A Unified Lottery Ticket Hypothesis for Graph Neural Networks

A1l. More Implementation Details

Datasets Download Links. As for small-scale datasets,
we take the commonly used semi-supervised node classifi-
cation graphs: Cora, Citeseer and pubMed. For larger-scale
datasets, we use three Open Graph Benchmark (OGB) (Hu
et al., 2020) datasets: Ogbn-ArXiv, Ogbn-Proteins and Ogbl-
Collab. All the download links of adopted graph datasets
are included in Table A3.

Table A3. Download links of graph datasets.
Dataset ‘

Download links and introduction websites

Cora https://lings-data.soe.ucsc.edu/public/Ibc/cora.tgz
Citeseer https://lings-data.soe.ucsc.edu/public/lbc/citeseer.tgz
PubMed https://lings-data.soe.ucsc.edu/public/Pubmed-Diabetes.tgz

Ogbn-ArXiv https://ogb.stanford.edu/docs/nodeprop/#ogbn-arxiv
Ogbn-Proteins https://ogb.stanford.edu/docs/nodeprop/#ogbn-proteins
Ogbl-Collab https://ogb.stanford.edu/docs/linkprop/#ogbl-collab

Train-val-test Splitting of Datasets. As for node classi-
fication of small- and medium-scale datasets, we use 140
(Cora), 120 (Citeseer) and 60 (PubMed) labeled data for
training, 500 nodes for validation and 1000 nodes for test-
ing. As for link prediction task of small- and medium-scale
datasets Cora, Citeseer and PubMed, we random sample
10% edges as our testing set, 5% for validation, and the
rest 85% edges are training set. The training/validation/test
splits for Ogbn-ArXiv, Ogbn-Proteins and Ogbl-Collab are
given by the benchmark (Hu et al., 2020). Specifically,
as for Ogbn-ArXiv, we train on the papers published until
2017, validation on those published in 2018 and test on
those published since 2019. As for Ogbn-Proteins, we split
the proteins nodes into training/validation/test sets accord-
ing to the species which the proteins come from. As for
Ogbl-Collab, we use the collaborations until 2017 as train-
ing edges, those in 2018 as validation edges, and those in
2019 as test edges.

More Details about GNNs. As for small- and medium-
scale datasets Cora, Citeseer and PubMed, we choose the
two-layer GCN/GIN/GAT networks with 512 hidden units
to conduct all our experiments. As for large-scale datasets
Ogbn-ArXiv, Ogbn-Proteins and Ogbl-Collab, we use the
ResGCN (Li et al., 2020a) with 28 GCN layers to conduct
all our experiments. As for Ogbn-Proteins dataset, we also
use the edge encoder module, which is a linear transform
function in each GCN layer to encode the edge features. And
we found if we also prune the weight of this module together
with other weight, it will seriously hurt the performance, so
we do not prune them in all of our experiments.

Training Details and Hyper-parameter Configuration.
We conduct numerous experiments with different hyper-
parameter, such as iterations, learning rate, 71, 2, and we
choose the best hyper-parameter configuration to report the

final results. All the training details and hyper-parameters
are summarzed in Table A4. As for Ogbn-Proteins dataset,
due to its too large scale, we use the commonly used ran-
dom sample method (Li et al., 2020a) to train the whole
graph. Specifically, we random sample ten subgraphs from
the whole graph and we only feed one subgraph to the GCN
at each iteration. For each subgraph, we train 10 iterations
to ensure better convergence. And we train 100 epochs for
the whole graph (100 iterations for each subgraph).

Evaluation Details We report the test accuracy/ROC-
AUC/Hits @50 according to the best validation results dur-
ing the training process to avoid overfitting. All training and
evaluation are conducted for one run. As for the previous
state-of-the-art method ADMM (L. et al., 2020b), we use
the same training and evaluation setting as the original pa-
per description, and we can reproduce the similar results
compared with original paper.

Computing Infrastructures We use the NVIDIA Tesla
V100 (32GB GPU) to conduct all our experiments.

A2. More Experiment Results

A2.1. Node Classification on Small- and Medium-scale
Graphs with shallow GNNs

As shown in Figure A9, we also provide extensive re-
sults over GNN sparsity of GCN/GIN/GAT on three small
datasets, Cora/Citeseer/PubMed. We observe that UGS finds
the graph wining tickets at a range of GNNs sparsity from
20% ~ 90% without performance deterioration, which sig-
nificantly reduces MACs and the storage memory during
both training and inference processes.

A2.2. Link Prediction on Small- and Medium-scale
Graphs with shallow GNNs

More results of link prediction with GCN/GIN/GAT on
Cora/Citeseer/PubMed datasets are shown in Figure A10.
We observe the similar phenomenon as the node classifica-
tion task: using our proposed UGS can find the graph wining
tickets at a range of graph sparsity from 5% ~ 50% and
GNN sparsity from 20% ~ 90% without performance dete-
rioration, which greatly reduce the computational cost and
storage space during both training and inference processes.

A2.3. Large-scale Graphs with Deep ResGCNs

More results of larger-scale graphs with deep ResGCNs
are shown in Figure A11. Results show that our proposed
UGS can found GLTs, which can reach the non-trivial spar-
sity levels of graph 30% ~ 50% and weight 20% ~ 80%
without performance deterioration.

A Unified Lottery Ticket Hypothesis for Graph Neural Networks

Table A4. Implementation details of node classification and link prediction.

Task ‘ Node Classification ‘ Link Prediction
Dataset ‘ Cora | Citeseer | PubMed | Ogbn-ArXiv | Ogbn-Proteins ‘ Cora | Citeseer | PubMed | Ogbn-Collab
Iteration 200 200 200 500 100 200 200 200 500
Learning Rate | 8e-3 le-2 le-2 le-2 le-2 le-3 le-3 le-3 le-2
Optimizer Admm | Admm Admm Admm Admm Admm | Admm Admm Admm
Weight Decay 8e-5 Se-4 Se-4 0 0 0 0 0 0
71 le-2 le-2 le-6 le-6 le-1 le-4 le-4 le-4 le-6
Yo le-2 le-2 le-3 le-6 le-3 le-4 le-4 le-4 le-5
GCN GIN %2 GAT
0 m\] i
270 1 \\
) = UGS (Ours)]
560 Random Pruning 654 UGS (Ours) 764 = UGS (Ours)
g 501 — ADMM Random Pruning 741 Random Pruning
8 40{ == Baseline 601 — - Baseline == Baseline
< 30| * GLT(59.04%) 551 % GLT(20.00%) 721 % GLT(93.13%)
; ‘ 50+ ; ; — 70+ ; ‘ —
S R @” @i@:@“&&‘ S I «%%“AW ”;52% S P R & ﬁg«*@fk\”‘%%
GNN Sparsity (%) GNN Sparsity (%) GNN Sparsity (%)
72
- ey 70—~ — -
§70 L ey NN 70T e
£ L p—rers (Ours) 651 681
%50 Random Pruning 60l — UGS (Ours) 661 — UGS (Ours)
g 401 —— ADMM Random Pruning 641 Random Pruning
§ == Baseline 55{ == Baseline 627 —— Bascline
< 30 * GLT (94.50%) % GLT (98.20%) 601 * GLT (95.60%)
20 N © ® S & RS 0550 S ® © NN ‘Q © v W ‘558 ‘ ® ‘Q N ‘A«‘ N
S ~ S '\“««&@:@“"q : S > S 5“'9 i '\QQ“% Mo :%’ S » O & < (\f\‘" Rl k;\%
GNN Sparsity (%) GNN Sparsity (%) GNN Sparsity (%)
_ 80 =
= il
§ 70 781 eyt Ry e —— ey I
| —— UGS (Ours) 761 1
260 Random Pruning = UGS (Ours) 774 == UGS (Ours)
) = ADMM 741 Random Pruning Random Pruning
£ 50 761
5 == Baseline 7] == Baseline == Baseline
240] * GLT(97.75%) * GLT (94.50%) 757 % GLT (97.75%)
: : 70+ : — ““““‘,74‘ : — — a
GNN Sparsity (%) GNN Sparsity GNN Sparsity (%)

Figure A9. Node classification performance over achieved GNNs sparsity of GCN, GIN, and GAT on Cora, Citeseer, and PubMed
datasets, respectively. Red stars (%) indicate the located GLTs, which reach comparable performance with extreme GNN sparsity. Dash
lines represent the baseline performance of unpruned GNNs on full graphs.

A2.4. Graph Lottery Ticket with Pre-training

More results of node classification and link prediction on
Cora and Citeseer dataset of GraphCL (You et al., 2020b)
pre-training are shown in Figure A12. Results demonstrate
that when using self-supervised pre-training, UGS can iden-
tify graph lottery tickets with higher qualities.

A2.5. More Analyses of Sparsified Graphs

As shown in Table A5, graph measurements are reported,
including clustering coefficient, node and egde betweeness
centrality. Results indicate that UGS seems to produce
sparse graphs with more “critical” vertices which used to
have more connections.

A Unified Lottery Ticket Hypothesis for Graph Neural Networks

GCN GIN GAT
=90 85 e e R -
S 90
S 80 89
% = UGS (Ours) = UGS (Ours) == UGS (Ours)
= 80 Random Pruning 75 Random Pruning 88 Random Pruning
8 75 == Baseline 701 == Baseline 871 —=. Baseline
& * GLT (26.49%) * GLT (22.62%) 861 % GLT(43.12%)
70 65 85
S S 0 o q;; /b "o ﬁe ‘C, @ RO ;‘:Q:‘.bé,\\ ;(’é; ‘”";?bf@ & S P 2 {’ ,»@' b@ﬁgprﬁ@ PR %‘%’%’fb@@ 0o KOG '» o ,»@ & Q\g&@ NS bb%:%k(;\;:,{): gr&
Graph Sparsity (%) Graph Sparsity (%) Graph Sparsity (%)
91
0 85
90

80
75

W

891 UGS (Ours)
88 Random Pruning
871 —=. Baseline

= UGS (Ours)
Random Pruning

= UGS (Ours)
Random Pruning

S

== Baseline 701 == Baseline

ROC-AUC (Cora)
3 [oe] [oe] Ne)

T % GLTasaom) 65| * GLTE723%) 861 x GLT(91.41%)
70 N N N S o N "; Ve D 5 N N N AN} » O O SN 85 N N S » D ": Ve 5
o - R '\“’,\'\“Q %b’q\‘x P » I «“’K'\“Q@T\Z“’%q\hq‘&% & w@“ S 5‘“'@ & '@'\«ql%a’q\u &
GNN Sparsity (%) GNN Sparsity (%) GNN Sparsity (%)
Bos =mommnsiases| 96
2 90 95 A
% — UGS (Ours) g5/ — UGS (Oury) 94— UGS (Ours) CoRTTTT
S 85 Random Pruning Random Pruning 93 Random Pruning
S 80 == Baseline 801 == Baseline 9 == Baseline
8 * GLT (33.66%) 75 * GLT (26.49%) 01 * GLT (43.12%)
R I I 2 I L S e g
Graph Sparsity (%) Graph Sparsity (%) Graph Sparsity (%)
595 96
£ 90 95
8’ = UGS (Ours) 85— UGS (Ours) 941 UGS (Ours)
585 Random Pruning Random Pruning 934 — Random Pruning
Z-:) 80 == Baseline 801 == Baseline 9 == Baseline
8 * GLT (83.22%) 75 * GLT (73.79%) 91 * GLT (91.41%)
& T ESEEES & F PSSR & 8 T PhRERS
GNN Sparsity (%) GNN Sparsity (%) GNN Sparsity (%)
<93 90 e e
154 : s o i]
s 92 88 93
291 36 92 -
£901 —— UGS (Ours) —— UGS (Ours) 9] UGS (Ours)
% 89 Random Pruning 84 Random Pruning == Random Pruning
< 881 o Baseline 821 == Baseline 907 == Baseline
§ g; % GLT (40.13%) 801 * GLT (14.26%) 897 % GLT(55.99%)
88
R AT RN S e o I R R L R RS G S s o
Graph Sparsity (%) Graph Sparsity (%) Graph Sparsity (%)
= 93 90 94
L
s 92 93
0 ; I
90 — UGS (Ours) = UGS (Ours) 91 = UGS (Ours)
% 89 Random Pruning 84 Random Pruning Random Pruning
:-:) 881 —— Baseline 821 == Baseline 907 —=. Baseline
S gg * GLT (89.26%) 801 % GLT (48.80%) 891 % GLT(97.19%)
8
S S ESEES & T ENEEES O & S TR
GNN Sparsity (%) GNN Sparsity (%) GNN Sparsity (%)

Figure A10. Link prediction performance over achieved GNNs sparsity of GCN, GIN, and GAT on Cora, Citeseer, and PubMed datasets,
respectively. Red stars (%) indicate the located GLTs, which reach comparable performance with the extreme graph sparsity and GNN
sparsity. Dash lines represent the baseline performance of unpruned GNNs on full graphs.

A Unified Lottery Ticket Hypothesis for Graph Neural Networks

- Ogbn-ArXiv % Ogbn-Proteins Ogbl-Collab
3 S 35
8 641 —— UGS (Ours) 8 = UGS (Ours) Z —— UGS (Ours)
< 621 Random Pruning ~ Random Pruning I 304 Random Pruning
60+ == Bascline 801 == Baseline 251 == Baseline
584 % GLT (45.96%) 791 % GLT (26.49%) 209 % GLT (26.49%)
S O o 5 &9 0 DR EDED s NS © QD ADIIES S S oo s E YT s
RN RN Kﬁn xS n,b SRREREDNE L,%%‘%)-Q&- S S g0 \% o ,\,@ np @,ﬂ&m SRR Q;L)"s%%\%& NS ”\b’wwbw@‘\n 5 @§ D%«E\%“ﬁ%& e
Graph Sparsity (%) Graph Sparsity (%)
74
721 e i —— - -
70+ \ AK\\
] Q
I 68 =)
£ 661 <
8 641 == UGS (Ours) 1% —— UGS (Ours) 2357 — ucs (Ours)
< o] i Q 81+ 7 T 30 ;
62 Random Pruning ~ Random Pruning Random Pruning
601 == Baseline 801 == Baseline 251 == Baseline
581 4 GLT(93.13%) 791 % GLT (73.79%) 201 % GLT(73.79%)
56 ~ Y 78— — . A r——— A 151“ — . . e o
r\ r\ o N >
S ~ e @ ¢V f\‘“" @%Ma :“gb & & R SR '\"’ k"’a- e» o gi% & ~ e 9 Ve f\“ %“’?\.@ q\b‘“g‘?’%

GNN Sparsity (%)

GNN Sparsity (%)

GNN Sparsity (%

Figure A11. Node classification and link prediction performance over achieved graph sparsity and GNN sparsity of 28-layer deep

ResGCNs on large-scale graph datasets.

Node Classification

Link Predication

Node Classification

Link Predication

82

7 94 =5 94
— 4 \‘~.*\ 7~ — -~ “*———x\ — ——
= 80 N 592 So=TN = 80 X 2921~ ~ao=
= NN\~ 5 7 hi < g S, 5 - - ~
S N\ 290 » 3 VA 290 S
278 \ d S 4"\ 278 \ =~ ~/
g \e. O 88 S N | 288 \
876 A 2 ~ 276 Nk :
H = 3\) 86 3\ 5 13 86 ‘
2741 == uGs W | S84y == UGS \ 2747 == uGs] S 841 == UGS 1
7 GraphCL+UGS \\ 82 GraphCL+UGS \ NI 72 GraphCL+UGS 1 82 GraphCL+UGS v
PO o %-b" @b%:i) “ch;f\bz\?}ﬁg—,vnbmﬁw\% PO ”bf’sw@bbz&\ bt\:; b._\ k&q '&@-\ﬂ & ,@Qh \@Q ;*Q ,_g& ”\,\ /\:q“&’ h@, "\ & & ,,/m-@ .5@@ ,;G@ @»“&é\%\x'-\za@%bib‘\q%*ﬁ
Graph Sparsity (%) Graph Sparsity (%) GNN Sparsity (%) GNN Sparsity (%)
74 74
~98 ~98
573 8 pryupsp ey 573 g e ————
%72 %96 e Rk 372 PEN %96 - - -5‘\\
5] ~ 2 s 3 -~ 2 \,
= FN MY S 594 “\ & RIS RN SN RS \
) 1{2 < 2 A= =) 14~ - ARVIRY =
=7 N= v 7\ o b =7 ~~=7 \ N \
> VN 92 > > Iy 92
Iy I | =) [L= 1
270 bl Vg0]
5 L % | <90 v E [< g0 1
8694 =~ UGS \ 8 == UGS “ 3691 == uGs | 8 == UGS 1
< . GraphCL+UGS V| =88 GraphCL+UGS < 68 GraphCL+UGS | = 88 GraphCL+UGS
S50 ;b\%«—: v\%@’&\ﬁ s‘f\«fg\:\\?ﬁb ~\7 '°s°' ‘} N .8 D(\" ,ﬁ“ s‘:ab?b%\\sb:@; w};ab Q};ﬁ {“\’k\" & & \'b%“ #%“ L?Q ,\'95”\?\“\\’ %\;s\ » %«" & n/@“ N@“ ‘:‘;\? ‘}q\’ «\W,\{\,\q“ %b"%\" &

Graph Sparsity (%) Graph Sparsity (%) GNN Sparsity (%) GNN Sparsity (%)

Figure A12. Drawing graph lottery tickets from randomly initialized and self-supervised pre-trained (GraphCL (You et al., 2020b)) GCNs
on node classification (low label rate) and link prediction. Corresponding results over achieved graph and GNN sparsity are presented.

Table A5. Graph measurements of original graphs, sparse graphs from UGS, random pruning, and ADMM sparsification.

Meas] Cora | Citeseer | PubMed
easurements
| Original | UGS RP ADMM | Original | UGS RP ADMM | Original | UGS RP ADMM
Clustering Coefficient | 0.14147 | 0.07611 0.08929 0.04550 | 0.24067 | 0.15855 0.15407 0.08609 | 0.06018 | 0.03658 0.03749 0.02470
Node Betweenness | 0.00102 | 0.00086 0.00066 0.00021 | 0.00165 | 0.00190 0.00158 0.00122 | 0.00027 | 0.00024 0.00022 0.00018
Edge Betweenness | 0.00081 | 0.00087 0.00068 0.00032 | 0.00101 | 0.00144 0.00123 0.00137 | 0.00014 | 0.00019 0.00015 0.00018

