matrices, i.e. ps(g) = [ Hle i (Gi, 3:)ps (9)dg
L L; =E, [%Ze (X, Y)} , approximation of £ using noise-corrected g.
K Number of slicing functions that the user fails to correct for.
7™ (3), 7™ (i)  Upper and lower bounds on the relative error of ¢, i.e. W
for n**(4) and n™ (3).
r Ratio of relative errors of correction matrices for Py, Ps, i.e. r = Hf;l %
M Upper bound on w(X), i.e. M = supy %.

Table 6. Glossary of variables and symbols used in this paper.
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B Theoretical Results

We present additional details about the graphical model and algorithm. Then, we provide proofs of Proposition 1 and
Theorem 1.

B.1 Additional Algorithmic and Modeling Details
B.1.1 MARGINALIZATION OF GRAPHICAL MODEL

We demonstrate how the joint distribution p(g, g) in (1) begets p(g) as (2). We can factorize p(g, g) based on if g; has an
edge to another g; or not:

p(9,9:0) Z H exp(0igi +0::9:9:) [ exp(0igi + 0,95 + 0:39:9s + 0,59,G; + 0:;9:3;)- @)
i¢E (i,)EE

Since each g; corresponds to one g;, we can also factorize p(g) similarly as

pgv) = 5 [Teoig) T explvigs + b0, + Vi), ®

i¢E (i,5)eE

We want to show that there exists ¢ such that p(g;¢) = Zg p(g,7;0). Due to the similar factorizations of the distributions,
this is equivalent to showing that Egie{fm} exp(0;9:+0::9:7;) x exp(1;g;) foreach i ¢ E, and Zgi,gje{q@} exp(0;g;+
0;9; +0ii9:9: + 0559595 + 0:59:9;5) o< exp(¥ig; + ;95 + 1i;9:9;) for each (7, j) € E. Note that proportionality must be
the same across different values that g; can take on.

For the case of i ¢ ', we must show >z -, 1y exp(figi +0iigig:) = exp((0i +05i)g:) + exp((6; — 0i:)gs) < exp(vig;).
Setting g; = 1 and g; = —1 and dividing them, we get exp(2¢;) = Cxe;(p(z J_rg“;i:igge > 9+g
such 1; (note that division allows us to ignore the log partition functions Z, Zy).

L proving the existence of

For the case of (i,5) € E, set ¢; = 6;,¢; = 6;. We must show there exists a );; that Zm@e{_l,l} exp(0i:19:9: +
0;,9iG; + 0:9:9;) x exp(v;;g:9;) for any g;, g;. Note that plugging in g; = g; = 1 and g; = g; = —1 both result in
exp(1;;) and hence need to yield the same expression on the left hand side, which can be verified (thus more complex
parametrizations of p(g, g) often cannot produce a simple marginal distribution of p(g)). The same observation holds for
gi=1,9;=—land g; = —1,g; = 1. Setting g; = 1,g; = 1 and g; = 1, g; = —1 and dividing them, we can again get a
unique expression for exp(2¢);;) in terms of 6;;,6;,, and 6;;.

B.1.2 EXTENSION TO “INCOMPLETE” SLICES

Suppose that slicing functions have an option to abstain when they are unconfident or unapplicable to a data point. We
expand the support of each g; to {—1,0, 1} and represent this incompleteness as g;(X ) = 0. Fortunately, this is simple to
model - we can add potentials to p(g, g; 0) to represent this:

p(gvgvg 7exp (Zelgz—’_zauglgz"_zaz O1 {gz - 0}+ Z 91]9i§j)~ (9)

(i,J)EE

Note that p(g,g; ) still yields a marginal distribution on g of the form p(g;1). We would instead get exp(2¢;) =
exp(0i+60i:)+exp(0;—0ii)+exp(8i+6i0)
exp(—0;—0;;)+exp(—0;;+0;)+exp(—0;+0;,0)
corresponding to the abstain does not impact the symmetry of the distributions for g; = 1. The remainder of the modeling

and Algorithm 1 are not affected besides defining correction matrices o, ¢ to be 2 x 3 now.

We can compute a similar expression for exp(21);;) since this additional potential

B.1.3 COMPUTATIONAL DETAILS OF ALGORITHM 1

We discuss the computational costs of of Algorithm 1, first focusing on the individual expressions E7 [6 " ¢(g)|g(x!)] and
EZ [exp(6" ¢(g))|g(x;")]. Naively, each of these expressions can be evaluated by summing over 2 configurations of
p(g]g) for fixed g. However, due to the factorization of p(g, §) and p(g), the amount of computation is linear in k. Denote
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d(4) as the difference in canonical parameters corresponding to the potential on g; where i ¢ E and §(i, j) as a vector of
differences corresponding to potentials on (7, j) € E, which we define as ¢;;(9) = [gi, g;, 9ig;] in (2). Abbreviating g(x)
as g, we can write EY [67 ¢(g)[g] as

EY [5T ‘9 /5—r '(Qiﬁi)dg

H / d)z; Ut(gugz)gt (gj’g] dg'Ldgj H / kUt gkvgk)dgk (10)
(i,j)eE k¢E
The number of additions this requires is 4| E| + 2(k — 2| E|) = 2k, in comparison to 2*. Similarly, E [exp(6 " ¢(g))|g] =
i 5yer J exp(0(i,5) " ¢i;(9))oi(9i, 9)02 (95, 95)dgidg; Tligr | exp(3(k)gr)os (9. gr)dgr. which also requires 2k
additions. Therefore, evaluating (4) has a linear dependency on the number of slicing functions.

We also note that (4) has the same computational benefits as LL-KLIEP in that only one pass is needed over the target
dataset. The gradient of fxrigp is

6fKLIEP 1 ZEU iat ] 3 S ES [exp(6T¢(9))¢( )

9(3")]
> ES [exp(6T ¢(9))lg(25)]

J
The first term of the gradient is independent of §, which means that only one pass is needed on the target dataset even for
iterative optimization algorithms to maximize fxygp.

(1)

(

B.2 Proof of Proposition 1

We drop the X in g(X),h(X),a(X),b(X) for ease of notation. First, we use Assumption 1.1, the chain rule, and
Assumption 1.3’s conditional independence of a and Y":

p(9(X), h(X)) _ [ plgh) _ [ plg,h)
]EX,YN'PS WKQ()Q Y):| /ps(g’h)ps(xay)KG(xay)dl‘dy/ps(g)h)ps(yvga hvavb)KG(xay)dxdy

_ / pe(g, W)ps(y, a,blg, B)Lo(, y)ddy
- / pe(g, W)pa(y, alg, b, b)pe(blg, ) Lo, y)dzdy
- / pe(9, W)ps(ylgs b, B)ps(alg, b b)ps (blg, 1) o (w, y)dady. (12)

Using Assumption 1.3’s conditional independence of a and Y, 1.1, and the fact that there is no concept drift, we get that
ps(ylg, h,b) = pe(ylg, h, b). Next, by Assumption 1.3’s conditional independence of a and ¢y(X,Y"), we can integrate out
ps(alg, h, b) to get

pe(9(X), h(X))

Ex,y~p, {ps(g(XM(X))ﬁe(X,Y)] = /pt(g, h)pi(ylg, b, b)ps(blg, h)le(x,y)dzdy. (13)

By Assumption 1.3’s conditional independence of a and b, we have that p;(b|g, h) = ps(blg, h,a). By Assumption 1.2 and
1.1, this is equal to p;(b|g, h, a) = p:(blg, h). We thus have

{pt(g(X), hX))

BX P | (93, h(X)

to(X, Y)} = [ nilo: Wl ). ol )y
= /pt(y,gyh,b)ge(w,y)dfcdy- (14)

Using Assumption 1.3’s conditional independence of a and ¢y (X, Y") and Assumption 1.1 again, this is equivalent to

P(9(X).h(X)

Bxyr, [ps<g<x>, h(X)

(X, Y)} = /pt(yygﬁ,a,b)%(r,y)dwdy = /pt(x,y)fe(%y)dxdy

=Ex y~p,[lo(X,Y)]. (15)
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B.3 Proof of Theorem 1

Recall that |£; — £,| can be decomposed into the sum of [£; — L], |[£, — Ly, |L5 — E[L,]], and [E,[£,] — £,]. We
bound each difference individually. Assume without loss of generality that ¢y (x,y) < 1.

Lemma 1. We abbreviate P(h(X)|g(X)) as P(h|g). Then,

1L = Lg| < 2[lpe(Rlg) = ps(Plg) [T (16)

Note that if ps(h|g) = pt(h|g) or h(X) is empty, then weighting based on g(X) gives us an unbiased estimate of L.

Proof. L4 is equal to E, { ﬁ :Eg E?); lo(X, Y)} . Therefore, using our result from Proposition 1,

K“iﬁii ot 0] |=| [ (B335 - 5 o

pt(hlg) _ z,y) B o N da
<ps(hg) - 1>fe(:c,y)dxdy‘ = ‘ ) (pe(hlg) — ps(hlg))lo(z,y)d dy’~

[Lr = Ly = |E

Note that Z’EZ% ZQEE\Z; can be simplified into pt(g)zggq Z; pt(g)% = ps(g)ps(x,y|g, h). Our bound is now

L0 L] = \ [ pionste.slo. ) (ulhlg) — pu(hlg) ol )iy
< / pe(9)Pa(, ylg, 1) - [pe(Rlg) — pa(hlg)|o(z, y)dady. (17)
We now use the fact that £g(x,y) < 1 and p:(g), ps(x,ylg, h) < 1:
L0~ By [L,)] < / 1p2(hlg) — ps(hlg)|dz = 2lpe(A(X)]g(X)) — ps (B(X)|g(X)) v (18)
O

Lemma 2. Without loss of generality, suppose the user fails to correct on the first k' slicing functions. The bias in estimation
error due to incorrect noisy matrices is

max n;nax( ) >
—Lz] <2 . 19
3l Z( G T (19)

Proof. We can write the difference |£, — Lg] as |E, [(;”EZ%;; - prg X)))KQ(X Y)]|. Partition X into X+ and X~

where X = {X : ;’Zgg;; > ;’Zg(i)) } and X~ = (XT)¢. Then using the fact that £y(z,y) < 1, the difference can be

written as
s nE@) (@) pG) ),
=t [ oS (i bt 1)
plo(@) (p@@) palol@) ).
+/ P ) @) <pt<g<x>> pe(g(@)) 1)d a- 20)
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We now bound the ratio of g to g in Py and P;. % is equal to %, and using the log sum inequality,

ooy <o (pmy Zr@a T - [Jeso (o N2 o))

~ (glg(z)) k' ~ t(gi= z ~ t(g=— z
» gn)” S (pt<gi<x>|gi - 1))” ot ”(m(gi(xngi - —1))” e

1y \Pe(gi(@)]gi) = \pe(gi(x)|gi = 1) pe(gi(2)]gi = —1)
k' ~
pe(gi(x)|gi = 1) pi(gi(x)|gs = —1)
<] max{m( @G =1 pt<gi<x>|§i:—1>}' @D

Let the final expression above be Hf;l a;(z). Similarly,

g(z) ax pe(gi(@)|gi = 1) pe(gi(x)]gi = —1)
gﬂf <H { i(2)]g: = 1) pe( z‘(fﬂ)ﬁz‘l)}'

and let this final expression be Hll L bi(z). We get similar bounds for P,, where we let 2= < Hf;l ci(z) and

ps(g(z)) =
?Eig% < Hle d;(z). Plugging these back into (20),

k'

£, - Lol < [ pite) ?i Hal (o) — 1 dody + [ psmy)wbex)ci(x)—ldxdy. @)
N )

s(4( ps(9(x)) -5

Via a telescoping argument, we can show that Hf;l ai(z)d;(z)—1 < Z:il la; () — 1|+ |d;(z) — 1] and H7 ba(@)ei () —
I< Zf:l |bi(x) — 1| 4 |ci(x) — 1|. Then,

pe(gi(x)|gi = 1) — pe(g:(x)|g: = 1)
pi(gi(z) = 1|g: = 1)

7

lai(z) — 1] SmaX{

(i)
T l—pin(i)

pe(gi(z)|gi = —1) — pe(gi(x)|gs = —1) ’}
pe(gi(w)]gi = —1)

(23)

b;(x) — 1] is also at most mTf()l) and |¢;(x) — 1], |d;(x) — 1] < ns mlff()z) Therefore, (22) becomes

N (i) pe(g(x)) N . pe(g(z)) -
p 1—n;ﬂm<z>> (/Xﬁs(%”ps@(m))d dy*/xf P 9) dy)' @4

Similarly,

lTlaX
_ mm

L, —c|<z(

Finally, we can bound [, ps(z, y);’:g%g))dxdy + [ ps(, y)gzgéggdm’dy < Eg [max{w(g(X)), w(g(X))}]. Using
Lemma 5, this is at most M. Our final bound is thus

II]dX(/L) nmax( )
Ly — £y < 7M ( 0 s 25)
; L—pn(i) 1 — (i)
O
Lemma 3. Define M = supy (g(X)). Setting n,, = 5>, then with probability at least 1 — «
log(2/a
£y~ BulL)] < cu, b1y 2B/, 26)

where c 4, is a constant depending on properties of Ps and Lo(z,y).
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Proof. |Lg — EL[L,]| can be written as |E, [(w(g(X)) — @(X))€s(X,Y)] |, where @(X) is constructed from Algorithm
1. We bound this by ¢, ¢, Es [w(g(X)) — w(X)], where ¢, 4, is a constant dependent on P, and how the loss function
EZ [exp (67 ¢(9))|3(X)]

h . Es g(X))] =1, and 1l that w(X) = E? [w(g)|9(X)] = —== < ————. Then,
changes across x, y. E; [w(g(X))] and recall that (X)) 7 w(g)|g(X)] TR B [ 6(@) )] en
the difference to bound is equivalent to

; Cs,to| i 22724 B fexn (87 ¢(9))[g(25)] — Eslexp(6 " ¢(9))]|
|L5 — Es[Lg]| < ; 27

e 2 Egexp (67 6(9)) g ()]

where E,[EZ[exp(67¢(9)[@(X)]] = Eylexp(d¢(g(X)))] by definition of p(g) and EJ.  Define ¢ =
e 252 EZ[exp(0T6(9))[9(25")] — Eslexp(d7 ¢(3(X)))]. Our bound becomes

Cs,tg ‘€|

1 sy ST ~(..51\]" (28)
o 2oj=1 EZlexp(07 6(9))[g(«5")]

|£§ —E; [ﬁg” <

a3/ -
ﬁ with

Note max 0 ' ¢(g) = [|0]|1 and E [¢] = 0, so applying Hoeffding’s inequality gives us |e| < exp([|d]|1)
probability at least 1 — a. Plugging this into (28),

18]11) /2822

Cs.0o €XD( 2o

e 2 Egexp (67 6(9)) g ()]

L5 —EL[L,)| < (29)

s EXP(HSUI) ,
e 301 Eglexp(8T 6(9))[g(a5)]

Furthermore, M = sup y w(g(X)) = . Then, using this definition and the fact thatn,, = %=,

we arrive at our desired bound,

L5 — Eo[Ly]| < cogM M. (30)

s

Lemma 4. Setting n,, = %5, then with probability at least 1 — a,

(L] — £,] < M,/logflﬂ. 31)

Proof. This result follows from a standard application of Hoeffding’s inequality using the definition of M as an upper bound
on w. O

Taking a union bound gives us the bound for Theorem 1.

Lastly, to understand M, we discuss two things: first, as ng A ny — 0o, M 2 sup w(g(X)). Second, w(g(X)) is bounded
in terms of sup w(X') and properties of the correction matrices.

Proposition 2. M 2 supy w(g(X)) as ng An; — 0.

Proof. (Informal) Since w(g(X)) = 2 (X)) and g follows the same graphical model structure as g, w(g(X)) =
ps(3(X))
%, where § = argming E, [0 ¢(7)] — logE, [exp(6 " ¢(g))], which is also the solution to the population

version of (4). Kim et al. (2019) show that 52 §as ns A ny — 00 via an argument that (4) converges pointwise to a maxi-
n_exp(5T¢(q(X))) ___ P
> 2L Eg[exp(8T ¢(9)]a(=;")]

, which implies convergence of their suprema over X. O

mum log-likelihood objective function, which yields a consistent estimator. Therefore, —

nsq

exp(87 $(g(X)))
E,[exp(3T ¢(3)]
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Figure 3. Relative error of CBIW in the presence of d additional irrelevant features.

Lemma 5. supw(g(X)) < rM, where M = sup p'EgEX%; and r = Hiil %:8

Pt (

o Pe(9) Pil9) g (Z;
Proof. We can write (=25 as (s
pstg ps(g)'pz(g)

. By the log sum inequality, we have

n(@) _ 1 pu(@ildi = 1) polgili = -

: < ! i,f_ s ¢ 7'~L_ }< max ’ 32
pel9) ~ iy e {pt(gi|gi =1)"pe(gilgi = H (32)
ps(g) S ' . {pg(?]z@ = 1) pg(gl@l _ 71) } N ’ R N
() = A awilg = 1) palgilgi = -1 S © g( (), (33)

Hk/ 1+nmax(7,

where (33) comes from from taking the reciprocal of an upper bound on £ Eg ; Then 2:(2) <k 1) i=1 Ty (s ))

ps(9) ps(9)
rM.

[:JI/\

C Additional Experimental Details

C.1 Synthetic Experiments
C.1.1 SUPPORT SHIFT EXPERIMENT

In this synthetic experiment (described in Section 4.1), we show how classifier-based importance weighting can perform
poorly when the source and target distributions have little overlap. We study the case where the classifier is a logistic
regression classifier. We note that if the supports are completely disjoint, logistic regression-based IW can actually still
work well if self-normalization is used (since the logits output by the classifier will be bounded as long as appropriate
regularization is used). However, if the supports are nearly disjoint, but there are a very small number of source examples
that do fall inside the support of the target distribution, the logistic regression classifier assigns very high weight to these
examples compared to the rest, and thus reduce the effective sample size (Owen, 2013).

We generate data with a single binary g1, and set ; for the source and target datasets such that P(g; = 0) = 0.25 on the
source dataset and 0.75 on the target training set. We set the first component X to be normally distributed conditioned on gy,
with mean 2¢; — 1 and random variance. We then append a “spurious” feature (“a(X)”) that is 1 with small probability p
for source examples, and 1 for all target examples. We generate binary “labels” Y for each datapoint following a logistic
model with randomly generated coefficient on the first component of X. The goal is to estimate the average of Y on the
target dataset. We repeat this for different values of p, and for multiple random seeds each. We generate 10,000 points for
both source and target datasets.

In Section 4.1, we plot the mean absolute difference between the CBIW estimate of E; [Y] and the true value, divided by
the mean absolute difference between E; [Y] and E, [Y]. For small values of p, the CBIW estimate of the target value is
actually even worse than simply using the estimate from the source dataset. By contrast, MANDOLINE only uses the g(X)
representation, so the spurious feature a(X) does not affect its performance.

C.1.2 HIGH DIMENSIONALITY

Similarly, standard importance weighting baselines can struggle when the input data is very high-dimensional. As an example,
we again generate data with a single binary g;, and set 6; for the source and target datasets such that P(g; = 0) = 0.25 on
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the source dataset and 0.75 on the target training set. Examples with g; = 0 are randomly sampled from the circle centered
at (—1,0) with radius 1, and examples with g; = 1 are randomly sampled from the circle centered at (0, 1) with radius 1.
Then, we append d additional “irrelevant” features drawn from N (0, 251;). Intuitively, as the number of added features
grows compared to the number of datapoints, a logistic regression classifier trained to distinguish between source and target
examples can overfit to “memorize” points based on these features. We generate 10,000 points from the target dataset, and
only 1,000 from the source dataset.

We generate random binary “labels” Y for each datapoint following a logistic model with coefficients 1/+/2 on the first two
components of X . The goal is again to estimate the average of Y on the target dataset. (The true average is approximately
0.42, versus approximately 0.59 on the source dataset.) We repeat this for different values of d (the number of “irrelevant
features™), and for multiple random seeds each. Results are plotted in Figure 3. As before, we plot the mean absolute
difference between the CBIW estimate of E; [Y] and the true value, divided by the mean absolute difference between E [Y]
and E,; [Y]. When there are only a few irrelevant features, CBIW performs well as it generally ignores them. When the
number of irrelevant features is on the same order as the number of source datapoints or more, the estimation error rapidly
rises, eventually being as bad or worse as simply using E; [Y] as an estimate of E; [Y]. By contrast, the mean absolute
difference between the MANDOLINE estimate of E; [Y] and the true value, divided by the mean absolute difference between
E, [Y] and E; [Y], is only about 0.06 (comparable to that of the CBIW estimate when the number of irrelevant features
d = 0), since MANDOLINE works with the g(X) representation and thus ignores these irrelevant features.

In many real-world tasks, such as medical image classification, the raw dimensionality of the data exceeds the number of
datapoints (sometimes by orders of magnitude). In situations such as these, a classifier might simply “memorize” which
examples come from the source vs. target distributions, thus obtaining poor importance weights as in this synthetic example.

C.1.3 NOISY SLICES

In this experiment (described in Section 4.1), we demonstrate how correcting noisy slices can yield better estimates than
when the slices are not corrected. Accurate correction matrices o, o} for each slice can recover the density ratio of g to
reweight with. However, if the slices g are weakly correlated with the true g and not corrected, the generated weights can be
significantly different and result in an inaccurate estimate of L.

We consider an example with & = 2 and one edge between the two slicing functions and construct datasets of size
ns = n; = 100000 with distributions ps(g, g; 0s) and p:(g, g; 6+ ) according to (1) with randomly generated 0 < 6, 6; < 1.
MANDOLINE uses Algorithm 1 with accurate correction matrices o2 = p,(g;|g;) for each i and for P; as well. We compare
this to a noise-unaware baseline where we run Algorithm 1 with each correction matrix equal to the identity matrix, which
entails that the user thinks g and g are the same. These weights are used to compute an estimate of a simple loss function
¢o(z,y) which takes on four values [0.02,0.2, 0.9, 0.2] depending on the values of g1 (X), g2(X) € {—1,1}.

The performance of these two methods depends on what the true correlation between g and g is. We capture this correlation
via the canonical parameter 6;; for each i. That is, after randomly setting all other canonical parameters between 0 and 1,
we uniformly set all 6;; to one value and vary this between 0 and 3 to generate our datasets. When all 6;; are equal to 0,
gi; 1L g; and no information can be extracted from only observing g. As 6;; gets larger, the correlation between g; and g;
increases until they are essentially the same. Our results in Figure 2 confirm that for §;; = 0, both MANDOLINE and the
noise-unaware version do not correct for the distribution shift. This is because ﬁg has uniform weights since no information
about g can be extracted from the observable g. As 6;; increases, both methods approach relative error equal to 0, since both
g and g will be sufficiently accurate to reweight based on. However, for intermediate values of 0;;, there is a gap between
the performance of MANDOLINE and the noise-unaware approach. In these cases, the correlation between g and g is enough
that learning from g is meaningful, but still weak enough that noise-correction is important.

C.2 Experiments on Real Data

We use PyTorch (Paszke et al., 2019) for all experiments.

C.2.1 BASELINES

As described in Section 5, we compare the performance of MANDOLINE at estimating target accuracy compared to the
baselines CBIW, KMM, and ULSIF run on neural network features. We also compare to CBIW-FT (CBIW where the
entire neural network is fine-tuned) and SOURCE (simply using the accuracy on the source dataset as an estimate of that on
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Table 7. Error in accuracy estimates for each CelebA model for all methods, for all model runs. True target accuracy in first column.

| RN-18 seed 0 | RN-18 seed 1 | RN-18 seed 2 | RN-50 seed 0 | RN-50 seed 1 | RN-50 seed 2

Target Accuracy ‘ 94.73 ‘ 94.84 ‘ 95.12 ‘ 95.49 ‘ 95.53 ‘ 95.64
Source | 2.07 | 2.00 | 1.69 | 1.83 | 1.82 | 1.73
CBIW (features) 0.59 0.62 0.20 0.35 0.68 0.56
KMM (features) 221 2.04 1.65 1.84 1.76 1.68
uLSIF (features) 2.22 2.04 1.65 1.84 1.76 1.68
CBIW-FT 0.57 0.58 0.11 0.41 0.42 0.32
CBIW (slices) -0.22 -0.07 -0.18 0.17 0.19 0.12
KMM (slices) -0.45 0.54 -0.14 0.94 0.80 0.64
uLSIF (slices) -0.44 0.55 -0.13 0.93 0.80 0.65
Simple (slices) -0.22 -0.08 -0.18 0.16 0.19 0.12
MANDOLINE (slices) -0.22 -0.08 -0.18 0.16 0.19 0.12

the target). Additionally, we can also run CBIW, KMM, and ULSIF on the slice representations instead, i.e. swapping out
the KLIEP-based stage of Mandoline for another importance weighting algorithm. Finally, we also compare to the ”simple”
baseline of reweighting points based on the ratio of the frequency of their slice in the target dataset to the frequency of their
slice in the source dataset. We discuss the baseline methods in more detail in Appendix C.4.

C.2.2 CELEBA

Datasets. We use the CelebA dataset? (Liu et al., 2015), which consists of 202,599 images of celebrity faces annotated with
various metadata (e.g., gender, hair color, whether the image is blurry, etc.). We randomly allocate 1/3 of the dataset for
training, and split the remainder into validation (“source’), and test (“target”) splits. The latter split was done to induce
distribution shift between the source and target datasets: specifically, we allocate 80% of (non-training) “blurry” images
to the target dataset, along with enough non-blurry images so that the target is 30% blurry images overall. The remainder
of (non-training) images are allocated to the source dataset; this results in only approximately 1% of source images being
“blurry”.

Models. We train ResNet-18 and ResNet-50 models on the training set for 5 epochs, starting from ImageNet-pretrained
checkpoints (provided by PyTorch). We train with a learning rate of 0.0002, weight decay of 0.0001, and batch size of 256
on 4 NVIDIA V100 GPUs (similar to the settings provided in (Sagawa et al., 2020), but with the batch size doubled and
correspondingly the learning rate as well). We train three separate models of each type, starting from different random seeds,
and evaluate how well MANDOLINE and the baseline methods estimate performance of these models on the test (target) set
by reweighting the validation (source) set predictions. Trial-by-trial results for each method are given in Table 7.

Methods. We use the default implementation of MANDOLINE (with no noise correction factor, as we use the true provided
metadata). As there is only one g; in this case (blurriness), there is no need to specify an edge list. For CBIW, we use
the scikit-learn LogisticRegression function, with the default regularization strength of 1.0 and the L-BFGS optimizer;
we train until convergence to the default tolerance is reached. For CBIW-FT, we train models for 5 epochs with the same
hyperparameter settings as above, but on the concatenated source and target datasets, with the label 0 for source images and
1 for target images. For KMM, we use the publicly available implementation provided by (Fang et al., 2020), while for
uLSIF we use the densratio package (Makiyama, 2019); we randomly sample 10,000 examples each from the source
and target datasets before running KMM and uLSIF due to the high computational / memory demands of these methods. We
also compare to the slice-based baselines discussed in Appendix C.2.1. (Note that for CelebA, since there is only one slice
under consideration, it can be shown that the “Simple” baseline is actually equivalent to MANDOLINE [as reflected in the
results].)

2 Available from http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
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Table 8. Error in CIVILCOMMENTS model accuracy estimates for all methods, for each of the three randomly generated target datasets.

| Dataset seed 0 | Dataset seed 1 | Dataset seed 2

Target Accuracy ‘ 93.42 ‘ 89.46 ‘ 93.40
Source | -0.92 | 3.04 | -0.90
CBIW (features) 0.01 -0.00 0.08
KMM (features) -0.11 3.60 -0.03
uLSIF (features) -0.59 -0.03 -0.55
CBIW-FT 0.10 -0.52 0.03
CBIW (slices) -0.09 -0.57 0.10
KMM (slices) 0.04 0.15 -0.02
uLLSIF (slices) 0.15 0.72 0.04
Simple (slices) 0.09 -0.01 0.16
MANDOLINE (slices) 0.05 -0.18 0.13
CBIW (noisy slices) -0.15 -0.07 0.02
KMM (noisy slices) -0.12 0.44 -0.05
uLSIF (noisy slices) 0.10 0.88 0.08
Simple (noisy slices) 0.01 0.35 0.07
MANDOLINE (noisy slices) -0.04 0.22 0.03

C.2.3 CI1vILCOMMENTS

Datasets. The CIVILCOMMENTS dataset® (Borkan et al., 2019) contains comments labeled “toxic” or “non-toxic”, along
with 8 metadata labels on whether a particular identity (male, female, LGBTQ, etc.) is referenced in the text. (Any number
of these metadata labels can be true or false for a given comment.) The original dataset has 269,038 training, 45,180
validation, and 133,782 test datapoints.

Preprocessing. We modify the test (target) set to introduce distribution shift by randomly subsampling examples for each
“slice” (subset of data with a given assignment of metadata labels), with different proportions per slice. Specifically, for each
of the 2% possible slices, we pick a uniform random number from 0 to 1 and keep only that fraction of examples in the test
set, discarding the rest. We do this for three different random seeds to produce three different “shifted” datasets.

Models. We fine-tune BERT-Base-uncased for 5 epochs on the CIVILCOMMENTS training dataset, using the implementation
and hyperparameters provided by (Koh et al., 2020). We evaluate how well MANDOLINE and the baseline methods estimate
the accuracy of this models on the different test (target) set generated as described above.

Methods. We use the default implementation of MANDOLINE (with no noise correction factor). We identify the top 4
entries by magnitude in the inverse covariance matrix of the g;’s and use these as our edge list. For CBIW, we again use
the scikit-learn LogisticRegression function with the default regularization strength of 1.0 and the L-BFGS optimizer. For
CBIW-FT, we fine-tune BERT-base-uncased for 1 epoch with the same hyperparameter settings on the concatenated source
and target datasets, and with the label O for source images and 1 for target images instead of the true labels. (Surprisingly,
we found that training for more epochs actually caused CBIW-FT to do worse on this dataset, in terms of the final estimation
error.) For KMM and uLSIF, we use the implementation from (Fang et al., 2020) and randomly subsample 10,000 examples
each from the source and target datasets before running due to the high computational and/or memory demands. We also
compare to the slice-based baselines discussed in Appendix C.2.1.

Trial-by-trial results for each method are given in Table 8.

C.2.4 SNLI—-MNLI
Datasets. We use the SNLI and the MNLI matched validation sets, which consist of 10000 and 9815 examples respectively.

3The dataset can be downloaded e.g. by following the instructions at https: //github.com/p-lambda/wilds.
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Table 9. Standard accuracy estimates for 8 models from the Huggingface Model Hub across all methods. Direction of adjustment with

respect to the original SNLI estimate is indicated by 1 / | / =. indicates that the adjustment was done in the correct direction,

while red indicates the adjustment was in the wrong direction.
Model | SNLI | MNLI | MANDOLINE | CBIW | KMM | CBIW-FT | ULSIF
ynie/roberta-large-snlimnli_fever_anli R1_R2_R3-nli | 91.09 | 89.88 | 88.70 92.127 | 91.01 = 90.49 90.98
textattack/bert-base-uncased-snli 89.51 | 73.88 ] 79.94 91.76 1 | 88.45 88.70 89.93 1
facebook/bart-large-mnli 87.48 | 90.18 1 87.28 ~ 89.30 87.89 86.71 | 87.43 ~
textattack/bert-base-uncased-MNLI 78.58 | 84.58 1 79.58 82.32 79.03 7775 | 77.87 |
huggingface/distilbert-base-uncased-finetuned-mnli | 74.76 | 82.251 77.57 7591 76.47 75.19 74.22 |
prajjwall/albert-base-vl-mnli 72.33 | 80.12 1 76.81 73.78 72.34 ~ 73.07 72.00 |
cross—encoder/nli-deberta-base 90.67 | 88.24 | 89.21 925571 | 90.36 89.64 90.89 1
squeezebert/squeezebert-mnli 76.18 | 82.921 77.77 79.37 76.59 7535 ] 76.68

Models Evaluated. We consider 8 models from the Huggingface Model Hub*. We provide the model identifiers, and
performance across methods in Table 9 and 10.

Performance Metrics. We consider estimation of 2 performance metrics:

1. Standard Accuracy. Average classification accuracy across all 3 NLI classes: entailment, neutral and contradiction.

2. Binary Accuracy. Average classification accuracy across 2 classes: entailment and non-entailment, where non-
entailment consists of examples labeled either neutral or contradiction.

Slices. We consider 9 slices in total, derived from two sources of information. Suppose that p = fy(z) are the class
probabilities assigned by f to z. Then,

1. Model Predictions (3 slices). We use the slice g;(z) = 1[arg max;c[3) p = j] for j € [3] i.e. all examples where the
model assigns the label to be j.

2. Model Entropy (6 slices). We calculate the entropy of the output predictions H(p) = — > ie[3) Pi log p;. We then
consider slices g;(z) = 1[H(p) € [0.2(j — 1),0.24]] for j € [6] i.e. all examples where the model’s prediction
entropy lies in a certain interval.

Intuitively, slice statistics over model predictions act as a noisy indicator for the label, and potentially capture spurious
associations made by the model. Model entropy captures where the model is more or less uncertain, e.g. an increase in high
entropy examples is a good indicator that the distribution has shifted significantly.

Methods. We use the default implementation of MANDOLINE (with no noise correction factor). We compare MANDOLINE
to CBIW, KMM and CBIW-FT. For CBIW, we use the LogisticRegression function from scikit-learn, with default
regularization (C' = 1.0), training until convergence. For KMM, we use the implementation provided by (Fang et al., 2020),
with a kernel width of 1.0. For ULSIF, we use the implemented provided by (Fang et al., 2020). For CBIW-FT, we train a
bert-base-uncased model using the Huggingface Trainer for 3 epochs.

We also compare to applying the same baselines (aside from CBIW-FT which is not applicable) directly on the slice
representations, rather than the features, i.e. swapping out the KLIEP-based stage of Mandoline for another importance
weighting algorithm. We additionally compare to the “simple” baseline of reweighting points based on the ratio of the
frequency of their slice in the target dataset to the frequency of their slice in the source dataset. These results can be found in
Table 12.

C.2.5 SNLI* -HANS~

Datasets. We use the SNLI and the HANS validation sets, which consist of 10000 and 30000 examples respectively. We
further process them to construct the SNLI* and HANS™ datasets as detailed next.

Preprocessing. We randomly sample 1% (300 examples) of the HANS data and add it to SNLI to construct the SNLI*
dataset. The remaining 99% of the HANS dataset constitutes the HANS™ dataset.

4https ://huggingface.co/models
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Table 10. Binary accuracy estimates for 8 models from the Huggingface Model Hub across all methods. Direction of adjustment with

respect to the original SNLI estimate is indicated by 1 / | / =. indicates that the adjustment was done in the correct direction,

while red indicates the adjustment was in the wrong direction.
Model | SNLI | MNLI | MANDOLINE | CBIW | KMM | CBIW-FT | ULSIF
ynie/roberta-large-snlimnli_fever_anli R1_R2 R3-nli | 93.89 | 93.58 | 92.32 93.80~ | 93.67 94.05 ~ 93.45
textattack/bert-base-uncased-snli 93.10 | 83.78 | 86.37 93.627 | 92.46 93.28 ~ 92.84
facebook/bart-large-mnli 92.32 | 94.05 1 92.15 ~ 90.88 | | 92.22 ~ 91.80 | 91.63 |
textattack/bert-base-uncased-MNLI 87.75 | 90.77 1 88.30 88.01 87.09 | 87.28 | 86.36 |
huggingface/distilbert-base-uncased-finetuned-mnli | 86.81 | 89.52 1 88.00 84.57 | | 86.85 ~ 87.36 85.11 )
prajjwall/albert-base-vl-mnli 84.64 | 88.22 1 87.53 83.13 ] | 83.12) 85.11 82.79 |
cross—encoder/nli-deberta-base 93.72 | 9292 | 92.72 93.76 ~ | 93.74 =~ 93.74 =~ 93.45
squeezebert/squeezebert-mnli 87.24 | 89.75 1 88.30 86.63 | | 8648 86.70 | 86.37 |

Table 11. Average total time taken by each method to evaluate a single model for the given tasks.

Task | MANDOLINE | CBIW | KMM | CBIW-FT | ULSIF
CELEBA (ResNet-50) 0.03s 32s 185s 856s 361s
CIVILCOMMENTS 37.6s 158s 306s 2350s 371s
SNLI—MNLI 0.05s 0.25s | 63.25s 239s 13.38s

Models Evaluated. We consider the same 8 models as SNLI—-MNLI.

Slices. We add slices based on contradiction (based on negation and token ordering), sentence structure (word substitutions,
length differences, verb tense) and the evaluated model’s uncertainty (similar to SNLI—MNLI).

C.2.6 IMDB

Datasets. For the source dataset, we use the test split of the IMDB sentiment classification dataset (Maas et al., 2011). For
the target datasets, we use (i) Counterfactual IMDB test dataset (Kaushik et al., 2020); (ii) Sentiment 140 test dataset (Go
et al., 2009); (iii) the first 2000 examples from the Yelp Polarity reviews test dataset (Zhang et al., 2015), taken from
Huggingface datasets; (iv) the first 2000 examples from the Amazon Polarity reviews test dataset (Zhang et al., 2015), taken
from Huggingface datasets.

Models Evaluated. We consider 3 models taken from the Huggingface Model Hub:
textattack/bert-base-uncased-imdb, textattack/roberta-base—-imdb and
textattack/distilbert-base-uncased-imdb.

Slices. We use the same task-agnostic slices as SNLI—+MNLI, with model predictions and model entropy.

C.3 Runtime

We include runtime information in Table 11. For SNLI—+MNLI, we run all experiments on a g4dn . 2x1large machine
on AWS. For CIVILCOMMENTS, we run all experiments on a p3.2xlarge on AWS, and for CELEBA we run on a

Table 12. Estimating standard and binary accuracy on MNLI using SNLI. Average and maximum estimation errors for 8 models are
reported, with 95% confidence intervals. This table extends Table 3 to include ablations where baseline methods were run directly on
slices as well. This validates that the slice-based representation provides a significant advantage over traditional feature-based approaches.

METHOD STANDARD ACCURACY BINARY ACCURACY
AVG. ERROR | MAX. ERROR | AVG. ERROR | MAX. ERROR
SOURCE | 6.2%£3.8% |  15.6% | 3.0%+2.3% |  9.3%
CBIW f 5.5% + 4.5% 17.9% 3.7% £ 2.5% 9.8%
KMM f 5.7% + 3.6% 14.6% 3.3% £+ 2.3% 8.7%
ULSIF 6.4% + 3.9% 16.0% 3.7% £ 2.4% 9.1%
SIMPLE ¥ 3.5% +1.6% 5.9% 1.6% +0.7% 2.7%
CBIW } 6.3% + 3.8% 15.7% 3.1% +2.4% 9.7%
KMM *# 3.5% +1.6% 5.9% 1.6% +0.7% 2.7%
ULSIF ¥ 6.4% + 4.8% 18.9% 3.1% + 3.4% 11.6%
MANDOLINE ¥ | 3.6% + 1.6% 5.9% 1.6% +0.7% 2.7%

T USE RAW FEATURES, } USE SLICES
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p3.8xlarge on AWS. Both CBIW and MANDOLINE run quite fast, while the other methods take significantly more
time—CBIW-FT fine-tunes a neural network rather than training a simple logistic classifier, and KMM is very compute-
and memory-intensive (even after we downsample to 10,000 points as in the case of CIVILCOMMENTS and CELEBA).
Unsurprisingly, MANDOLINE runs especially fast when there are fewer slicing functions (for instance on CELEBA).

C.4 Baselines Analysis

While the primary contribution of MANDOLINE is to correct distribution shift based on slices, our experiments have
highlighted the effects of using different methods for computing the density ratio on the slices. Comparisons among CBIW,
KMM, ULSIF, and LL-KLIEP have been done before, as discussed below.

* CBIW using logistic regression yields weights with the same parametric form as LL-KLIEP (i.e. log-linear) (Tsuboi
et al., 2009). CBIW has lower asymptotic variance when the distribution belongs to the exponential family but does
worse than LL-KLIEP when the exponential family is misspecified (Kanamori et al., 2010).

* KMM is relatively slow (as suggested by Table 11) and needs quite a bit of fine-tuning on the kernel and regularization
parameters. In the setting we study in which the target dataset labels are unknown, this fine-tuning cannot be done with
cross-validation.

e ULSIF differs from LL-KLIEP in that it uses the squared loss rather than the log loss and thus can be more
efficient (Kanamori et al., 2009). However, LL-KLIEP’s loss has a more natural interpretation for exponential
distributions over the binary slices and allows us to explicitly address correlations and noise among the slices.

Lastly, perhaps the most intuitively obvious way to use slice information to reweight accuracy estimates is to simply reweight
each point by the ratio of the frequency of its slice vector in the target dataset to the frequency of its slice vector in the
source dataset. (For example, if there are three slices g1, g2, g3, the source dataset and target dataset both have 100 total
examples, the source dataset has 10 examples with g; = 1, g = 0, g3 = 1 and the target dataset has 5 such examples, we
would reweight all these examples by 1/2.) This is the ”simple” baseline mentioned in Appendix C.2.1. While this method
is extremely simple to run, it can introduce a substantial amount of noise due to not exploiting any possible structure of
the relationships between the slices; with k binary slices, there can be 2¥ unique slice vectors, and one parameter must be
estimated for each one that is observed in the source dataset.

By contrast, in our graphical model, many fewer parameters may need estimation. For example, suppose that the slices
are actually independent. Suppose for simplicity our source dataset is arbitrarily large (to isolate the effect of sampling
noise in the target dataset). Suppose that there are k individual slicing functions, where each is an independent Bernoulli
random variable, with probability 1/2 on the source dataset and p on the target dataset (with p unknown). Additionally,
suppose that a datapoint is ”correct” exactly when all of the slicing functions evaluate to 1. In this contrived setting, we
could simply estimate the accuracy on the target distribution by counting the number of datapoints in the target set for which
all slicing functions evaluate to 1 (which is equivalent to the accuracy on the target dataset), and dividing by the number of
target datapoints n2. This is a random variable with mean p* (the true target accuracy) and variance p* (1 — p*) /n. However,
the slice information can actually help us obtain a better estimate than this. For instance, we could instead estimate the
empirical mean of each slicing function on the target set independently; these would be RVs with mean p and variance
p(1 — p)/n. Then, we could compute the product as our estimate of the probability of all slices being 1; by independence,

k
the mean of the result is p* and the variance is (@) — p*. When n is large, this is ~ p?*~! /n, while the variance of

the naive estimate is ~ p* /n. This informal argument highlights that, as the number of slices grows, explicit knowledge of
the dependence structure of the slicing functions (in this case, full independence) can significantly improve the quality of
estimates.

D Extended Related Work

Correcting for bias in observational studies Studies in many fields suffer from selection bias when the subjects are
not representative of the target population. For instance, polling (Isakov & Kuriwaki, 2020) is biased due to sample
demographics not aligning with those of the true population. In other disciplines ranging from public policy to health
services, investigators cannot control which individuals are selected to receive a treatment in observational studies unlike in
randomized controlled trials. Therefore, there may be a significant difference in the treatment outcomes of individuals that
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were selected and those that were not. Propensity scores, the probability of an individual being assigned treatment given their
characteristics, are a way to correct for this bias in causal inference literature. Two common methods are matching, where
each treated subject is matched with an untreated subject based on similarity of their propensity scores (Rosenbaum & Rubin,
1985), and weighting, where estimators of the treatment effect are weighted by functions of the propensity score (Hirano
& Imbens, 2001). The latter method is technically similar to IW; in fact, the weights used for estimating the average
treatment effect for the control (ATC) are proportional to the density ratio used in importance weighting if we consider the
control group as the target distribution (Li et al., 2018). However, a key difference between propensity score weighting and
MANDOLINE is that in observational studies estimates are reweighted using a small known set of demographics of subjects,
whereas in MANDOLINE we use slicing functions to identify these relevant covariates first.

Distribution Shift Distribution shift has been addressed in various problem settings. Domain adaptation tackles how to
train a model to handle distribution shift, which usually involves unsupervised methods that perform additional training using
unlabeled target data. In particular, the loss function is reweighted (Byrd & Lipton, 2019), or includes some additional terms
or constraints to capture discrepancy between the source and target (Long et al., 2016; Cortes et al., 2019). Distributionally
Robust Optimization (DRO) tackles a similar problem involving distribution shift, where a model is trained to optimize over
and be robust over an uncertainty set of distributions rather than a single specified target distribution (Ben-Tal et al., 2013;
Duchi et al., 2018). In contrast, our goal is only to evaluate existing models, regardless of how they were trained. We assume
the model to be a fixed “black box” and estimate its performance using unlabeled target data. A key point of our approach is
the ability to cheaply compare arbitrary models on one or more target distributions, without requiring any re-training.

Several other works have focused on structured distribution shift in ways similar to our setup in Section 3.1. A latent
structure consisting of shifting and non-shifting components has been examined in DRO (Subbaswamy et al., 2021; Hu et al.,
2018), but the structure does not consider relevance of the components to the task. On the other hand, the dimensionality
reduction approach in Sugiyama et al. (2010) has been extended to consider relevance of features to Y (Stojanov et al.,
2019), but this lacks the interpretability of binary slices. Most recently, Polo & Vicente (2020) propose a task-aware feature
selection approach to determine inputs to importance weighting. MANDOLINE describes a structure on the distributions that
addresses both shifting versus non-shifting and irrelevant versus relevant components. Furthermore, a subtle but important
distinction is that our categorization is on user-defined slices rather than features or known latent variables, which naturally
suggests slice design as an iterative process in the evaluation framework whereas other approaches consider static input to
extract properties from.

Lastly, while our work focuses on covariate shift, another form of distribution shift commonly studied is label shift, which
assumes that p, (z|y) = pt(z|y) but ps(y) # p:(y). Correcting for label shift requires density ratio estimation approaches
different from standard IW (Lipton et al., 2018) and is an interesting setting for future work in model evaluation.

Density Ratio Estimation In addition to the methods discussed in Section 2.1, recent approaches have focused on
reducing the variance of the importance weights. Li et al. (2020) combines KMM with nonparametric regression to reduce
variance of the former and bias of the latter, and Rhodes et al. (2020) estimates a series of lower-variance density ratios,
whose product telescopes into the desired density ratio. Another method is to discard outliers in the datasets to improve the
boundedness of the weights (Liu et al., 2017). While these methods produce more accurate estimates on target distributions,
they do not do so by directly addressing the cause of high variance weights, which MANDOLINE does by only reweighting
on relevant shifting properties of the data.

Active Evaluation Inspired by active learning (Settles, 2012), active evaluation methods tackle the evaluation problem by
creating a small, labeled test set as a proxy for testing the model’s performance on the fully labeled target distribution (Nguyen
et al., 2018; Rahman et al., 2020). These methods use a model’s predictions on the target distribution to guide the selection
of examples to be manually labeled, reducing the cost to construct a test set on the target distribution. Taskazan et al. (2020)
apply active evaluation to the domain shift problem by stratifying the source distribution, weighting the inferred strata
according to the target distribution, and then sampling examples to label using the inferred weights. Instead of requiring
costly annotation of individual examples from the target distribution, MANDOLINE lets the user provide high-level guidance
in the form of slicing functions, which automatically label the dataset with noisy labels, and then estimates performance on
the target set automatically.



