
SPREADSHEETCODER: Formula Prediction from Semi-structured Context

Figure 8. Top-1 formula accuracies for different sketch lengths,
excluding headers in the context.

A. An Extended Discussion of Related Work
Various neural network approaches have been proposed
for the FlashFill benchmark (Parisotto et al., 2017; Devlin
et al., 2017; Vijayakumar et al., 2018). Specifically, both
R3NN (Parisotto et al., 2017) and RobustFill (Devlin et al.,
2017) are purely statistical models, and RobustFill performs
better. In a RobustFill model, each formula is executed on a
single data row, thus each row is independently fed into a
shared encoder. Afterwards, at each decoding step, a shared
LSTM decoder generates a hidden state per data row, which
are then fed into a max pooling layer. Finally, the pooled
hidden state is fed into a fully-connected layer to predict the
formula token. On the other hand, in (Vijayakumar et al.,
2018), they design a neural network to guide the deductive
search performed by PROSE (Polozov & Gulwani, 2015), a
commercial framework for input-output program synthesis.
A recent work proposes neural-guided bottom-up search for
program synthesis from input-output examples, and they
extend the domain-specific language of FlashFill to support
more spreadsheet programs (Odena et al., 2020).

Besides formula prediction, some previous work has stud-
ied other applications related to spreadsheets, including
smell detection (Hermans et al., 2012a; Cheung et al., 2016;
Singh et al., 2017; Azam et al., 2019), clone detection (Her-
mans et al., 2013; Dou et al., 2016; Zhang et al., 2020),
and structure extraction for spreadsheet tables (Dong et al.,
2019a;b). Our proposed encoder architecture could poten-
tially be adapted for these spreadsheet tasks as well, and we
leave it for future work.

B. More Experimental Results
For the setting where the model input does not include head-
ers, corresponding to Table 3 in Section 4.3.2, we present
the sketch and range accuracies in Table 4, and the break-
down accuracies on formulas of different sketch lengths in
Figure 8. We observe that the performance degradation is

Table 4. Breakdown accuracies on the test set, excluding headers
in the context.

(a) Sketch accuracy.

Approach Top-1 Top-5 Top-10

Full Model 28.33% 62.55% 72.89%
− Column-based BERT 28.40% 61.60% 74.92%
− Row-based BERT 27.71% 60.84% 73.43%
− Pretraining 28.78% 62.37% 74.61%

Row-based RobustFill 25.78% 42.66% 50.17%
Column-based RobustFill 26.15% 47.78% 57.72%
No context 25.19% 47.08% 52.70%

(b) Range accuracy.

Approach Top-1 Top-5 Top-10

Full Model 22.60% 47.11% 53.84%
− Column-based BERT 22.82% 47.76% 54.98%
− Row-based BERT 22.47% 46.14% 54.51%
− Pretraining 23.48% 47.27% 54.59%

Row-based RobustFill 21.01% 38.21% 43.89%
Column-based RobustFill 21.27% 37.80% 43.77%
No context 11.80% 25.54% 38.07%

more severe for formulas of sketch lengths 2–3.

C. More Dataset Details
Although in principle, our model could generate formulas us-
ing any operator in the spreadsheet language, some kinds of
value references are impossible to predict from local context,
thus we remove formulas with such values from our dataset.
Specifically, we exclude formulas that use the HYPERLINK
function with a literal URL, since those are merely ”stylistic”
formulas that perform no computation beyond presenting
a URL as a clickable link. As discussed in Section 2, we
also filtered out formulas with cross-references from other
tabs or spreadsheets. In total, the formulas filtered out after
these two steps constitute around 40% of all formulas. We
further filtered out formulas with cell references farther than
10 rows or columns from the target cell in either direction,
and formulas with absolute cell ranges. In this way, about
45% of the original set of formulas are kept in our dataset.

Meanwhile, we observe that some spreadsheets may have
tens of thousands of rows including the same formula, and
including all of them in the dataset could bias our data
distribution. Therefore, when multiple rows in the same
spreadsheet table include the same formula in the same
column, we keep the first 10 occurrences of such a formula,
and create one data sample per formula. In this way, we
extract around 846K formulas from 20M formulas before
this filtering step, and we split them into 770K training
samples, 42K for validation, and 34K for testing.

In total, around 100 operators are covered in our output



SPREADSHEETCODER: Formula Prediction from Semi-structured Context

vocabulary. Among all spreadsheet formulas included in
our filtered dataset, we list the 30 most commonly used
spreadsheet functions and operators with their types 5 as
follows: SUM (Math), + (Operator, equivalent to ADD), -
(Operator, equivalent to MINUS), * (Operator, equivalent
to MULTIPLY), / (Operator, equivalent to DIV), & (Oper-
ator, equivalent to CONCAT), AVERAGE (Statistical), LEN
(Text), UPLUS (Operator), STDEV (Statistical), COUNTA
(Statistical), MAX (Statistical), LEFT (Text), IFERROR
(Logical), ABS (Math), MEDIAN (Statistical), UMINUS (Op-
erator), CONCATENATE (Text), ROUND (Math), WEEKNUM
(Date), AVERAGEA (Statistical), MIN (Statistical), COUNT
(Statistical), TRIM (Text), COS (Math), SIN (Math), SINH
(Math), TODAY (Date), IF (Logical), MONTH (Date). We
observe that most of these functions and operators are for
mathematical calculation, statistical computation, and text
manipulation. However, people also write conditional state-
ments, and spreadsheet formulas for calculating the dates.

The spreadsheet functions and operators utilized in the
Enron corpus are: + (Operator, equivalent to ADD), SUM
(Math), - (Operator, equivalent to MINUS), UPLUS (Opera-
tor), * (Operator, equivalent to MULTIPLY), / (Operator,
equivalent to DIV), AVERAGE (Statistical), MIN (Statisti-
cal), MAX (Statistical), UMINUS (Operator), COUNT (Statis-
tical), COUNTA (Statistical), ABS (Math), LN (Math), DAY
(Date), WEEKDAY (Date), and STDEV (Statistical).

D. More Discussion of the FlashFill-like
Setting

Following prior work on FlashFill (Devlin et al., 2017;
Parisotto et al., 2017; Vijayakumar et al., 2018), we evaluate
model performance when different numbers of data rows
are presented to the model as input. Specifically, when the
input includes 1–11 data rows, we grow the input from the
target row upward. Our full data context includes 21 data
rows, with 10 rows above the target cell, 10 rows below the
target cell, and 1 row where the target cell locates. Con-
sistent with prior work, when we vary the number of input
data rows during inference, we always evaluate the same
model trained with the full data context including 21 data
rows. Since RobustFill independently encodes each row,
it supports variable number of input rows by design. For
our models with the tabular input representation, we set the
rows to be empty when they are out of the input scope, and
apply a mask to indicate that the corresponding data values
are invalid.

5The function types are based on the Google Sheets
function list here: https://support.google.com/docs/
table/25273?hl=en.

E. Implementation Details
Data preprocessing. The content in each cell includes its
data type and value, and we concatenate them as a token
sequence. For example, A2 in Figure 1a is represented as
num 0. As discussed in Section 3.1, we concatenate all cell
values in the same row as a token sequence, where values
of different cells are separated by the [SEP] token. Each
data row fed into the model includes L = 128 tokens, and
when the concatenated token sequence exceeds the length
limit, we discard cells that are further away from the target
cell. For column-wise representation, we produce token
embeddings independently for each column-wise bundle
Scb = [Hc, C3b−1, C3b, C3b+1] for b ∈ [−3, 3], where Ci is
a token sequence produced by concatenating all tokens of
the cells in column Ci.

Output vocabulary construction. To construct the out-
put formula token vocabulary, we filtered out tokens that
appear less than 10 times in the training set, so that the
vocabulary contains 462 tokens, out of 2625 tokens before
filtering. In total, around a hundred operators are covered
in our output vocabulary, including 82 spreadsheet-specific
functions, and other general-purpose numerical operators
(e.g., +, -).

Hyper-parameters. The formula decoder is a 1-layer
LSTM with the hidden size of 512. We train the model
with the Adam optimizer, with an initial learning rate of
5e-5. We train models for 200K minibatch updates, with a
batch size 64. We set the dropout rate to be 0.1 for training.
The norm for gradient clipping is 1.0.


