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Abstract
Machine learning models are often deployed in
different settings than they were trained and vali-
dated on, posing a challenge to practitioners who
wish to predict how well the deployed model will
perform on a target distribution. If an unlabeled
sample from the target distribution is available,
along with a labeled sample from a possibly dif-
ferent source distribution, standard approaches
such as importance weighting can be applied to
estimate performance on the target. However, im-
portance weighting struggles when the source and
target distributions have non-overlapping support
or are high-dimensional. Taking inspiration from
fields such as epidemiology and polling, we de-
velop MANDOLINE, a new evaluation framework
that mitigates these issues. Our key insight is that
practitioners may have prior knowledge about the
ways in which the distribution shifts, which we
can use to better guide the importance weight-
ing procedure. Specifically, users write simple
“slicing functions”—noisy, potentially correlated
binary functions intended to capture possible axes
of distribution shift—to compute reweighted per-
formance estimates. We further describe a density
ratio estimation framework for the slices and show
how its estimation error scales with slice quality
and dataset size. Empirical validation on NLP and
vision tasks shows that MANDOLINE can estimate
performance on the target distribution up to 3×
more accurately compared to standard baselines.

1 Introduction
Model evaluation is central to the machine learning (ML)
pipeline. Ostensibly, the goal of evaluation is for practi-
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tioners to determine if their models will perform well when
deployed. Unfortunately, standard evaluation falls short
of this goal on two counts. First, evaluation data is fre-
quently from a different distribution than the one on which
the model will be deployed, for instance due to data collec-
tion procedures or distributional shifts over time. Second,
practitioners play a passive role in evaluation, which misses
an opportunity to leverage their understanding of what dis-
tributional shifts they expect and what shifts they want their
model to be robust to.

By contrast, fields such as polling (Isakov & Kuriwaki,
2020) and epidemiology (Austin, 2011) “adjust” evalua-
tion estimates to account for such shifts using techniques
such as propensity weighting, correcting for differences
between treatment and control groups in observational stud-
ies (Rosenbaum & Rubin, 1983; D’Agostino Jr, 1998).

Taking inspiration from this, we develop MANDOLINE (Fig-
ure 1), a user-guided, theoretically grounded framework
for evaluating ML models. Using a labeled validation set
from a source distribution and an unlabeled set from a target
(test) distribution of interest, MANDOLINE computes per-
formance estimates for the target distribution using adjusted
estimates on the validation set.

A central challenge is how to account for the shift between
source and target distributions when adjusting estimates. A
straightforward approach is to use importance weighting
(IW)—estimating the density ratio between source and tar-
get data to adjust performance. IW works well when the
source and target distribution overlap significantly but per-
forms poorly when the distributions’ supports have little
overlap, as is common under distribution shift. Addition-
ally, IW works well in low dimensions but struggles with
large variances of estimated ratios in high dimensional set-
tings (Stojanov et al., 2019).

Our key insight is that practitioners can use their understand-
ing to identify the axes along which the distributions may
have changed. Practitioners commonly express this knowl-
edge programmatically by grouping (“slicing”) data along
such axes for analysis. For example, in sentiment analysis a
heuristic may use the word “not” to detect sentence negation
(Figure 1). Or, slices can identify critical data subsets (e.g.
X-rays of critically-ill patients with chest drains (Oakden-
Rayner et al., 2020) or demographic slices when detecting
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Figure 1. Schematic outlining the MANDOLINE workflow for a sentiment analysis task. (left) Given labeled source and unlabeled
target data, users write noisy, correlated slicing functions (indicated by color) to create a slice representation for the datasets. (right)
MANDOLINE uses these slices to perform density ratio estimation. Then, it uses these ratios to output a performance estimate for the
target dataset by reweighting the source data.

toxic comments (Borkan et al., 2019)).

MANDOLINE leverages precisely this information: users
construct “slicing functions” on the data—either program-
matically mapping examples to slices, or using metadata
associated with examples to group them. These slices create
a common representation in which to project and compare
source and target data, reducing dimensionality and mitigat-
ing support shift. Compared to standard IW, MANDOLINE
simplifies density ratio estimation by relying on source and
target slice statistics, rather than raw features.

When the slices accurately capture the relevant distribution
shift, MANDOLINE can be instantiated with many standard
density ratio estimation methods on the slices. However,
since practitioners rely on heuristics to write slicing func-
tions, slices can be noisy, correlated, and incomplete, and
direct density ratio estimation does not handle this possible
misspecification. We thus represent the distribution of slices
as a graphical model to incorporate knowledge of their cor-
relations and incompleteness, and provide a novel extension
of the LL-KLIEP method (Tsuboi et al., 2009) that can de-
noise the density ratio based on the practitioner’s confidence
and prior knowledge of slice quality. These density ratios
are then used to generate importance weights for evaluating
models.

Theoretically, we provide a bias-variance decomposition
of the error of our reweighting approach. The bias de-
pends on how user-specified slices capture distribution shift,
and variance depends on distribution properties and the
amount of data. Compared to standard IW, which lacks
theoretical guarantees when the variance of the weights is
unbounded (Cortes et al., 2010), our results always hold and
can describe when MANDOLINE will yield better estimates.

Empirically, we verify that MANDOLINE outperforms stan-

dard baselines for density ratio estimation on both synthetic
and real-world tasks from natural language processing and
computer vision. When slices completely capture shifts
without noise, MANDOLINE reduces estimation error by up
to 3× compared to standard IW baselines. Even with noisy
slices, MANDOLINE exhibits little performance degrada-
tion. When slices are under-specified and noisy and do not
completely capture large distributional shifts, MANDOLINE
continues to outperform baselines by up to 2×.

We conclude with a discussion of slice design. We explore
an extremely challenging under-specified setting, where we
highlight how clever slice design can reduce estimation error
by 2.86×, and that MANDOLINE can flexibly incorporate
a strong IW baseline as a slice to match its performance.
We also show that MANDOLINE can closely estimate perfor-
mance drops as large as 23% accuracy points in an “in-the-
wild” sentiment analysis setting, which shows the potential
of automatically designing slicing functions.1

2 Background
We first provide background on IW and density ratio estima-
tion (Section 2.1), and the challenges these approaches face.
We then provide a formal setup of our problem of evaluating
models under distribution shift (Section 2.2).

Notation. Ps andPt are source and target distributions with
respective densities ps and pt. Es and Et are expectations
with respect to Ps and Pt. When a statement applies to both
distributions, we refer to their densities collectively as p.

1Code for MANDOLINE can be found on GitHub.
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2.1 Importance Weighting

Importance weighting (Horvitz & Thompson, 1952) is a gen-
eral approach for estimating properties of a target random
variable X drawn from Pt given samples {xi}ni=1 from a

different source distribution Ps. Since Es
[
pt(X)
ps(X)f(X)

]
=

Et [f(X)] for any function f when supp(Pt) ⊆ supp(Ps),
one can estimate Et [f(X)] with the empirical average
1
n

∑n
i=1

pt(xi)
ps(xi)

f(xi). Typically ps, pt are unknown, so the

density ratio pt(X)
ps(X) must be estimated.

Density ratio estimation. The challenge of how to esti-
mate density ratios is well-studied. Estimation of the indi-
vidual densities to compute the ratios is possible but can
lead to poor estimates in high dimensions (Kpotufe, 2017).
Instead, most approaches estimate the ratio directly. We
discuss several common methods below, although they can
all be generalized to fitting the density ratio under the Breg-
man divergence (Sugiyama et al., 2012b). First, classifier-
based approaches (CBIW) use a Bayesian “density-ratio
trick” (Hastie et al., 2001; Sugiyama et al., 2012a; Mo-
hamed & Lakshminarayanan, 2016) to cast estimation as bi-
nary classification between samples from the source (z = 0)

and target (z = 1) distributions. The learned p(z=1|x)
p(z=0|x) is

then rescaled to produce a ratio estimate. Kernel mean
matching (KMM) matches moments from Pt to a (parame-
terized) transformation of the moments of Ps in a Reproduc-
ing Kernel Hilbert Space (RKHS) e.g. with the Gaussian
kernel (Gretton et al., 2009). Least-squares importance fit-
ting (LSIF) directly fits the density ratio by minimizing the
squared error of a parametrized ratio rφ(x) (typically lin-
ear or kernel model) compared to pt(x)

ps(x) (Kanamori et al.,
2009). Finally, the Kullback-Leibler importance estimation
procedure (KLIEP) uses rφ(x) to construct an approximate
distribution P̂t = rφPs and minimizes the KL-divergence
between P̂t and Pt (Sugiyama et al., 2008).

Challenges for IW. A common problem when applying
IW is high-variance weights, which result in poor perfor-
mance both theoretically and in practice (Cortes et al., 2010).
While simple techniques such as self-normalization and
weight clipping can be used to reduce variance (Grover
et al., 2019), these heuristics do not address the cause of
the variance. Instead, we highlight and address two chal-
lenges that underlie this problem in IW—learning from
high-dimensional, complex data and handling support shift:
1. High-dimensional data. Dealing with high-dimensional

data is challenging in density ratio estimation, as it is dif-
ficult to find well-specified model classes (for CBIW) or
data representations (for KMM, LSIF, KLIEP). To rem-
edy this, dimensionality reduction can be used when the
distribution shift is restricted to some low-dimensional
structured subspace (Sugiyama et al., 2010), but these
approaches generally assume a linear subspace.

2. Support shift. When there exists some x such that
ps(x) > 0 but pt(x) = 0, then pt(x)

ps(x) = 0. This point is
essentially discarded, which reduces the effective num-
ber of samples available for IW, and points in the inter-
section of the support may also have low ps(x), which
results in overweighting a few samples. When there ex-
ists some x such that ps(x) = 0 but pt(x) > 0, this
x will never be considered in the reweighting—in fact,
Es
[
pt(X)
ps(X)f(X)

]
will not equal Et [f(X)] in this case,

rendering IW useless in correcting distribution shift. We
describe these phenomena as support shift.

2.2 Problem Formulation

We are given a fixed model fθ : X → Y , a labeled “val-
idation” source dataset Ds = {(xsi , ysi )}

ns
i=1, and an un-

labeled “reference” target dataset Dt = {xti}
nt
i=1. X ,Y

denote the domains of the x’s and y’s, and Dt and Ds are
drawn i.i.d from Pt(·|Y ) and Ps, respectively. We assume
there is no concept drift between the distributions, meaning
pt(Y |X) = ps(Y |X). Define `θ : X × Y → R to be a
metric of performance of fθ. Our goal is to evaluate perfor-
mance on the target population as Lt=Et [`θ(X,Y )] using
labeled samples from Ds and unlabeled samples from Dt.

Standard IW can estimate Lt using the density ratio of the
features as 1

ns

∑ns
i=1

pt(x
s
i )

ps(xsi )
`θ(x

s
i , y

s
i ) using the assumption

of no concept drift. However, IW has shortcomings (as
discussed in Section 2.1). For instance, it is often beneficial
to ignore certain features, as the below example illustrates.

Example 2.3 Suppose ps(x1, x2) ∝ φ(µ1,σ2
1)(x1) ·

1(x2 ∈ (0, 1)) and pt(x1, x2) ∝ φ(µ2,σ2
2)(x1) · 1(x2 ∈

(−1, 0)), where φµ,σ2 is the N (µ, σ2) density. x1 is nor-
mal while x2 is uniformly distributed on (0, 1) and (−1, 0)
under ps and pt respectively, and x1, x2 are independent.
Suppose `θ(x, y) is independent of x2. The IW estimate of
Et [`θ(X,Y )] will always be zero since pt(x) = 0 for all
x in the support of ps. IW fails due to support shift of the
irrelevant x2, but this can be mitigated by weighting only
on x1, motivating our framework.

3 The MANDOLINE Framework
We present a framework of assumptions (Section 3.1) on Ps
and Pt that motivate user-specified slicing functions, which
intend to capture relevant distribution shift. Under these
assumptions, we show that weighting based on accurate
slicing functions is equivalent to weighting based on fea-
tures, but mitigates the challenges that standard IW faces
by ignoring irrelevant and non-shifting components of the
distributions (Section 3.2). We then present a novel density
ratio estimation algorithm based on KLIEP (Section 3.3)
that accounts for noisy slices.
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3.1 Modeling distribution shift

Assume that each sample X can be represented via map-
pings to four sets of variables g(X), h(X), a(X), b(X).
This categorizes information about the data depending on
if it is relevant to the learning task and if its distribution
changes between Ps and Pt. g(X) contains relevant prop-
erties of the data that are known to the user and undergo
distribution shift. h(X) represents “hidden” properties of
the data that are also relevant and shifting, but which the
user fails to model. a(X) corresponds to the properties that
exhibit shift but are irrelevant to the task. Lastly, b(X) are
the properties that do not undergo any shift. We state these
assumptions formally below.

Assumption 1 (Shift and relevance of data properties).

1. Representation of X using g, h, a, b: ps(X|g, h, a, b) =
pt(X|g, h, a, b) = 1, and X ⊥⊥ Y |g, h, a, b for Ps, Pt.

2. Shift along g, h, a only: ps(X|g, h, a) = pt(X|g, h, a).

3. Irrelevance of a(X) to other features and true/predicted
labels: a ⊥⊥ b|g, h, a ⊥⊥ Y |g, h, b for both Ps and Pt,
and changing the value of a does not impact `θ(X,Y ).

g(X) encapsulates the user’s beliefs of what axes the shift
between Ps and Pt occurs on. Since g(X) may be difficult
to model, the user approximates them by designing k slicing
functions g̃(X) = {g̃1(X), . . . , g̃k(X)}, where each g̃i :
X → {−1, 1} noisily captures an axis gi(X) via a binary
decision. When h(X) is empty, we say that g̃(X) is fully-
specified and otherwise under-specified. When g̃(X) =
g(X), we say that the slices are perfect and otherwise noisy.

3.2 Importance Weighting based on Slicing Functions

Based on these assumptions, weighting using the relevant
shifting properties g and h is sufficient. Theoretically,

Proposition 1. By Assumption 1,

Lt = Es
[
pt(g(X), h(X))

ps(g(X), h(X))
`θ(X,Y )

]
.

Revisiting Example 2.3 with g(x) = x1, a(x) = x2, and
no h(x), b(x), Proposition 1 confirms our intuition that
weighting on x1 is sufficient and reduces support shift.

If g̃ is perfect and well-specified, using pt(g̃(x))
ps(g̃(x)) for weight-

ing corrects the distribution shift without being suscepti-
ble to extreme shifts in a(x) and the dimensionality and
noise added by b(x). In the more frequent case when
h(x) is nonempty, reweighting based on g(x) to esti-
mate Lt already yields a biased approximation Lg =

Es
[
pt(g(X))
ps(g(X))`θ(X,Y )

]
. However, as long as the slices are

not noisy, the density ratio methods discussed in Section 2.1
can be applied on the slices with well-studied tradeoffs in
computational efficiency, estimation error, and robustness
to misspecification (Kanamori et al., 2010). When the slices
are noisy, the challenge is to learn weights w(x) = pt(g(x))

ps(g(x))

on g when we only have g̃ and our datasets, motivating our
algorithm for this particular case.

3.3 Density ratio estimation approach

We estimate the density ratio as ŵ(x) using g̃ and our
data. We partition Ds into Ds1 and Ds2 of sizes ns1 , ns2
such that the former is used to learn ŵ(x) and the lat-
ter is used for evaluation. Our estimate of Lt is L̂g :=

1
ns2

∑ns2
i=1 ŵ(xs2i )`θ(x

s2
i , y

s2
i ). We present a noise-aware

extension of LL-KLIEP (Tsuboi et al., 2009) that models g
as a latent variable and p(g̃, g) as a graphical model. While
previous work on latent variable density ratio estimation fo-
cuses on the posterior distribution and requires observations
of g (Liu et al., 2020), our algorithm allows for denoising by
incorporating a user’s prior knowledge on the quality of g̃,
which can be viewed as hyperparameters of user confidence.

Graphical Model. Let a graph G = (g̃, E) specify depen-
dencies between the slicing functions using standard notions
from PGM literature (Lauritzen, 1996; Koller & Friedman,
2009). We assume the user knows dependencies between
g̃, although E can be learned (Ravikumar et al., 2010; Loh
& Wainwright, 2013), and assume each g̃i is connected to
at most one other g̃j . For the joint distribution of (g, g̃),
we augment G by adding an edge from each g̃i to gi in the
following model for both ps and pt:

p(g̃, g; θ)=
1

Zθ
exp

[ k∑
i=1

θigi +

k∑
i=1

θiigig̃i +
∑

(i,j)∈E

θij g̃ig̃j

]
,

(1)

where Zθ is the log partition function. Note that when
g̃ = g, this reduces to an Ising model of g with edgeset E.
In Appendix B.1 we show that the marginal distribution of
g is then

p(g;ψ) =
1

Z
exp

[ k∑
i=1

ψigi +
∑

(i,j)∈E

ψijgigj

]
(2)

=
1

Z
exp(ψ>φ(g)),

where Z is a different log partition function, φ(g) is a
representation of the potentials over g, and each element
of ψ is a function of θ in (1). Define δ = ψt − ψs as
the difference in parameters of pt(g) and ps(g). Under this
model, the density ratio to estimate isw(x) = pt(g(x);ψt)

ps(g(x);ψs)
=

exp
(
δ>φ(g(x))

)
Zs
Zt

.
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Latent Variable KLIEP. Based on the parametric form of
w(x), KLIEP aims to minimize the KL-divergence between
the target distribution Pt and an estimated P̂t with density
p̂t(g; δ) = exp

(
δ>φ(g)

)
Zs
Zt
ps(g). Note that since p̂t(g; δ)

must be a valid density, the log partition ratio Zs
Zt

is equal
to 1

Es[exp(δ>φ(g))]
. Then, minimizing the KL-divergence

between Pt and P̂t is equivalent to solving

maximizeδ Et
[
δ>φ(g)

]
− logEs

[
exp(δ>φ(g))

]
. (3)

The true distribution of g is unknown, but we can write
(3) as Et

[
Et
[
δ>φ(g)|g̃

]]
− logEs

[
Es
[
exp(δ>φ(g))|g̃

]]
.

The outer expectation over g̃ can be approxi-
mated empirically, so in place of (3) we want
to maximize 1

nt

∑nt
i=1 Et

[
δ>φ(g)|g̃(xti)

]
−

log
(∑ns1

j=1 Es
[
exp(δ>φ(g))|g̃(xs1j )

] )
.

Noise Correction. This empirical objective function
requires knowledge of p(g|g̃), which factorizes into∏k
i=1 p(gi|g̃i). This inspires our noise-aware KLIEP ap-

proach: users provide simple 2 × 2 correction matrices
σis, σ

i
t per slice to incorporate their knowledge of slice qual-

ity, where σis(α, β) ≈ ps(gi = α|g̃i = β) and similarly for
σit. This knowledge can be derived from prior “evaluation”
of g̃i’s and can also be viewed as a measure of user confi-
dence in their slices. Note that setting each σi equal to the
identity matrix recovers the noiseless case g̃ = g, which is
LL-KLIEP. Our convex optimization problem maximizes

f̂KLIEP(δ, σ) =
1

nt

nt∑
i=1

Eσt
[
δ>φ(g)|g̃(xti)

]
(4)

− log

( ns1∑
j=1

Eσs
[
exp(δ>φ(g))|g̃(xs1j )

])
,

where Eσs [r(g)|g̃] =
∫
r(g)

∏k
i=1 σ

i
s(gi, g̃i)dg for any func-

tion r(g). Define δ̂ = argmaxδ f̂KLIEP(δ, σ). Then the esti-

mated density ratio ŵ(g) is
ns1 exp(δ̂>φ(g))∑ns1

i=1 Eσs [exp(δ̂>φ(g))|g̃(xs1i )]
, for

which we’ve used an empirical estimate of ZsZt as well. To
produce weights on Ds, we define ŵ(x) = Eσs [ŵ(g)|g̃(x)].
Our approach is summarized in Algorithm 1.

Note that our approach can handle incomplete slices that
do not have full coverage on the dataset. We model g̃i with
support {−1, 0, 1} where 0 represents abstention; this can
be incorporated into (1) as described in Appendix B.1.

4 Theoretical Analysis
We analyze the performance of our approach by comparing
our estimate L̂g to the true Lt. We show the error can be
decomposed into a bias dependent on the user input and
a variance dependent on the true distribution of g, noise
correction, and amount of data. We provide an error bound

Algorithm 1 MANDOLINE

1: Input: Datasets Ds,Dt; slicing functions g̃ : X →
{−1, 1}k, dependency graph G = (g̃, E), correction
matrices σis and σit for each slice.

2: Split Ds into Ds1 ,Ds2 .
3: Use G’s edgeset to construct representation function φ.
4: Solve δ̂ = argmaxδ f̂KLIEP(δ, σ) defined in (4).

5: Construct ratio ŵ(g) =
ns1 exp(δ̂>φ(g))∑ns1

j=1 Eσs [exp(δ̂>φ(g)|g̃(xs1j ))]
.

6: Return L̂g = 1
ns2

∑ns2
i=1 Eσs [ŵ(g)|g̃(xs2i )] `θ(x

s2
i , y

s2
i ).

that always holds with high probability, in contrast to stan-
dard IW for which no generalization bounds hold for certain
distributions.

Define a “fake” g estimated from inaccurate σ as
ḡ, where p(ḡ) =

∫
σ(g, g̃)p(g̃)dg̃, and Lḡ =

Es [w(ḡ(X))`θ(X,Y )], where w(ḡ(X))= pt(ḡ(X))
ps(ḡ(X)) . Then,

|Lt − L̂g| ≤ |Lt − Lg|︸ ︷︷ ︸
bias from no h(X)

+ |Lg − Lḡ|︸ ︷︷ ︸
bias from incorrect σ

(5)

+ |Lḡ − Es[L̂g]|︸ ︷︷ ︸
var. from estimated ratio

+ |Es[L̂g]− L̂g|︸ ︷︷ ︸
var. from empirical evaluation

.

Suppose all slices are noisy and the user fails to correct
k′ ≤ k of them. Define ηmin

s (i), ηmax
s (i) as bounds on

the relative error of σis such that |ps(gi|g̃i)−σ
i
s(gi,g̃i)

ps(gi|g̃i) | ∈
[ηmin
s (i), ηmax

s (i)] for all gi, g̃i per slice. ηmin
t (i) and

ηmax
t (i) are similarly defined per slice for Pt, and define

the total correction ratio as r =
∏k′

i=1
1+ηmax

t (i)
1−ηmin

s (i) . Define an

upper bound M = supX
pt(g(X))
ps(g(X)) on the density ratio of g.

Theorem 1. Set ns1 = ns2 = ns
2 . Under Assumption 1,

with probability at least 1− ε the accuracy of our estimate
of Lt via noise-aware reweighting is bounded by

|Lt − L̂g| ≤ 2‖pt(h|g)− ps(h|g)‖TV (6)

+ rM

k′∑
i=1

(
ηmax
t (i)

1− ηmin
t (i)

+
ηmax
s (i)

1− ηmin
s (i)

)

+ M̂(cs,`θ + 1)

√
log(4/ε)

ns
,

where cs,`θ is a constant dependent on the distribution of `θ
and Ps, and M̂

p−→ rM as ns ∧ nt →∞.
We make two observations about Theorem 1.
• The first two terms are the bias from user input and map to

the first two terms in (5). The first total variation distance
is a bias from not modeling h(X) and describes relevant
uncaptured distribution shift. The second term describes
the impact of inaccurate correction matrices σs, σt.
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Figure 2. (left) relative error of CBIW in the presence of a spurious
shifting feature with probability p (MANDOLINE has a 0.01 error).
(right) relative error of MANDOLINE vs noise-unaware reweighting
as correlation between g, g̃ increases.

• The last term maps to the third and fourth terms of (5) and
describes the variance from learning and evaluating on the
data, which collectively with M̂ scales in nt and ns. This
bound depends on the distributions themselves—critically
the upper bound on weights, M—and σs, σt accuracy.

When the user writes perfect, fully-specified slicing func-
tions, the standing bias of the first two terms in Theorem 1
is 0, and our estimate L̂g converges to Lt.

Comparison to standard IW. We compare our approach
to standard IW in the feature space using our decomposition
framework in (5). Standard IW does not utilize slices or
user knowledge, so the first two terms of (5) would be 0.
The latter two terms depend on the magnitude of the true
weights and more generally their variance. In standard IW,
the variance of the weights can be high and even unbounded
due to support shift or high-dimensional complex data. Even
simple continuous distributions can yield bad weights; for
instance, Cortes et al. (2010) show a Gaussian distribution
shift where the variance of the weights is infinite, leading to
inapplicable generalization bounds and poor performance.
In contrast, while our approach using g̃ may incur bias,
it will always have weights bounded by at most M̂ due
to the discrete model and hence have applicable bounds.
The variance may also be lower due to how we mitigate
problems of support shift and high-dimensional complex
data by ignoring a(X), b(X). Therefore, when the bias
due to under-specified, noisy g̃ is less than the additional
weight variance of standard IW, our method can significantly
reduce the estimation error of Lt while always providing
valid theoretical guarantees.

4.1 Synthetic Experiments

In this section, we provide an example where standard im-
portance weighting struggles while MANDOLINE maintains
accurate estimates. We then evaluate how MANDOLINE per-
forms as the noise in the g̃i’s varies. Additional details and
synthetics are included in Appendix C.1.

Support Shift. Standard IW struggles when the source
and target distributions have little overlap. As described
in Example 2.3, the density ratio is 0 or undefined when

the supports are disjoint. Moreover, if the source has a
low-density region where the target density is high, this
effectively reduces the sample size by assigning high weight
to a few examples. To illustrate, in Figure 2a we generate
data with a single gi and set g̃i = gi. We then append a
“spurious” feature (a(X)) that is 1 with small probability p
for source examples, and 1 for all target examples. We plot
the relative error of CBIW on all features as p decreases to
0; for small values of p this is greater than the difference be-
tween source and target. By contrast, MANDOLINE ignores
the spurious feature entirely as it is not part of g, achieving
a relative error of only 0.01.

Noisy Slicing Functions. In Figure 2b, we show that on
data generated from (1), MANDOLINE’s noise-aware ap-
proach does better than the noise-unaware approach (i.e.
setting each σit, σ

i
s to the identity matrix) as we vary the

correlation between gi and g̃i by adjusting θii in (1).

5 Experiments on Real Data
We empirically validate that MANDOLINE can estimate per-
formance under distribution shift on real tasks and datasets.

Experimental Claims. We validate claims about MANDO-
LINE under the experimental settings described below:

1. Fully-specified, with perfect slices (Section 5.1). In
the setting when all the factors of distribution shift are
known (i.e., h(X) is empty), and the true slice labels are
known via metadata annotations (i.e., g̃ = g), MANDO-
LINE reduces the model performance estimation error by
up to 3× over baselines.

2. Fully-specified, with noisy slices (Section 5.2). When
the slices are noisy / programmatic, but still capture all
the shifted variables (i.e., h(X) is still empty but g̃ 6=
g), MANDOLINE’s performance does not significantly
degrade, and it remains competitive with baselines.

3. Under-specified, with noisy slices (Section 5.3). For
large distribution shifts where only a subset of relevant
shifted variables are captured by the noisy programmatic
slices (i.e. h(X) is nonempty and g̃ 6= g), MANDOLINE
reduces estimation error by up to 2× over baselines.

Tasks. We consider four tasks from computer vision and
natural language processing, summarized in Table 1.

Baselines. We compare MANDOLINE against widely used
importance weighting baselines on the features. Direct
Source Estimation (SOURCE) directly uses the estimate
from the source distribution for the target. Classifier-Based
Importance Weighting (CBIW) uses logistic regression
on a task-specific feature representation to distinguish sam-
ples from the source and target distributions. As noted
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Table 1. Summary of real-world tasks and datasets considered.

Task Task Labels Distribution Shift Source Data Target Data Slices

CELEBA
image classification

male
vs. female

↑ blurry images validation set
(1% blurry)

perturbed test set
(30% blurry)

METADATA LABELS
blurry / not blurry

CIVILCOMMENTS
toxic text classification

toxic
vs. non-toxic

↑↓ identity proportions
(e.g. ↑ female)

validation set perturbed test set METADATA LABELS
8 identity groups

SNLI→MNLI
natural language
inference

entailment, neutral
or contradiction

single-genre→
multi-genre examples SNLI validation set MNLI matched

validation set

PROGRAMMATIC
task model predictions,
task model entropy

SNLI+ →HANS–

natural language
inference

entailment
or non-entailment

↑ lexical overlap
with label shift

SNLI validation set +
1% HANS validation set

99% HANS
validation set

PROGRAMMATIC
lexical overlap
noisy non-entailment
sentence structure
task model entropy

by Tsuboi et al. (2009), this baseline returns weights iden-
tical to LL-KLIEP on features. Kernel Mean Matching
(KMM) (Gretton et al., 2009) solves a quadratic program
to minimize the discrepancy in feature expectations be-
tween the target and a reweighting of the source distribution.
Unconstrained Least-Squares Importance Fitting (UL-
SIF) (Kanamori et al., 2009) is a stable version of LSIF that
solves a least-squares optimization problem for the density
ratio using a linear kernel model. We also run the above
baselines on the slices to compare against MANDOLINE’s
instantiation with KLIEP in the Appendix.

We self-normalize importance weights for all methods to
sum to 1 (Owen, 2013). Full experimental details for all
experiments are provided in Appendix C.2.

5.1 Fully-Specified with Perfect Slices

First, we consider distribution shift along variables for
which annotated metadata is available, i.e. the identities
of all the relevant slices are known, and the ground-truth
slice labels are known for each example. We consider two
tasks in this section: CELEBA (images) and CIVILCOM-
MENTS (text). On CELEBA, MANDOLINE reduces estima-
tion error by 3× over the best baseline (CBIW). On CIVIL-
COMMENTS, MANDOLINE and CBIW both exhibit strong
performance, returning estimates within 0.12% and 0.03%
of the true test accuracy. We describe these experiments
below, with results summarized in Table 2.

5.1.1 CELEBA

Task. In CELEBA, we classify faces as either male or fe-
male. Each image comes with metadata annotations. We in-
duce distribution shift by perturbing the CELEBA validation
and test sets so that the test set has more images annotated
as “blurry” (30% of test set vs. only 1% of validation set).

Models. We evaluate ResNet18 and ResNet50 models pre-
trained on ImageNet and finetuned for 5 epochs on CelebA.

Results. For the ResNet50 models, accuracy is significantly
higher on the non-blurry images (97.5%) than for the blurry
ones (91%); the target accuracy is thus 95.6%, vs. 97.4%
on the source set. We use MANDOLINE to estimate the test
performance, using the provided “blurry” metadata label as
our only slice function gi. The resulting estimate is within
0.16% on average of the true value. In comparison, the mean
absolute error of the CBIW estimate is 0.53%, and 1.76%
for KMM and ULSIF. Table 2 summarizes these results,
along with those for ResNet18, which exhibit similar trends.

5.1.2 CIVILCOMMENTS

Task. The CIVILCOMMENTS dataset (Borkan et al., 2019)
contains comments labeled “toxic” or “non-toxic”, along
with 8 metadata labels on whether a particular identity (male,
female, etc.) is referenced in the text. We modify the test
set to introduce shift by randomly subsampling examples
for each “slice” (subset of data with a given assignment of
metadata labels), with different proportions per slice.

Models. We use a standard bert-base-uncased
model, fine-tuned on CIVILCOMMENTS for 5 epochs.

Results. When the true gi’s are used, MANDOLINE returns
accuracy estimates that are within 0.12% of the true test
accuracy. CBIW returns an even better estimate (within
0.03%), while the estimation error of KMM is 1.25% and
of ULSIF is 0.39%. By contrast, the raw (unweighted) vali-
dation accuracy differs from the test accuracy by 1.6%; thus,
both MANDOLINE and the baselines improve this estimate.

5.2 Fully-Specified with Noisy Slices

Next, we examine the effect of using noisy, user-provided
slicing functions in place of perfect metadata labels. Here,
we show that this additional noise does not increase estima-
tion error for MANDOLINE.

We consider the CIVILCOMMENTS task described in the



MANDOLINE: Model Evaluation under Distribution Shift

previous section. Instead of using the annotated metadata as
our gi’s, we write heuristic slicing functions as a substitute,
as one would do in practice if this metadata was unavailable.
For each of the identities described in Section 5.1.2, we
write a noisy slice g̃i that detects the presence of this iden-
tity. For example, we detect the male identity if the words
“male”, “man”, or “men” appear in the text. These simple
slicing functions are reasonably accurate compared to the
true metadata annotations (average 0.9 F1 score compared
to metadata across all 8 slices). With these noisy slices,
the accuracy estimate returned by MANDOLINE is within
0.10% of the true value, lower than the error when using
metadata (0.16%). This suggests that the noise in our slices
is not a major issue, and that our slices in fact better capture
the shifts relevant to evaluating the model on the target data.

5.3 Under-Specified with Noisy Slices

Next, we turn to an under-specified setting, where the distri-
bution shift is imperfectly captured by programmatic slices.
Here, MANDOLINE is able to reduce average estimation
error by up to 2× over the best baseline (Table 3).

Concretely, for natural language inference, we study
whether it is possible to estimate performance for the
MNLI (Williams et al., 2018) validation set (target) us-
ing the SNLI (Bowman et al., 2015) validation set (source).
The distribution shift from SNLI→MNLI is substantial, as
MNLI was designed to capture far more input variability.

Programmatic Slices. Since the shift from SNLI→MNLI
is large, we design slices that can capture general distribu-
tional shifts. We construct 3 slicing functions that check
(respectively) whether the evaluated classifier predicted one
of the 3 classes, and 6 slicing functions that bucket exam-
ples based on the entropy of the classifier’s outputs. These
slices capture how the model’s uncertainty or predictions
change, which are useful indicators for detecting distribu-
tional shift (Hendrycks & Gimpel, 2017). Here, they allow
us to perform a model-specific estimate adjustment.

Results. We compare 8 off-the-shelf models taken from the
HuggingFace Model Hub. Table 3 contains detailed results
for estimating both standard accuracy over the 3 NLI classes,
as well as an oft-used binary accuracy metric that combines
the contradiction and neutral classes. For both metrics,

Table 2. Mean absolute estimation error for target accuracy on
CELEBA and CIVILCOMMENTS.

METHOD
AVERAGE ESTIMATION ERROR (%)

CELEBA CIVILCOMMENTS
RESNET18 RESNET50 BERT

SOURCE 1.96% 1.74% 1.62%

CBIW 0.47% 0.53% 0.03%
KMM 1.97% 1.76% 1.25%
ULSIF 1.97% 1.76% 0.39%

MANDOLINE 0.16% 0.16% 0.12%

Table 3. Estimating standard and binary accuracy on MNLI using
SNLI. Average and maximum estimation errors for 8 models are
reported, with 95% confidence intervals.

METHOD
STANDARD ACCURACY BINARY ACCURACY

AVG. ERROR MAX. ERROR AVG. ERROR MAX. ERROR

SOURCE 6.2%± 3.8% 15.6% 3.0%± 2.3% 9.3%

CBIW 5.5%± 4.5% 17.9% 3.7%± 2.5% 9.8%
KMM 5.7%± 3.6% 14.6% 3.3%± 2.3% 8.7%
ULSIF 6.4%± 3.9% 16.0% 3.7%± 2.4% 9.1%

MANDOLINE 3.6%± 1.6% 5.9% 1.6%± 0.7% 2.7%

MANDOLINE provides substantially better estimates than
baselines while requiring no expensive additional training
or fine-tuning. For binary accuracy, MANDOLINE is able to
estimate performance on the MNLI dataset with an average
error of only 1.6%, when all baselines are worse than just
using the unadjusted source estimates. MANDOLINE’s es-
timates are also robust across the evaluated models, with a
maximum error that is 3.2× lower than the best baseline.

Application: Model Selection. We check that MANDO-
LINE can be used to rank models in terms of their target
performance. On 7/8 models, MANDOLINE correctly as-
sesses if the model improves or degrades (see Appendix C.2;
Table 9). MANDOLINE has a Kendall-Tau score of 0.786
(p-value 0.006) to the true MNLI performance—only con-
fusing rankings for the top-3 models, which are closely clus-
tered in performance on MNLI (1% performance spread).

6 Slice Design
A natural question raised by our work is: how should we
best design slicing functions? Key desiderata for slices are
that they should be task-relevant and capture important axes
of distribution shift. For many tasks, candidate “slicing
functions” in the form of side information are readily avail-
able. Here, slices may come directly in the form of metadata
(such as for CELEBA), or as user-defined heuristics (such as
the keyword matching we use for CIVILCOMMENTS) and
are already used for evaluation and monitoring purposes.

There are also software tools to create slices (Goel et al.,
2021), and a growing body of work around engineering, dis-
covering and utilizing them (Chen et al., 2019; McCoy et al.,
2019b; Ribeiro et al., 2020; Wang et al., 2018), including

Table 4. Reduction in MANDOLINE estimation error for SNLI+

→HANS–, as more slices are added to capture distribution shift.

Slices Average Estimation Error

Lexical Overlap 16.9%
+ Noisy Non-Entailment 11.8%
+ Sentence Structure 6.9%
+ Model Entropy 5.9%
+ CBIW Slice 0.6%
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automated methods (Polyzotis et al., 2019; Sagadeeva &
Boehm, 2021). Our central contribution is to describe how
to model and utilize this noisy side information in order to
address long-standing challenges in importance weighting.

We investigate how slice design affects the performance of
MANDOLINE. Section 6.1 discusses a challenging under-
specified setting, where along with domain knowledge,
MANDOLINE can incorporate standard IW as a slice to
achieve a “best-of-both-worlds” performance. Section 6.2
shows that a simple, automated slice design strategy works
well out-of-the-box for sentiment classification. These case
studies emphasize that understanding slice design is an im-
portant direction for future work.

6.1 Tackling Under-Specification with Slice Design

We use a challenging setting to highlight how careful slice
design can tackle under-specification. Concretely, we con-
sider distribution shifts when moving from SNLI (Bowman
et al., 2015) to HANS (McCoy et al., 2019a). HANS was
created to address the lack of diverse lexical overlap ex-
amples in SNLI, i.e. examples where the hypothesis is
created using a subset of words from the premise. Among
SNLI examples with lexical overlap, only 1.7% are labeled
non-entailment. By contrast, HANS only contains lexical
overlap examples, with a 50/50 class balance.

Due to the lack of non-entailment lexical overlap examples,
estimating performance on HANS using SNLI is extremely
challenging. Therefore, we construct a mixture of SNLI
and HANS, moving 1% of HANS to SNLI to create a new
source dataset (SNLI+), and keeping the remaining 99% of
HANS as the target data (HANS–).

In Table 4 we examine how changing the set of slices affects
MANDOLINE’s performance. Just using a single lexical
overlap slice yields high estimation error (16.9%), since
it does not adjust for the shift in the proportion of non-
entailment lexical overlap (1.7%→ 50%). To capture this
shift, we add noisy slices for contradiction (based on nega-
tion and token ordering), sentence structure (word substi-
tutions, length differences, verb tense) and the evaluated
model’s uncertainty (similar to SNLI→MNLI). These ad-
ditions further reduce estimation error by 2.86×.

Interestingly, CBIW—when fine-tuned with a
bert-base-uncased model—learns a classifier
that perfectly separates the HANS examples added to
SNLI+, giving low estimation error (1.2%). The flexibility
of MANDOLINE allows us to take advantage of this by
directly incorporating the CBIW predictions as a slicing
function, giving us a “best-of-both-worlds” that achieves
extremely low estimation error (0.6%). This highlights a
natural strength of MANDOLINE in being able to easily
incorporate information from other methods.

Table 5. Average and maximum estimation errors for target accu-
racy across 3 models on IMDB, with 95% confidence intervals.

SOURCE→ TARGET SHIFT AVG. ERROR MAX. ERROR

IMDB→ COUNTERF. IMDB (KAUSHIK ET AL., 2020) 3.1%± 1.4% 4.6%
IMDB→ SENTIMENT 140 (GO ET AL., 2009) 4.7%± 0.8% 5.6%
IMDB→ YELP POLARITY (ZHANG ET AL., 2015) 3.8%± 1.2% 4.9%
IMDB→ AMAZON POLARITY (ZHANG ET AL., 2015) 0.2%± 0.1% 0.3%

6.2 Slice Design “In-the-Wild”

Using sentiment classification on IMDB (Maas et al., 2011),
we show that automated slice design can be effective out-of-
the-box, without tuning MANDOLINE at all. We use only the
task-agnostic entropy-based slices described in Section 5.3.
Across 3 models, Table 5 shows that we get good estimates
when moving from IMDB to varied sentiment datasets. This
includes a large shift to Twitter analysis with SENTIMENT-
140, where MANDOLINE closely estimates a significant
absolute performance drop of upto 23% accuracy. Overall
our results here and in Section 5.3 show early promise that
simple, task-agnostic slices that rely on model entropy can
be quite effective.

7 Conclusion
We introduced MANDOLINE, a framework for evaluating
models under distribution shift that utilizes user-specified
slicing functions to reweight estimates. When these slicing
functions adequately capture the distribution shift, MANDO-
LINE can outperform standard IW by addressing issues of
support shift and complex, high-dimensional features. We
hope that our framework inspires future work on design-
ing and understanding slices and sets the stage for a new
paradigm of model evaluation.

Acknowledgements
We gratefully acknowledge the support of NIH under No.
U54EB020405 (Mobilize), NSF under Nos. CCF1763315
(Beyond Sparsity), CCF1563078 (Volume to Velocity), and
1937301 (RTML); ONR under No. N000141712266 (Unify-
ing Weak Supervision); the Moore Foundation, NXP, Xilinx,
LETI-CEA, Intel, IBM, Microsoft, NEC, Toshiba, TSMC,
ARM, Hitachi, BASF, Accenture, Ericsson, Qualcomm,
Analog Devices, the Okawa Foundation, American Family
Insurance, Google Cloud, Swiss Re, Total, the HAI-AWS
Cloud Credits for Research program, the Stanford Data
Science Initiative (SDSI),

References
Austin, P. An introduction to propensity score methods

for reducing the effects of confounding in observational
studies. Multivariate Behav Res., 2011.



MANDOLINE: Model Evaluation under Distribution Shift

Ben-Tal, A., den Hertog, D., Waegenaere, A. D., Melenberg,
B., and Rennen, G. Robust solutions of optimization
problems affected by uncertain probabilities. Manage-
ment Science, 59(2):341–357, 2013. ISSN 00251909,
15265501.

Borkan, D., Dixon, L., Sorensen, J., Thain, N., and Vasser-
man, L. Nuanced metrics for measuring unintended bias
with real data for text classification. WWW, 2019.

Bowman, S. R., Angeli, G., Potts, C., and Manning, C. D.
A large annotated corpus for learning natural language
inference. In Proceedings of the 2015 Conference on Em-
pirical Methods in Natural Language Processing, pp. 632–
642, Lisbon, Portugal, September 2015. Association for
Computational Linguistics. doi: 10.18653/v1/D15-1075.

Byrd, J. and Lipton, Z. What is the effect of importance
weighting in deep learning? In Chaudhuri, K. and
Salakhutdinov, R. (eds.), Proceedings of the 36th Inter-
national Conference on Machine Learning, volume 97 of
Proceedings of Machine Learning Research, pp. 872–881.
PMLR, 09–15 Jun 2019.

Chen, V., Wu, S., Ratner, A. J., Weng, J., and Ré, C. Slice-
based learning: A programming model for residual learn-
ing in critical data slices. In Wallach, H., Larochelle, H.,
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