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Abstract
We make significant progress toward the stochas-
tic shortest path problem with adversarial costs
and unknown transition. Specifically, we de-
velop algorithms that achieve Õ(

√
S2ADT?K)

regret for the full-information setting and
Õ(
√
S3A2DT?K) regret for the bandit feedback

setting, where D is the diameter, T? is the ex-
pected hitting time of the optimal policy, S is the
number of states, A is the number of actions, and
K is the number of episodes. Our work strictly im-
proves (Rosenberg and Mansour, 2020) in the full
information setting, extends (Chen et al., 2020)
from known transition to unknown transition, and
is also the first to consider the most challenging
combination: bandit feedback with adversarial
costs and unknown transition. To remedy the
gap between our upper bounds and the current
best lower bounds constructed via a stochastically
oblivious adversary, we also propose algorithms
with near-optimal regret for this special case.

1. Introduction
We study the stochastic shortest path (SSP) problem, where
a learner aims to find the goal state with minimum total
cost. The environment dynamics are modeled as a Markov
Decision Process (MDP) with S states, A actions, and a
fixed and unknown transition function. The learning pro-
ceeds in K episodes, where in each episode, starting from a
fixed initial state, the learner sequentially selects an action,
incurs a cost, and transits to the next state sampled from
the transition function. The episode ends when the learner
reaches a fixed goal state. We focus on regret minimization
in SSP and measure the performance of the learner by the
difference between her total cost over the K episodes and
that of the best fixed policy in hindsight.

The special case of SSP where an episode is guaranteed to
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end within a fixed number of steps is extensively studied
in recent years (often known as episodic finite-horizon re-
inforcement learning or loop-free SSP). The general (and
also the more practical) case, on the other hand, has only
been recently studied: Tarbouriech et al. (2020a) and Co-
hen et al. (2020) develop algorithms with sub-linear regret
for the case with fixed or i.i.d. costs. Adversarial costs is
later studied by Rosenberg and Mansour (2020) in the full-
information setting (where the cost is revealed at the end
of each episode). The minimax regret for adversarial costs
and known transition is then fully characterized in a recent
work by Chen et al. (2020), in both the full-information
setting and the bandit feedback setting (where only the cost
of visited state-action pairs is revealed).

In this work, we further extend our understanding of general
SSP with adversarial costs and unknown transition, for both
the full-information setting and the bandit setting. More
specifically, our results are (see also Table 1):

• (Section 4) In the full-information setting, we develop
an algorithm that achieves Õ(

√
S2ADT?K) regret

with high probability, where D is the diameter of
the MDP and T? is the expected time for the opti-
mal policy to reach the goal state. This improves
over the best existing bound Õ( 1

cmin

√
S2AD2K) or

Õ(
√
S2AT 2

?K
3/4 + D2

√
K) from (Rosenberg and

Mansour, 2020), where cmin ∈ [0, 1] is a global lower
bound of the cost for any state-action pair (it can be
shown that T? ≤ D/cmin).

• (Section 5) In the bandit setting, we develop another
algorithm that achieves Õ(

√
S3A2DT?K) regret with

high probability, which, as far as we know, is the first
result for this most challenging setting (bandit feed-
back, adversarial costs, and unknown transition).

• (Section 6) By combining previous results, it can be
shown that the lower bound for the full-information
and the bandit setting are Ω(

√
DT?K+D

√
SAK) and

Ω(
√
SADT?K+D

√
SAK) respectively, establishing

a gap from our upper bounds. Noting that these lower
bounds are constructed with a stochastically oblivious
adversary, we propose another algorithm for this spe-
cial case with near-optimal regret bounds that are only
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Table 1. Summary of our results. Here, D,S,A are the diameter, number of states, and number of actions of the MDP, T? is the expected
hitting time of the optimal policy, and K is the number of episodes. All algorithms can be implemented efficiently. Our results strictly
improve that of (Rosenberg and Mansour, 2020) in the full information setting, and are the first to consider the bandit setting with
unknown transition. Lower bounds here are a direct combination of lower bounds for stochastic costs and known transition (Chen et al.,
2020) and the lower bound for fixed costs and unknown transition (Cohen et al., 2020).

Adversarial costs Stochastic costs (Theorem 3) Lower bounds

Full information Õ(
√
S2ADT?K) (Theorem 1) Õ(

√
DT?K +DS

√
AK) Ω(

√
DT?K +D

√
SAK)

Bandit feedback Õ(
√
S3A2DT?K) (Theorem 2) Õ(

√
SADT?K +DS

√
AK) Ω(

√
SADT?K +D

√
SAK)

√
S factor larger than the lower bounds, a gap that is

still open even for loop-free SSP (Rosenberg and Man-
sour, 2019; Jin et al., 2020). Note that this setting is
slightly different from and harder than existing i.i.d.
cost settings; see discussions in “Related work” below.

Technical contributions Our algorithms are largely
based on those from the recent work of (Chen et al., 2020)
for the known transition setting. However, learning with
unknown transition and carefully controlling the transition
estimation error requires several new ideas. First, we ex-
tend the loop-free reduction of (Chen et al., 2020) to the
unknown transition setting (Section 3). Then, combining a
Bellman type law of total variance (Azar et al., 2017) and
a linear form of the variance of actual costs, we show that,
importantly, the bias introduced by transition estimation is
well controlled via the so-called skewed occupancy measure
proposed by Chen et al. (2020). This leads to our algo-
rithm for the full information setting. For the bandit setting,
apart from the techniques above and those from (Chen et al.,
2020), we further propose and utilize two optimistic cost
estimators inspired by the idea of upper occupancy bounds
from Jin et al. (2020) for loop-free SSP.

Finally, for the weaker stochastically oblivious adversaries,
we further augment the loop-free reduction to allow the
learner to switch to a fast policy at any time step if necessary,
which is crucial to ensure the near-optimal regret for our
simple optimism-based algorithm.

Related work The SSP problem was studied earlier
mostly from the control aspect where the goal is to find the
optimal policy efficiently with all parameters known (Bert-
sekas and Tsitsiklis, 1991; Bertsekas and Yu, 2013). Regret
minimization in SSP was first studied in (Tarbouriech et al.,
2020a; Cohen et al., 2020), with fixed and known costs and
unknown transition. Although their results can be general-
ized to i.i.d. costs as discussed in (Tarbouriech et al., 2020a,
Appendix I.1), this is in fact different from our stochas-
tic cost setting. Indeed, in their setting, the cost of each
state-action pair is drawn (independently of other pairs and
other episodes) every time it is visited, and is revealed to the
learner immediately. On the other hand, in our stochastic

setting, the costs of all state-action pairs in each episode are
jointly drawn from a fixed distribution (independently of
other episodes; but costs of different pairs could be corre-
lated) and fixed throughout the episode, and any information
about the costs is only revealed after the episode ends. As
argued in (Chen et al., 2020, Section 3.1), our setting is
information-theoretically harder as an extra dependence on
T? is unavoidable here, and thus our bounds for stochastic
costs are incomparable to these two works. To distinguish
these two different settings, we sometime refer to ours as a
setting with a stochastically oblivious adversary.

(Rosenberg and Mansour, 2020) is the first work that studies
SSP with adversarial costs with either known or unknown
transition, but only in the full-information setting. Later,
(Chen et al., 2020) develops efficient and minimax optimal
algorithms for both the full-information setting and the ban-
dit feedback setting, but only with known transition. As
mentioned, our results significantly improve and extend
these two works. One of the key technical contributions
of (Chen et al., 2020) is the loop-free reduction, which, as
discussed by the authors, is readily applied to the unknown
transition case, but leads to suboptimal bounds with unnec-
essary dependence on other parameters if applied directly.
Our algorithms are built on top of an extension of this loop-
free reduction, and we overcome the technical difficulty
they run into via a more careful analysis showing that the
transition estimation error can in fact be well controlled
using their idea of skewed occupancy measure.

As mentioned, the special case of loop-free SSP has been
extensively studied in recent years, for both fixed or i.i.d.
costs (see e.g., (Azar et al., 2017; Jin et al., 2018; Zanette
and Brunskill, 2019; Shani et al., 2020a)) and adversarial
costs (see e.g., (Neu et al., 2012; Zimin and Neu, 2013;
Rosenberg and Mansour, 2019; Jin et al., 2020; Shani et al.,
2020b; Cai et al., 2020)). In particular, the idea of upper
occupancy bound from (Jin et al., 2020), used to construct
an optimistic cost estimator with a confidence set of the
transition, is also one key technique we adopt in the bandit
setting.
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2. Preliminaries
We largely follow the notations of (Chen et al., 2020). An
SSP instance consists of an MDP M = (S, s0, g,A, P ) and
a sequence of K cost functions {ck}Kk=1. Here, S is a finite
state space, s0 ∈ S is the initial state, g /∈ S is the goal
state, A = {As}s∈S is a finite action space where As is
the available action set at state s. Let Γ = {(s, a) : s ∈
S, a ∈ As} be the set of all valid state-action pairs. The
transition function P : Γ× (S ∪ {g})→ [0, 1] is such that
P (s′|s, a) specifies the probability of transiting to the next
state s′ after taking action a ∈ As at state s, and we have∑
s′∈S∪{g} P (s′|s, a) = 1 for each (s, a) ∈ Γ. Finally,

ck : Γ → [0, 1] is the cost function that specifies the cost
for each state-action pair during episode k. We denote by
S = |S| andA = (

∑
s∈S |As|)/S the total number of states

and the average number of available actions respectively.

The learner interacts with the MDP through K episodes,
not knowing the transition function P nor the cost functions
{ck}Kk=1 ahead of time. In each episode k = 1, . . . ,K, the
adversary first decides the cost function ck, which, for the
majority of this work, can depend on the learner’s algorithm
and the randomness before episode k in an arbitrary way
(known as an adaptive adversary). Only in Section 6, we
switch to a weaker stochastically oblivious adversary who
draws ck independently from a fixed but unknown distribu-
tion. In any case, without knowing ck, the learner decides
which action to take in each step of the episode, starting
from the initial state s0 and ending at the goal state g. More
precisely, in each step i of episode k, the learner observes
its current state sik (with s1

k = s0). If sik 6= g, the learner
selects an action aik ∈ Asik and transits to the next state si+1

k

sampled from P (·|sik, aik); otherwise, the episode ends, and
we let Ik be the number of steps in this episode such that
sIk+1
k = g.

After each episode k ends, the learner receives some feed-
back on the cost function ck. In the full-information setting,
the learner observes the entire ck, while in the more chal-
lenging bandit feedback setting, the learner only observes
the costs of the visited state-action pairs, that is, ck(sik, a

i
k)

for i = 1, . . . , Ik.

Important concepts We introduce several necessary con-
cepts before discussing the goal of the learner. A stationary
policy is a mapping π such that π(a|s) specifies the proba-
bility of taking action a ∈ As in state s. It is deterministic if
for all s, π(a|s) = 1 holds for some action a (in which case
we write π(s) = a). A policy is proper if executing it in the
MDP starting from any state ensures that the goal state is
reached within a finite number of steps with probability 1
(and improper otherwise). We denote by Πproper the set of
all deterministic and proper policies, and make the basic as-
sumption Πproper 6= ∅ following (Rosenberg and Mansour,

2020; Chen et al., 2020).

We denote by Tπ(s) the expected hitting time it takes for a
stationary policy π to reach g starting from state s. The fast
policy πf is a deterministic policy that achieves the mini-
mum expected hitting time starting from any state (among
all stationary policies). The diameter of the MDP is defined
as D = maxs∈S minπ∈Πproper

Tπ(s) = maxs∈S T
πf (s),

which is the “largest shortest distance” between any state
and the goal state.

Given a transition function P , a cost function c, and
a proper policy π, we define the cost-to-go func-
tion JP,π,c : S → [0,∞) such that JP,π,c(s) =

E
[∑I

i=1 c(s
i, ai)

∣∣∣P, π, s1 = s
]
, where the expectation is

over the randomness of the action ai drawn from π(·|si),
the state si+1 drawn from P (·|si, ai), and the number of
steps I before reaching g. Similarly, we also define the
state-action value function QP,π,c : Γ → [0,∞) such that
QP,π,c(s, a) = E

[∑I
i=1 c(s

i, ai)
∣∣∣P, π, s1 = s, a1 = a

]
.

We use JP,πk and QP,πk to denote the cost-to-go and state-
action function with respect to the cost ck. When there is no
confusion, we also ignore the dependency on the transition
function (especially when P is the true transition function
of the MDP) and write JP,π,c as Jπ,c, JP,πk as Jπk , QP,π,c

as Qπ,c, and QP,πk as Qπk .

Learning objective The learner’s goal is to minimize her
regret, defined as the difference between her total cost and
the total expected cost of the best deterministic proper policy
in hindsight:

RK =

K∑
k=1

Ik∑
i=1

ck(sik, a
i
k)−

K∑
k=1

Jπ
?

k (s0),

where π? ∈ argminπ∈Πproper

∑K
k=1 J

π
k (s0) is the optimal

stationary and proper policy, which is referred to as optimal
policy in the rest of the paper. By the Markov property, π?

is in fact also the optimal policy starting from any other
state, that is, π? ∈ argminπ∈Πproper

∑K
k=1 J

π
k (s) for any

s ∈ S. As in (Chen et al., 2020), the following two quan-
tities related to π? play an important role: its expected
hitting time starting from the initial state T? = Tπ

?

(s0)
and its largest expected hitting time starting from any state
Tmax = maxs T

π?(s). Chen et al. (2020) show that
Tmax ≤ D

cmin
where cmin = mink min(s,a) ck(s, a) is the

minimum possible cost. For ease of presentation, we assume
D ≤ T? to simplify our bounds.

Knowledge on key parameters Our algorithms require
the knowledge of T? and Tmax, similarly to most algorithms
of (Chen et al., 2020). This requirement is seemingly restric-
tive, especially when against an adaptive adversary, in which
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case T? and Tmax depend on the behavior of both the algo-
rithm itself and the adversary. However, we argue that our
results are still meaningful: First, for an oblivious adversary,
T? and Tmax are fixed unknown quantity independent of the
learner’s behavior. Many works in online learning indeed
start with assuming knowledge on such quantities to get a
better understanding of the problem (and to tune these hyper-
parameters empirically), before one can eventually develop
a fully parameter-free algorithm. Thus, as the first step, we
believe that our work is still valuable. Second, in the lower
bound construction (Chen et al., 2020), T? is also known
to the learner, meaning that knowing T? does not make the
problem any easier information-theoretically. Finally, to
emphasize the difficulty of removing this requirement, we
note that this is still open even with known transition when
considering high-probability bounds. Chen et al. (2020)
were able to resolve this for expected regret bounds, but
extending their techniques to high-probability bounds is re-
lated to deriving a high-probability bound for the so-called
multi-scale expert problem, which is also still open (Chen
et al., 2021, Appendix A).

On the other hand, we also emphasize that our main im-
provement compared to (Rosenberg and Mansour, 2020) is
not due to the knowledge of these parameters. Indeed, under
the same setup where these parameters are unknown, we
can still run our algorithms by replacing T? with its upper
bound D/cmin and Tmax with some lower order term o(K),
and this still leads to better results compared to (Rosenberg
and Mansour, 2020). Details are deferred to Appendix F.

Finally, for simplicity, we also assume that D is known,
but our results can be extended even if D is unknown; see
Appendix E.

Occupancy measure Occupancy measure plays a key
role in solving SSP with adversarial costs, in both the
loop-free case (Neu et al., 2012; Zimin and Neu, 2013;
Rosenberg and Mansour, 2019; Jin et al., 2020) and the
general case (Rosenberg and Mansour, 2020; Chen et al.,
2020). A proper stationary policy π and a transition function
P induce an occupancy measure qP,π ∈ RΓ×(S∪{g})

≥0 such
that qP,π(s, a, s′) is the expected number of visits to
state-action-afterstate triplet (s, a, s′) when executing π
in an MDP with transition P , that is: qP,π(s, a, s′) =

E
[∑I

i=1 I{si = s, ai = a, si+1 = s′}
∣∣∣P, π, s1 = s0

]
.

When P is clear from the context (which is usually the case
if it is the true transition), we omit the P dependence and
only write qπ. We also let qπ(s, a) =

∑
s′ qπ(s, a, s′) be

the expected number of visits to state-action pair (s, a) and
qπ(s) =

∑
a∈As qπ(s, a) be the expected number of visits

to state s when executing π. Note that, given a function
q : Γ × (S ∪ {g}) → [0,∞), if it corresponds to an occu-
pancy measure, then the corresponding policy πq can be

obtained via πq(a|s) ∝ q(s, a), and the corresponding tran-
sition function can be obtained via Pq(s′|s, a) ∝ q(s, a, s′).
Also note that Tπ(s0) =

∑
(s,a) qπ(s, a) =

∑
s∈S qπ(s).

Occupancy measures allow one to turn the problem
into a form of online linear optimization where On-
line Mirror Descent is a standard tool. Indeed, we
have Jπk (s0) =

∑
(s,a)∈Γ qπ(s, a)ck(s, a) = 〈qπ, ck〉,

and if the learner executes a stationary proper pol-
icy πk in episode k, then the expected regret can be
written as E[RK ] = E

[∑K
k=1 J

πk
k (s0)− Jπ?k (s0)

]
=

E
[∑K

k=1 〈qπk − qπ? , ck〉
]
, exactly in the form of online

linear optimization.

Other notations We let Nk(s, a) denote the (random)
number of visits of the learner to (s, a) during episode
k, so that the regret can be re-written as RK =∑K
k=1 〈Nk − qπ? , ck〉. Denote by Ik(s, a) the indicator

of whether ck(s, a) is revealed to the learner in episode
k, so that in the full information setting Ik(s, a) =
1 always holds, and in the bandit feedback setting
Ik(s, a) is also the indicator of whether (s, a) is ever
visited by the learner. Throughout the paper, we use
the notation 〈f, g〉 as a shorthand for

∑
s∈S f(s)g(s),∑

(s,a) f(s, a)g(s, a),
∑H
h=1

∑
(s,a) f(s, a, h)g(s, a, h), or∑

(s,a)

∑
s′
∑H
h=1 f(s, a, s′, h)g(s, a, s′, h) when f and g

are functions in RS , RΓ, RΓ×[H] or RΓ×(S∪{g})×[H] (for
some H) respectively. Denote � as the Hadamard product
of tensors, so that (u � v)i = ui · vi (e.g. the feedback
on cost for both settings is thus ck � Ik). Let Fk denote
the σ-algebra of events up to the beginning of episode k,
and Ek be a shorthand of E[·|Fk]. To be specific, ck and
the learner’s policy in episode k is already determined at
the beginning of episode k, and the randomness in E[·|Fk]
is w.r.t the learner’s actual trajectory in episode k. For a
convex function ψ, the Bregman divergence between u and
v is defined as: Dψ(u, v) = ψ(u)−ψ(v)−〈∇ψ(v), u− v〉.
For an integer n, [n] denotes the set {1, . . . , n}.

3. Loop-free Reduction with Unknown
Transition

When the transition is known, (Chen et al., 2020) show that
it is possible to approximate a general SSP by a loop-free
SSP in a way such that any policy in the loop-free instance
can be transformed to a policy in the original instance with
only Õ(1) additional overhead in the final regret. More
importantly, this loop-free reduction provides simpler forms
for some variance-related quantities, which is the key in
achieving high probability bounds and dealing with bandit
feedback. As the first step, we extend this loop-free reduc-
tion to the unknown transition setting, and show that the
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additional regret is also very small.

Loop-free instance The construction of the converted
loop-free SSP instance is essentially the same as that in
(Chen et al., 2020): for the first H1 steps, we duplicate each
state by attaching it with a time step h, then we connect
all states to some virtual fast state that lasts for another H2

steps. We show the definition below for completeness (with
slight modifications for our purposes), and then discuss what
the necessary changes are to complete the reduction using
this loop-free SSP when the transition is unknown.

Definition 1. (Chen et al., 2020, Definition 5) For an SSP
instance M = (S, s0, g,A, P ) with cost functions c1:K , we
define, for horizon parameters H1, H2 ∈ N, another loop-
free SSP instance M̃ = (S̃, s̃0, g, Ã, P̃ ) with cost function
c̃1:K as follows:

• S̃ = X×[H] whereX = S∪{sf}, sf is an artificially
added “fast” state, and H = H1 +H2.

• s̃0 = (s0, 1), and the goal state g remains the same.

• Ã = A∪{af}, where af is an artificially added action.
The available action set at (s, h) is As for all s 6= sf
and h ∈ [H], and the only available action at (sf , h)
for h ∈ [H] is af .

• Transition from (s, h) to (s′, h′) is only possible when
h′ = h+ 1: for the first H1 layers, the transition fol-
lows the original MDP in the sense that P̃ ((s′, h +

1)|(s, h), a) = P (s′|s, a) and P̃ (g|(s, h), a) =
P (g|s, a) for all h < H1 and (s, a) ∈ Γ; from layer
H1 to layer H , all states transit to the fast state:
P̃ ((sf , h + 1)|(s, h), a) = 1 for all H1 ≤ h < H

and (s, a) ∈ Γ̃ , Γ∪{(sf , af )}; finally, the last layer
transits to the goal state always: P̃ (g|(s,H), a) = 1

for all (s, a) ∈ Γ̃. For notational convenience, we
also write P̃ ((s′, h+1)|(s, h), a) as P (s′|s, a, h), and
P̃ (g|(s, h), a) as P (g|s, a, h).

• Cost function is such that c̃k((s, h), a) = ck(s, a) and
c̃k((sf , h), af ) = 1 for all (s, a) ∈ Γ and h ∈ [H].
For notational convenience, we also write c̃k((s, h), a)
as ck(s, a, h).

For notations related to the loop-free version, we often
use a tilde symbol to distinguish them from the origi-
nal counterparts (such as M̃ and S̃), and for a function
f̃((s, h), a) or f̃((s, h), a, (s′, h + 1)) that takes a state-
action pair or a state-action-afterstate triplet in M̃ as in-
put, we often simplify it as f(s, a, h) (such as ck) or
f(s, a, s′, h) (such as q and P ). For such a function, we
will also use the notation ~h ◦ f ∈ RΓ̃×[H] (or ~h ◦ f ∈
RΓ̃×X×[H]) such that (~h ◦ f)(s, a, h) = h · f(s, a, h) (or

Algorithm 1 RUN(π̃,B)

Input: a policy π̃ for M̃ and a Bernstein-SSP instance B.
Initialize: s1 = s0 and h = 1.
while sh 6= g and h ≤ H1 do

Draw action ah ∼ π̃(·|(sh, h)). If ah = af , break.2

Play ah, observe sh+1, increment h← h+ 1.
if sh 6= g then

Invoke B with a new episode starting with state sh,
follow its decision until reaching g, and always feed it
cost 1 for all state-action pairs.

Return: trajectory {s1, a1, s2, a2, . . . , ah−1, sh}.

(~h ◦ f)(s, a, s′, h) = h · f(s, a, s′, h)). Similarly, for a func-
tion f ∈ RΓ̃, we use the same notation ~h◦f ∈ RΓ̃×[H] such
that (~h ◦ f)(s, a, h) = h · f(s, a). Finally, for a occupancy
measure q ∈ [0, 1]Γ̃×X×[H] of M̃ , we write q(s, a, h) =∑
s′∈X q(s, a, s

′, h) and q(s, a) =
∑H
h=1 q(s, a, h).

The reduction Now, we are ready to describe the reduc-
tion, that is, how one can convert an algorithm for M̃ to an
algorithm for M . Specifically, given policies π̃1, . . . , π̃K
for M̃ , we define a sequence of non-stationary policies
σ(π̃1), . . . , σ(π̃K) for M as follows. For each episode k,
during the first h ≤ H1 steps, we follow π̃(·|(s, h)) when at
state s. After the first H1 steps (if not reaching g yet), Chen
et al. (2020) simply execute the fast policy πf , available
since the transition is known, to reach the goal state as soon
as possible. In our case with unknown transition, we pro-
pose to approximate the fast policy’s behavior by running
the Bernstein-base algorithm of (Cohen et al., 2020) de-
signed for the fixed cost setting and pretending that all costs
are 1. More precisely, we initialize a copy of their algorithm
(that we call Bernstein-SSP) for M (not M̃ ) ahead of time,
and whenever the learner does not reach the goal within H1

steps in some episode, we invoke Bernstein-SSP as if this is
a new episode for this algorithm, follow its decisions until
reaching g, and always feed it a cost of 1 for all state-action
pairs.1 We describe this converted policy in the procedure
RUN (Algorithm 1).

The rationale of using Bernstein-SSP in this way is simply
because when the costs are all 1, the fast policy is exactly
the optimal policy, and since Bernstein-SSP guarantees low
regret against the optimal policy in the fixed cost setting, it
behaves similarly to the fast policy in the long run in our
reduction.

1This means that Bernstein-SSP is dealing with different initial
states for different episodes, which is not exactly the same setting
as the original work of (Cohen et al., 2020) but makes no real
difference in their regret guarantee as pointed out in (Tarbouriech
et al., 2020b, Appendix C).

2This if statement is only necessary for Section 6.
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This allows us to mostly preserve the properties of the re-
duction of (Chen et al., 2020). To state these properties, we
need the following notations. When executing σ(π̃k) in M
for episode k, we adopt the notation Ñk and let Ñk(s, a, h)
be 1 if (s, a) is visited at time step h ≤ H1, or 0 otherwise;
and Ñk(sf , af , h) be 1 if H1 < h ≤ H and the goal state g
is not reached within H1 steps, or 0 otherwise. Clearly, Ñk
for M̃ is the analogue ofNk forM , and Ñk(s, a, h) follows
the same distribution as the number of visits to state-action
pair ((s, h), a) when executing π̃ in M̃ . In addition, define
a deterministic policy π̃? for M̃ that mimics the behavior
of π? in the sense that π̃?(s, h) = π?(s) for s ∈ S and
h ≤ H1 (for larger h, s has to be sf and the only available
action is af ). With these notations, the next lemma shows
that the reduction introduces little regret overhead when the
horizon parameters H1 and H2 are set appropriately.

Lemma 1. Suppose H1 ≥ 8Tmax lnK, H2 = d2De, K ≥
D, and π̃1, . . . , π̃K are policies for M̃ . Then with probabil-
ity at least 1− δ, the regret of executing σ(π̃1), . . . , σ(π̃K)
in M satisfies:

RK ≤
K∑
k=1

〈Ñk − qπ̃? , ck〉+ Õ
(
D3/2S2A

(
ln 1

δ

)2)
.

Reduction alone is not enough While all of our algo-
rithms make use of this reduction, it is worth emphasizing
that the reduction alone is not enough. Put differently, apply-
ing existing loop-free algorithms to M̃ directly only leads
to sub-optimal bounds with dependence on H = Õ(Tmax).
This is true already in the known transition case (Chen et al.,
2020), and is even more so in our unknown transition case
where one needs to estimate the transition. On the other
hand, what the reduction accomplishes is to make sure that
some important variance-related quantities take a simple
form that is linear in both the occupancy measure and the
cost function. For example, we will make use of the follow-
ing important lemma, which is essentially taken from (Chen
et al., 2020) but includes an extra intermediate result (the
first inequality) important for Section 6. In Section 4, we
will see another important property of the reduction.

Lemma 2. Consider executing a policy σ(π̃) in episode
k. Then Ek[〈Ñk, ck〉2] ≤ 2〈qπ̃, ck � Qπ̃k 〉 ≤ 2〈qπ̃, J π̃k 〉 =

2〈qπ̃,~h ◦ ck〉.

4. Adversarial Costs with Full Information
In the full-information setting, the algorithm of (Chen
et al., 2020) maintains a sequence of occupancy measures
q1, . . . , qK for M̃ , obtained via Online Mirror Descent
(OMD) over a sophisticated skewed occupancy measure
space. In their analysis, the regret for M̃ from Lemma 1
is decomposed as

∑K
k=1〈Ñk − qπ̃? , ck〉 =

∑K
k=1〈Ñk −

qk, ck〉 +
∑K
k=1〈qk − qπ̃? , ck〉, where the first term is the

sum of a martingale difference sequence whose variance
can be bounded using Lemma 2, and the second term is
controlled by the standard OMD analysis. Importantly, due
to the skewed occupancy measure, the bound for the sec-
ond term contains a negative bias in terms of −〈qk,~h ◦ ck〉,
which can then cancel the variance from the first term in
light of Lemma 2.

When the transition is unknown, we follow the ideas of the
SSP-O-REPS algorithm (Rosenberg and Mansour, 2020)
and maintain a confidence set of plausible transition func-
tions, which contains the true transition P with high prob-
ability. This step is conducted via the procedure TransEst
(Algorithm 4), which takes a trajectory returned by RUN
(along with other statistics) and outputs an updated confi-
dence set based on standard concentration inequalities. We
defer the details to Section B.1.

With a confidence set P at hand, we define the set of plau-
sible occupancy measures ∆̃(T,P) as follows, which is
parameterized by P and a size parameter T (recall the short-
hand q(s, a, h) =

∑
s′ q(s, a, s

′, h)):{
q ∈ [0, 1]Γ̃×X×[H] :

H∑
h=1

∑
(s,a)∈Γ̃

q(s, a, h) ≤ T ;

∑
a∈Ã(s,h)

q(s, a, h) =
∑

(s′,a′)∈Γ̃

q(s′, a′, s, h− 1), ∀h > 1;

∑
a∈Ã(s,1)

q(s, a, 1) = I{s = s0}, ∀s ∈ X ; Pq ∈ P

}
. (1)

When P = {P}, this is equivalent to the set used by (Chen
et al., 2020), where the first inequality constraint makes sure
that the induced policy reaches the goal within T steps in
expectation, the equality constraints make sure that q is a
valid occupancy measure, and the last constraint Pq = P
makes sure that the induced transition is consistent with the
true one. We naturally generalize the set to the unknown
transition case by enforcing the induced transition Pq to be
within a given confidence set.

Then, in each episode k, with Pk being the current confi-
dence set, we define the skew occupancy measure space for
some parameter λ as

Ωk =
{
φ = q + λ~h ◦ q : q ∈ ∆̃(T,Pk)

}
. (2)

which is again a direct generalization of (Chen et al., 2020)
from {P} to Pk. Our algorithm then maintains a sequence
of skewed occupancy measures φ1, . . . , φK based on the
standard OMD framework:

φk+1 = argmin
φ∈Ωk+1

〈φ, ck〉+Dψ(φ, φk)
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Algorithm 2 SSP-O-REPS with Loop-free Reduction and
Skewed Occupancy Measure
Input: Upper bound on expected hitting time T , horizon
parameter H1, confidence level δ

Parameters: η = min
{

1
8 ,
√

T
DK

}
, λ = 4

√
S2A
DTK , H2 =

d2De, H = H1 +H2

Define: regularizer

ψ(φ) =
1

η

H∑
h=1

∑
(s,a)∈Γ̃

∑
s′∈X∪{g}

φ(s, a, s′, h) lnφ(s, a, s′, h)

Initialize: N1(s, a) = M1(s, a, s′) = 0 for all (s, a, s′) ∈
Γ × (S ∪ {g}), a Bernstein-SSP instance B, P1 is the set
of all possible transition functions, φ1 = argminφ∈Ω1

ψ(φ)
(where Ωk is defined in Eq. (2)).
for k = 1, . . . ,K do

Extract q̂k from φk = q̂k + λ~h ◦ q̂k and let π̃k = π̃q̂k .
Execute policy π̃k: τk = RUN(π̃k,B), receive ck.
Update Pk+1 = TransEst(N,M, δ,H1, H2, τk).
Update φk+1 = argminφ∈Ωk+1

〈φ, ck〉+Dψ(φ, φk).

where ψ is the negative entropy regularizer. In each episode,
extracting q̂k from φk = q̂k + λ~h ◦ q̂k, we obtain a policy
π̃q̂k for M̃ , and then execute it via the RUN procedure (Al-
gorithm 1). The complete pseudocode of our algorithm is
presented in Algorithm 2, which can be efficiently imple-
mented (see related discussion in (Rosenberg and Mansour,
2020)).

Analysis Let qk be the occupancy measure with respect to
the policy π̃k and the true transition P . We can then decom-
pose the regret from Lemma 1 as

∑K
k=1〈Ñk − qπ̃? , ck〉 =∑K

k=1〈Ñk − qk, ck〉+
∑K
k=1〈q̂k − qπ̃? , ck〉+

∑K
k=1〈qk −

q̂k, ck〉, where the last term measures the difference between
qk and q̂k due to the transition estimation error and is the
only extra term compared to the known transition case dis-
cussed at the beginning of this section. One of our key
technical contributions is to prove that, thanks to the struc-
ture of the loop-free instance M̃ , this term is in fact also
bounded by the variance term seen earlier in Lemma 2:

K∑
k=1

〈qk − q̂k, ck〉 = Õ


√√√√S2A

K∑
k=1

Ek[〈Ñk, ck〉2]

 .

(3)
See Lemma 9 for the complete statement, whose proof
makes use of a Bellman type law of total variance for
Bernstein-based confidence sets (Lemma 4).

With this result and Lemma 2, one can see that just like
the first term

∑K
k=1〈Ñk − qk, ck〉, the extra transition error

term can also be handled by the negative bias introduced by

the skewed occupancy measure space as discussed earlier.
This leads to our final regret guarantee of Algorithm 2.
Theorem 1. If T ≥ T? + 1, H1 ≥ 8Tmax lnK, and K ≥
16S2AH2, then with probability at least 1−6δ, Algorithm 2
ensures RK = Õ(

√
S2ADTK +H3S2A).

We emphasize that our way to handle the transition esti-
mation error

∑K
k=1 〈qk − q̂k, ck〉 is novel. Specifically, all

previous works directly upper bound this error using the
definition of confidence interval, which in our case intro-
duces an undesirable Tmax dependency. Instead, we derive
a specific upper bound (Eq. (3)) of the transition estimation
error that can be cancelled out by the negative term intro-
duced by the skewed occupancy measure. This technique
is especially useful in obtaining data-dependent bound in
the unknown transition case, since it replaces the error by a
term related to the optimal policy, which is hard to achieve
if we directly upper bound the error.

Besides this new way to handle the transition estimation er-
ror, another source of improvement compared to the analysis
of (Rosenberg and Mansour, 2020) is to make use of the fact∑K
k=1 〈qπ? , ck〉 ≤ DK in the OMD analysis. Again, we

emphasize that even without the knowledge of T? or Tmax,
our analysis leads to better bounds compared to theirs; see
Appendix F.

Since Chen et al. (2020) show a lower bound of Ω(
√
DT?K)

for stochastic costs and known transition, and Cohen et al.
(2020) show a lower bound of Ω(D

√
SAK) for fixed

costs and unknown transition, we know that in our setting,
Ω(
√
DT?K +D

√
SAK) is a lower bound, which shows a

gap of
√
ST?/D from our upper bound. Closing the

√
S

gap is still open even for the loop-free case (Rosenberg and
Mansour, 2019; Jin et al., 2020). On the other hand, closing
the
√
T?/D gap also seems rather challenging for adver-

sarial costs, but is indeed possible for stochastic costs as
we show in Section 6 (note that the lower bound is indeed
constructed with stochastic costs).

5. Adversarial Costs with Bandit Feedback
We now consider the bandit feedback setting which, even
when the transition is known, is quite challenging already
and requires several new techniques as shown by Chen et al.
(2020). Our algorithm is built on top of their Log-barrier
Policy Search algorithm with the transition estimation com-
ponent integrated in a similar way as in Section 4. We defer
most details to Appendix C but only highlight two important
new ingredients below.

A standard technique to deal with adversarial costs and
bandit feedback in online learning is to feed the OMD algo-
rithm with importance-weighted cost estimators (since ck is
now only partially observed). Specifically, the Log-barrier
Policy Search algorithm of Chen et al. (2020) feeds OMD
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with cost ĉk−γb̂k (for some parameter γ), where ĉk(s, a) =
Ñk(s,a)
qk(s,a) ck(s, a) and b̂k(s, a) =

∑
h h·qk(s,a,h)ĉk(s,a)

qk(s,a) are two
importance-weighted estimators. Here, qk(s, a) is defined
as
∑H
h=1 qk(s, a, h) and Ñk is defined above Lemma 1 with

mean qk(s, a), so that ĉk is an unbiased estimator of ck. The
reason of having b̂k, on the other hand, is relatively techni-
cal, but it eventually serves as a way of reducing variance
by introducing a negative bias. The immediate challenge to
generalize these estimators to the unknown transition setting
is that qk, the occupancy measure with respect to the policy
π̃k for episode k and the true transition P , is now unknown.

To address this issue for ĉk, we follow the idea of (Jin
et al., 2020) and construct the following optimistic biased
estimator: ĉk(s, a) = Ñk(s,a)

uk(s,a) ck(s, a) where uk(s, a) =

maxP̂∈Pk qP̂ ,π̃k(s, a), called the upper occupancy bound,
is the largest possible expected number of visits to (s, a)
of policy π̃k under a plausible transition from the confi-
dence set Pk. Clearly, qk(s, a) ≤ uk(s, a) holds (with high
probability), making ĉk(s, a) an optimistic underestimator
which is important in reducing variance as shown in Jin et al.
(2020). Note that uk can be efficiently computed since it
boils down to solving a linear program.3

On the other hand, b̂k does not appear before in the loop-free
setting of Jin et al. (2020) and requires some more careful
thinking. Other than replacing qk in the denominator with
uk, we also need to deal with qk(s, a, h) in the numerator.
It turns out that the right generalization is to let

b̂k(s, a) =
maxP̂∈Pk

∑
h h · qP̂ ,π̃k(s, a, h)ĉk(s, a)

uk(s, a)
,

so that
∑
h h · qk(s, a, h)ĉk(s, a) ≤ uk(s, a)̂bk(s, a) holds

(with high probability), which in turn makes sure that the
bias introduced by b̂k is large enough to cancel some impor-
tant variance term, as shown in Lemma 16. Similarly, b̂k
can also be computed efficiently (c.f. Footnote 3).

Our final algorithm is summarized in Algorithm 5 of Ap-
pendix C. Noting that the bias introduced by the upper
occupancy bounds is eventually also related to the transition
estimation error that has been analyzed in Lemma 9, we are
able to prove the following regret guarantee.

Theorem 2. If T ≥ T? + 1, H1 ≥ 8Tmax lnK, and
K is large enough (K & S3A2H2), then with prob-
ability at least 1 − 30δ, Algorithm 5 ensures RK =

Õ
(√

S3A2DTK +H3S3A2
)

.

Compared to the full-information setting, here we pay an
extra

√
SA factor in the regret bound, a price that does not

3To see this, note that uk(s, a) is equivalent to maxq q(s, a)

where the maximization is over the set {q ∈ ∆̃(∞,Pk) : πq =
π̃k}, which consists of polynomially many linear constraints.

exist in the loop-free setting (Rosenberg and Mansour, 2019;
Jin et al., 2020). This comes from a technical lemma on
bounding

∑K
k=1 〈uk − qk, ck〉 in terms of

∑K
k=1〈qk,~h◦ck〉

so that it can be canceled by the skew occupancy measure;
see Lemma 11. Removing this extra factor is an impor-
tant future direction. On the other hand, by combing the
lower bounds of (Chen et al., 2020) and (Cohen et al., 2020)
again, we have that Ω(

√
SADT?K+D

√
SAK) is the best

existing lower bound for this setting.

6. Stochastically Oblivious Adversary
Given the gap between our upper and lower bounds, in this
section, we consider a weaker stochastically oblivious ad-
versary and develop a simple algorithm with regret bounds
only
√
S times larger than the aforementioned lower bounds.

Specifically, in this setting the adversary generates ahead of
the time the cost functions c1, . . . , cK as i.i.d. samples from
a fixed and unknown distribution with mean c : Γ→ [0, 1].
The regret measure is also changed to the more standard
pseudo-regret R̃K =

∑K
k=1 〈Nk, ck〉 − 〈qπ? , c〉 where

π? ∈ argminπ J
π,c(s0).4 We remind the readers that the

lower bound is indeed for the pseudo-regret and is con-
structed via this weaker adversary, and also that this is
slightly different from the setting studied in (Tarbouriech
et al., 2020a; Cohen et al., 2020) as mentioned in Section 1.

Our algorithm is based on the well-known optimism in face
of uncertainty principle, which finds the best policy among
all plausible MDPs subject to some additional constraints.
First, we compute an optimistic cost function ĉk defined via
ĉk(s, a) being5

max

{
c̄k(s, a)− 2

√
Ack(s, a)c̄k(s, a)− 7Ack(s, a), 0

}
,

(4)

where c̄k(s, a) =
∑k−1
j=1 cj(s,a)Ij(s,a)

Nc
k(s,a) is the empirical cost

mean, Nc
k(s, a) = max

{∑k−1
j=1 Ij(s, a), 1

}
is the number

of times the cost at (s, a) was revealed (covering both the
full-information and the bandit settings), and Ack(s, a) =
ln(2SAK/δ)

Nc
k(s,a) . Then, we find the best occupancy measure

with respect to this optimistic cost, with the same constraint
∆̃(T,Pk) as in previous sections:

q̂k = argmin
q∈∆̃(T,Pk)

〈q, ĉk〉 , (5)

and finally execute the induced policy π̃k = π̃q̂k as before.

4We can get a bound for the standard regret with an extra cost of
order Õ(

√
DT?K). Therefore, the standard regret and the pseudo

regret are of the same order. We use the latter only for simplicity
and convention.

5This is not to be confused with the estimator used in Section 5
with the same notation overloaded.
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Algorithm 3 A near-optimal algorithm for stochastically
oblivious adversary
Input: Upper bound on expected hitting time T , horizon
parameter H1 and confidence level δ
Parameters: H2 = d2De, H = H1 +H2.
Initialization: N1(s, a) = M1(s, a, s′) = 0 for all
(s, a, s′) ∈ Γ × (S ∪ {g}), a Bernstein-SSP instance B,
P1 is the set of all possible transition functions.
for k = 1, . . . ,K do

Compute the optimistic cost ĉk (Eq. (4)).
Compute q̂k = argminq∈∆̃(T,Pk) 〈q, ĉk〉.
Execute π̃k = π̃q̂k : τk = RUN(π̃k,B), receive ck � Ik.
Update Pk+1 = TransEst(N,M, δ,H1, H2, τk).

There is, however, one caveat in the approach above.
Our analysis relies on one crucial property of π̃k:
JPk,π̃k,ĉk(s, h) ≤ D, that is, its state value with respect
to the optimistic transition/cost is always no more than the
diameter D. This holds automatically if we did not impose
the hitting time constraint in Eq. (5), due to the existence
of the fast policy πf whose state value is never worse than
D. With the hitting time constraint, however, this might not
hold anymore. To address this, we slightly modify the loop-
free instance M̃ and give every state (s, h) (for h ≤ H1) a
shortcut to directly transit to (sf , H1 + 1) by taking action
af , which is equivalent to allowing the learner to switch
to Bernstein-SSP (whose role is similar to the fast policy)
at any state and any time (c.f. Footnote 2). This ensures
JPk,π̃k,ĉk(s, h) . D as desired; see Lemma 18. This modi-
fication can be implemented by a small change to the defini-
tion of ∆̃, and we defer the details to Appendix D. With this
in mind, our final algorithm is presented in Algorithm 3.

Analysis The key reason that we can improve our regret
bounds in this stochastic setting is as follows. First, since the
estimated cost converges to the true cost fast enough, the pre-
vious dominating term

∑K
k=1 〈qk − q̂k, ck〉 can now be re-

placed by
∑K
k=1 〈qk − q̂k, ĉk〉. Then, similar to Eq. (3), the

latter is in the order of
√
S2A

∑K
k=1 Ek[〈Ñk, ĉk〉2], which

is further bounded by
√
S2A

∑K
k=1 〈qk, ĉk �Qπ̃k,ĉk〉 ac-

cording to the first inequality of Lemma 2. Finally, we make
use of the aforementioned property JPk,π̃k,ĉk(s, h) ≤ D
to show that

〈
qk, ĉk �Qπ̃k,ĉk

〉
is roughly D2, leading to

a final bound of Õ(
√
S2AD2K) and improving over the

Õ
(√
S2ADT?K

)
bound in Theorem 1. We summarize our

results in the following theorem.

Theorem 3. If T ≥ T? + 1, H1 ≥ 8Tmax lnK, and
K ≥ H2, then Algorithm 3 ensures with probability at
least 1− 30δ, R̃K = Õ(

√
DTK +DS

√
AK +H3S3A2)

in the full information setting and R̃K = Õ(
√
DTSAK +

DS
√
AK +H3S3A2) in the bandit feedback setting.

Comparing with the lower bounds, one sees that our bounds
are only

√
S factor larger, a gap that also appears in other

settings such as (Cohen et al., 2020). Unfortunately, we
are not able to obtain the same improvement in the general
adversarial setting, and we in fact conjecture that the lower
bound there can be improved to at least Ω

(√
SADT?K

)
,

which, if true, would require a lower bound construction
that is actually adversarial, instead of being stochastic as in
most existing lower bound proofs.
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