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Abstract
With graphs rapidly growing in size and deeper
graph neural networks (GNNs) emerging, the
training and inference of GNNs become increas-
ingly expensive. Existing network weight prun-
ing algorithms cannot address the main space and
computational bottleneck in GNNs, caused by
the size and connectivity of the graph. To this
end, this paper first presents a unified GNN spar-
sification (UGS) framework that simultaneously
prunes the graph adjacency matrix and the model
weights, for effectively accelerating GNN infer-
ence on large-scale graphs. Leveraging this new
tool, we further generalize the recently popular
lottery ticket hypothesis to GNNs for the first time,
by defining a graph lottery ticket (GLT) as a pair
of core sub-dataset and sparse sub-network, which
can be jointly identified from the original GNN
and the full dense graph by iteratively applying
UGS. Like its counterpart in convolutional neu-
ral networks, GLT can be trained in isolation to
match the performance of training with the full
model and graph, and can be drawn from both ran-
domly initialized and self-supervised pre-trained
GNNs. Our proposal has been experimentally
verified across various GNN architectures and di-
verse tasks, on both small-scale graph datasets
(Cora, Citeseer and PubMed), and large-scale
datasets from the challenging Open Graph Bench-
mark (OGB). Specifically, for node classification,
our found GLTs achieve the same accuracies with
20% ∼ 98% MACs saving on small graphs and
25% ∼ 85% MACs saving on large ones. For link
prediction, GLTs lead to 48% ∼ 97% and 70%
MACs saving on small and large graph datasets,
respectively, without compromising predictive
performance. Codes are at https://github.
com/VITA-Group/Unified-LTH-GNN.
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Figure 1. Summary of our achieved performance (y-axis) at differ-
ent graph and GNN sparsity levels (x-axis) on Cora and Citeceer
node classification. The size of markers represent the inference
MACs (= 1

2
FLOPs) of each sparse GCN on the corresponding

sparsified graphs. Black circles (•) indicate the baseline, i.e., un-
pruned dense GNNs on the full graph. Blue circles (•) are random
pruning results. Orange circles (•) represent the performance of
a previous graph sparsification approach, i.e., ADMM (Li et al.,
2020b). Red stars (H) are established by our method (UGS).

1. Introduction
Graph Neural Networks (GNNs) (Zhou et al., 2018; Kipf
& Welling, 2016; Chen et al., 2019; Veličković et al., 2017)
have established state-of-the-art results on various graph-
based learning tasks, such as node or link classification (Kipf
& Welling, 2016; Veličković et al., 2017; Qu et al., 2019;
Verma et al., 2019; Karimi et al., 2019; You et al., 2020d;c),
link prediction (Zhang & Chen, 2018), and graph classifica-
tion (Ying et al., 2018; Xu et al., 2018; You et al., 2020b).
GNNs’ superior performance results from the structure-
aware exploitation of graphs. To update the feature of
each node, GNNs first aggregate features from neighbor
connected nodes, and then transform the aggregated embed-
dings via (hierarchical) feed-forward propagation.

However, the training and inference of GNNs suffer from
the notorious inefficiency, and pose hurdle to GNNs from
being scaled up to real-world large-scale graph applications.
This hurdle arises from both algorithm and hardware lev-
els. On the algorithm level, GNN models can be thought
of a composition of traditional graphs equipped with deep
neural network (DNN) algorithms on vertex features. The
execution of GNN inference falls into three distinct cat-
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egories with unique computational characteristics: graph
traversal, DNN computation, and aggregation. Especially,
GNNs broadly follow a recursive neighborhood aggrega-
tion (or message passing) scheme, where each node ag-
gregates feature vectors of its multi-hop neighbors to com-
pute its new feature vector. The aggregation phase costs
massive computation when the graphs are large and with
dense/complicated neighbor connections (Xu et al., 2018).
On the hardware level, GNN’s computational structure de-
pends on the often sparse and irregular structure of the graph
adjacency matrices. This results in many random memory
accesses and limited data reuse, but also requires relatively
little computation. As a result, GNNs have much higher
inference latency than other neural networks, limiting them
to applications where inference can be pre-computed offline
(Geng et al., 2020; Yan et al., 2020).

This paper aims at aggressively trimming down the explo-
sive GNN complexity, from the algorithm level. There are
two streams of works: simplifying the graph, or simplifying
the model. For the first stream, many have explored vari-
ous sampling-based strategies (Hübler et al., 2008; Chakeri
et al., 2016; Calandriello et al., 2018; Adhikari et al., 2017;
Leskovec & Faloutsos, 2006; Voudigari et al., 2016; Eden
et al., 2018; Zhao, 2015; Chen et al., 2018a), often combined
with mini-batch training algorithms for locally aggregating
and updating features. Zheng et al. (2020) investigated
graph sparsification, i.e., pruning input graph edges, and
learned an extra DNN surrogate. Li et al. (2020b) also
addressed graph sparsification by formulating an optimiza-
tion objective, solved by alternating direction method of
multipliers (ADMM) (Bertsekas & Rheinboldt, 1982).

The second stream of efforts were traditionally scarce, since
the DNN parts of most GNNs are (comparably) lightly pa-
rameterized, despite the recent emergence of increasingly
deep GNNs (Li et al., 2019). Although model compression
is well studied for other types of DNNs (Cheng et al., 2017),
it has not been discussed much for GNNs. One latest work
(Tailor et al., 2021) explored the viability of training quan-
tized GNNs, enabling the usage of low precision integer
arithmetic during inference. Other forms of well-versed
DNN compression techniques, such as model pruning (Han
et al., 2016), have not been exploited for GNNs up to our
best knowledge. More importantly, no prior discussion was
placed on jointly simplifying the input graphs and the mod-
els for GNN inference. In view of such, this paper asks: to
what extent could we co-simplify the input graph and the
model, for ultra-efficient GNN inference?

1.1. Summary of Our Contributions

This paper makes multi-fold contributions to answer the
above questions. Unlike pruning convolutional DNNs which
are heavily overparameterized, directly pruning the much
less parameterized GNN model would have only limited

room to gain. Our first technical innovation is to for the
first time present an end-to-end optimization framework
called unified GNN sparsification (UGS) that simultane-
ously prunes the graph adjacency matrix and the model
weights. UGS makes no assumption to any GNN architec-
ture or graph structure, and can be flexibly applied across
various graph-based learning scenarios at scale.

Considering UGS as the generalized pruning for GNNs,
our second technical innovation is to generalize the pop-
ular lottery ticket hypothesis (LTH) to GNNs for the first
time. LTH (Frankle & Carbin, 2018) demonstrates that one
can identify highly sparse and independently trainable sub-
networks from dense models, by iterative pruning. It was
initially observed in convolutional DNNs, and later broadly
found in natural language processing (NLP) (Chen et al.,
2020b), generative models (Kalibhat et al., 2020), reinforce-
ment learning (Yu et al., 2020) and lifelong learning (Chen
et al., 2020b). To meaningfully generalize LTH to GNNs,
we define a graph lottery ticket (GLT) as a pair of core
sub-dataset and sparse sub-network which can be jointly
identified from the full graph and the original GNN model,
by iteratively applying UGS. Like its counterpart in convolu-
tional DNNs, a GLT could be trained from its initialization
to match the performance of training with the full model
and graph, and its inference cost is drastically smaller.

Our proposal has been experimentally verified, across var-
ious GNN architectures and diverse tasks, on both small-
scale graph datasets (Cora, Citeseer and PubMed), and large-
scale datasets from the challenging Open Graph Benchmark
(OGB). Our main observations are outlined below:

• UGS is widely applicable to simplifying a GNN dur-
ing training and reducing its inference MACs (multi-
ply–accumulate operations). Moreover, by iteratively
applying UGS, GLTs can be broadly located from for
both shallow and deep GNN models, on both small-
and large-scale graph datasets, with substantially re-
duced inference costs and unimpaired generalization.

• For node classification, our found GLTs achieve
20% ∼ 98% MACs saving, with up to 5% ∼ 58.19%
sparsity on graphs and 20% ∼ 97.75% sparsity on
GNN models, at little to no performance degradation.
For example in Figure 1, on Cora and Citeseer node
classification, our GLTs (H) achieve comparable or
sometimes even slightly better performance than the
baselines of full models and graphs (•), with only
41.16% and 5.57% MACs, respectively.

• For link prediction, GLTs lead to 48% ∼ 97% and 70%
MACs saving, coming from up to 22.62% ∼ 55.99%
sparsity on graphs and and 67.23% ∼ 97.19% sparsity
on GNN models, again without performance loss.

• Our proposed framework can scale up to deep GNN
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models (up to 28 layers) on large graphs (e.g., Ogbn-
ArXiv and Ogbn-Proteins), without bells and whistles.

• Besides from random initializations, GLTs can also
be drawn from the initialization via self-supervised
pre-training – an intriguing phenomenon recently just
reported for NLP (Chen et al., 2020b) and computer
vision models (Chen et al., 2020a). Using a latest
GNN pre-training algorithm (You et al., 2020b) for
initialization, GLTs can be found to achieve robust
performance with even sparser graphs and GNNs.

2. Related Work
Graph Neural Networks. There are mainly three cate-
gories of GNNs (Dwivedi et al., 2020): i) extending original
convolutional neural networks to the graph regime (Scarselli
et al., 2008; Bruna et al., 2013; Kipf & Welling, 2016; Hamil-
ton et al., 2017); ii) introducing anisotropic operations on
graphs such as gating and attention (Battaglia et al., 2016;
Monti et al., 2017; Veličković et al., 2018), and iii) improv-
ing upon limitations of existing models (Xu et al., 2019;
Morris et al., 2019; Chen et al., 2019; Murphy et al., 2019).
Among this huge family, Graph Convolutional Networks
(GCNs) are widely adopted, which can be categorized as
spectral domain based methods (Defferrard et al., 2016;
Kipf & Welling, 2016) and spatial domain bases methods
(Simonovsky & Komodakis, 2017; Hamilton et al., 2017).

The computational cost and memory usage of GNNs will
expeditiously increase with the graph size. The aim of
graph sampling or sparsification is to extract a small sub-
graph from the original large one, which can remain ef-
fective for learning tasks (Zheng et al., 2020; Hamilton
et al., 2017) while reducing the cost. Previous works on
sampling focus on preserving certain pre-defined graph met-
rics (Hübler et al., 2008), graph spectrum (Chakeri et al.,
2016; Adhikari et al., 2017), or node distribution (Leskovec
& Faloutsos, 2006; Voudigari et al., 2016; Eden et al., 2018).
FastGCN (Chen et al., 2018a) introduced a global impor-
tance sampling method instead of locally neighbor sampling.
VRGCN (Chen et al., 2018b) proposed a control variate
based algorithm, but requires all intermediate vertex embed-
dings to be saved during training. Cluster-GCN (Chiang
et al., 2019) used clustering to partition subgraphs for train-
ing, but often suffers in stability. Zheng et al. (2020); Li et al.
(2020b) cast graph sparsification as optimization problems,
solved by learning surrogates and ADMM, respectively.

Lottery Ticket Hypothesis (LTH). Since the original
LTH (Frankle & Carbin, 2018), a lot of works have ex-
plored the prospect of trainable sparse subnetworks in place
of the full models without sacrificing performance. Frankle
et al. (2019); Renda et al. (2020) introduced the rewinding
techniques to scale up LTH. LTH was also adopted in differ-
ent fields (Evci et al., 2019; Savarese et al., 2020; Liu et al.,

2019; You et al., 2020a; Gale et al., 2019; Yu et al., 2020;
Kalibhat et al., 2020; Chen et al., 2021b; 2020b;c; 2021a;
Ma et al., 2021; Gan et al., 2021).

However, GNN is NOT “yet another” field that can be easily
cracked by LTH. That is again due to GNNs having much
smaller models, while all the aforementioned LTH works
focus on simplifying their redundant models. To our best
knowledge, this work is not only the first to generalize LTH
to GNNs, but also the first to extend LTH from simplifying
models to a new data-model co-simplification prospect.

3. Methodology
3.1. Notations and Formulations
Let G = {V, E} represent an undirected graph with |V|
nodes and |E| edges. For V = {v1, ..., v|V|}, let X ∈
R|V|×F denote the node feature matrix of the whole graph,
where xi = X[i, :] is the F-dimensional attribute vector of
node vi ∈ V . As for E = {e1, ..., e|E|}, en = (vi, vj) ∈ E
means that there exists a connection between node vi and vj .
An adjacency matrix A ∈ R|V|×|V| is defined to describe
the overall graph topology, where A[i, j] = 1 if (vi, vj) ∈ E
else A[i, j] = 0. For example, the two-layer GNN (Kipf &
Welling, 2016) can be defined as follows:

Z = S(Âσ(ÂXΘ(0))Θ(1)), (1)

where Z is the prediction of GNN f(G,Θ). The graph G
can be alternatively denoted as {A,X}, Θ = (Θ(0),Θ(1))
is the weights of the two-layer GNN, S(·) represents the
softmax function, σ(·) denotes the activation function (e.g.,
ReLU), Â = D̃−

1
2 (A+I)D̃

1
2 is normalized by the degree

matrix D̃ of A + I . Considering the transductive semi-
supervised classification task, the objective function L is:

L(G,Θ) = − 1

|Vlabel|
∑

vi∈Vlabel

yilog(zi), (2)

where L is the cross-entropy loss over all labeled samples
Vlabel ⊂ V , and yi is the annotated label vector of node vi
for its corresponding prediction zi = Z[i, :].

3.2. Unified GNN Sparsification
We present out end-to-end framework, Unified GNN
Sparsification (UGS), to simultaneously reduce edges in
G and the parameters in GNNs. Specifically, we introduce
two differentiable masks mg and mθ for indicating the in-
significant connections and weights in the graph and GNNs,
respectively. The shapes of mg and mθ are identical to
those the adjacency matrix A and the weights Θ, respec-
tively. Given A, Θ, mg and mθ are co-optimized from end
to end, under the following objective:

LUGS := L({mg �A,X},mθ �Θ)
+γ1‖mg‖1 + γ2‖mθ‖1,

(3)
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Figure 2. An illustration of unified GNN sparsification (UGS). Dash/solid lines denote the removed/remaining edges and weights in the
graph and GNNs, respectively. Note that graphs and GNNs are co-optimized to find optimal solutions for the unified sparsification.

Algorithm 1 Unified GNN Sparsification (UGS)
Input: Graph G = {A,X}, GNN f(G,Θ0), GNN’s ini-

tialization Θ0, initial masks m0
g = A, m0

θ = 1 ∈
R‖Θ0‖0 , Step size η, λg , and λθ.

Output: Sparsified masks mg and mθ

1: for iteration i = 0, 1, 2, ...,N− 1 do
2: Forward f(·,mi

θ �Θi) with G = {mi
g �A,X} to

compute the loss LUGS in Equation 3.
3: Backpropagate to update Θi+1 ← Θi−η∇Θi

LUGS.
4: Update mi+1

g ←mi
g − λg∇mi

g
LUGS.

5: Update mi+1
θ ←mi

θ − λθ∇mi
θ
LUGS.

6: end for
7: Set pg = 5% of the lowest magnitude values in mN

g to
0 and others to 1, then obtain mg .

8: Set pθ = 20% of the lowest magnitude values in mN
θ

to 0 and others to 1, then obtain mθ.

where � is the element-wise product, γ1 and γ2 are the
hyparameters to control `1 sparsity regularizers of mg and
mθ respectively. After the training is done, we set the
lowest-magnitude elements in mg and mθ to zero, w.r.t.
pre-defined ratios pg and pθ. Then, the two sparse masks
are applied to prune A and Θ, leading to the final sparse
graph and model. Alg. 1 outlines the procedure of UGS, and
it can be considered as the generalized pruning for GNNs.

3.3. Graph Lottery Tickets

Graph lottery tickets (GLT). Given a GNN f(·,Θ) and
a graph G = {A,X}, the associated subnetworks of GNN
and sub-graph can be defined as f(·,mθ �Θ) and Gs =
{mg�A,X}, where mg and mθ are binary masks defined
in Section 3.2. If a subnetwork f(·,mθ �Θ) trained on
a sparse graph Gs has performance matching or surpassing
the original GNN trained on the full graph G in terms of
achieved standard testing accuracy, then we define f({mg�
A,X},mθ�Θ0) as a unified graph lottery tickets (GLTs),
where Θ0 is the original initialization for GNNs which the
found lottery ticket subnetwork is usually trained from.

Unlike previous LTH literature (Frankle & Carbin, 2018),
our identified GLT will consist of three elements: i) a sparse

Algorithm 2 Iterative UGS to find Graph Lottery Tickets
Input: Graph G = {A,X}, GNN f(G,Θ0), GNN’s

initialization Θ0, pre-defined sparsity levels sg for
graphs and sθ for GNNs, Initial masks mg = A,
mθ = 1 ∈ R‖Θ0‖0 .

Output: GLT f({mg �A,X},mθ �Θ0)

1: while 1− ‖mg‖0
‖A‖0 < sg and 1− ‖mθ‖0

‖Θ‖0 < sθ do
2: Sparsify GNN f(·,mθ � Θ0) with G = {mg �

A, X} using UGS, as presented in Algorithm 1.
3: Update mg and mθ accordingly.
4: Rewinding GNN’s weights to Θ0

5: Rewinding masks, mg = mg �A
6: end while

graph Gs = {mg �A,X}; ii) the sparse mask mθ for the
model weight; and iii) the model weight’s initialization Θ0.

Finding GLT. Classical LTH leverages iterative
magnitude-based pruning (IMP) to identify lottery tickets.
In a similar fashion, we apply our UGS algorithm to
prune both the model and the graph during training, as
outlined Algorithm 2, obtaining the graph mask mg and
model weight mask mθ of GLT. Then, the GNN weights
are rewound to the original initialization Θ. We repeat
the above two steps iteratively, until reaching the desired
sparsity sg and sθ for the graph and GNN, respectively.

Complexity analysis of GLTs. The inference time com-
plexity of GLTs isO(L×‖mg �A‖0×F+L×‖mθ‖0×
|V| × F2), where L is the number of layers, ‖mg �A‖0 is
the number of remaining edges in the sparse graph, F is the
dimension of node features, |V| is the number of nodes. The
memory complexity isO(L×|V|×F+L×‖mθ‖0×F2). In
our implementation, pruned edges will be removed from E ,
and would not participate in the next round’s computation.

4. Experiments
In this section, extensive experiments are reported to val-
idate the effectiveness of UGS and the existence of GLTs
across diverse graphs and GNN models. Our subjects in-
clude small- and medium-scale graphs with two-layer Graph
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Figure 3. Node classification performance over achieved graph sparsity levels or inference MACs of GCN, GIN, and GAT on Cora,
Citeseer, and PubMed datasets, respectively. Red stars (H) indicate the located GLTs, which reach comparable performance with high
sparsity and low inference MACs. Dash lines represent the baseline performance of full GNNs on full graphs. More results over GNN
sparsity are provided in Appendix A2.1.

Convolutional Network (GCN) (Kipf & Welling, 2016),
Graph Isomorphism Network (GIN) (Xu et al., 2018), and
Graph Attention Network (GAT) (Veličković et al., 2017)
in Section 4.2; as well as large-scale graphs with 28-layer

deep ResGCNs (Li et al., 2020a) in Section 4.2. Besides, in
Section 4.3, we investigate GLTs under the self-supervised
pre-training (You et al., 2020b). Ablation studies and visu-
alizations are provided in Section 4.4 and 4.5.
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Figure 4. Link prediction performance over inference MACs of GCN, GIN, and GAT on Cora, Citeseer, and PubMed datasets, respectively.
Red stars (H) indicate the located GLTs, which reach comparable performance with the least inference MACs. Dash lines represent the
baseline performance of unpruned GNNs on full graphs. More results over graph sparsity and GNN sparsity are referred to Appendix A2.2.

Table 1. Graph datasets statistics.
Dataset Task Type Nodes Edges Ave. Degree Features Classes Metric

Cora Node Classification 2,708 5,429 3.88 1,433 7 Accuracy
Link Prediction ROC-AUC

Citeseer Node Classification 3,327 4,732 2.84 3,703 6 Accuracy
Link Prediction ROC-AUC

PubMed Node Classification 19,717 44,338 4.50 500 3 Accuracy
Link Prediction ROC-AUC

Ogbn-ArXiv Node Classification 169,343 1,166,243 13.77 128 40 Accuracy
Ogbn-Proteins Node Classification 132,534 39,561,252 597.00 8 2 ROC-AUC

Ogbl-Collab Link Prediction 235,868 1,285,465 10.90 128 2 Hits@50

Datasets We use popular semi-supervised graph datasets:
Cora, Citeseer and PubMed (Kipf & Welling, 2016), for
both node classification and link prediction tasks. For exper-
iments on large-scale graphs, we use the Open Graph Bench-
mark (OGB) (Hu et al., 2020), such as Ogbn-ArXiv, Ogbn-
Proteins, and Ogbl-Collab. More datasets statistics are sum-
marized in Table 1. Other details such as the datasets’ train-
val-test splits are included in Appendix A1.

Training and Inference Details Our evaluation metrics
are shown in Table 1, following Kipf & Welling (2016); Hu
et al. (2020); Mavromatis & Karypis (2020). More detailed
configurations such as learning rate, training iterations, and
hyperparameters in UGS, are referred to Appendix A1.

4.1. The Existence of Graph Lottery Ticket

We first examine whether unified graph lottery tickets exist
and can be located by UGS. Results of GCN/GIN/GAT

on Cora/Citesser/PubMed for node classification and link
prediction are collected in Figures 3 and 4, respectively.
Note that each point in the figures denotes the achieved
performance with respect to a certain graph sparsity, GNN
sparsity, and inference MACs. However, due to the limited
space, we only include one or two of these three sparsity
indicators in the main text, and the rest can be found in
Appendix A2. We list the following Observations.

Obs.1. GLTs broadly exist with substantial MACs sav-
ing. Graph lottery tickets at a range of graph sparsity from
5% to 58.19% without performance deterioration, can be
identified across GCN, GIN and GAT on Cora, Citeseer, and
PubMed datasets for both node classification and link pre-
diction tasks. Such GLTs significantly reduce 59% ∼ 97%,
20% ∼ 98%, 91% ∼ 97% inference MACs for GCN, GIN
and GAT across all datasets.

Obs.2. UGS is flexible and consistently shows superior
performance. UGS consistently surpasses random prun-
ing by substantial performance margins across all datasets
and GNNs, which validates the effectiveness of our proposal.
The previous state-of-the-art method, i.e., ADMM (Li et al.,
2020b), achieves a competitive performance to UGS at mod-
erate graph sparsity levels, and performs 3 ∼ 4% worse
than UGS when graphs are heavily pruned.

Note that the ADMM approach by Li et al. (2020b) is
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only applicable when two conditions are met: i) graphs
are stored via adjacency matrices—however, that is not
practical for large graphs (Hu et al., 2020); ii) aggregat-
ing features with respect to adjacency matrices—however,
recent designs of GNNs (e.g., GIN and GAT) commonly
use the much more computation efficient approach of syn-
chronous/asynchronous message passing (Gilmer et al.,
2017; Busch et al., 2020). On the contrary, our proposed
UGS is flexible enough and free of these limitations.

Obs.3. GNN-specific and Graph-specific analyses: GAT
is more amenable to sparsified graphs; Cora is more
sensitive to pruning. As demonstrated in Figures 3 and 4,
compared to GCN and GIN, GLTs in GAT can be found at
higher sparsity levels; meanwhile randomly pruned graphs
and GAT can still reach satisfied performance and maintain
higher accuracies on severely sparsified graphs.

One possible explanation is that attention-based aggregation
is capable of re-identifying important connections in pruned
graphs which makes GAT be more amenable to sparsifi-
cation. Compared the sparsity of located GLTs (i.e., the
position of red stars (H)) across three graph datasets, we
find that Cora is the most sensitive graph to pruning and
PubMed is more robust to be sparsified.

4.2. Scale Up Graph Lottery Tickets

To scale up graph lottery tickets, we further conduct experi-
ments on 28-layer deep ResGCNs (Li et al., 2020a) on large-
scale datasets that have more than millions of connections,
like Ogbn-ArXiv and Ogbn-Proteins for node classification,
Ogbl-Collab for link prediction in Table 1. We summarize
our observations and derive insights below.
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Figure 5. Node classification and link prediction performance of
28-layer deep ResGCNs on large-scale graph datasets.

Obs.4. UGS is scaleable and GLT exists in deep GCNs
on large-scale datasets. Figure 5 demonstrates that UGS
can be scaled up to deep GCNs on large-scale graphs. Found
GLTs obtain matched performance with 85%, 25%, 70%
MACs saving on Ogbn-ArXiv, Ogbn-Proteins, and Ogbl-
Collab, respectively.

Obs.5. Denser graphs (e.g., Ogbn-Proteins) are more
resilient to sparsification. As shown in Figure 5, com-
paring the node classification results on Ogbn-ArXiv (Ave.
degree: 13.77) and Ogbn-Proteins (Ave. degree: 597.00),
Ogbn-Proteins has a negligible performance gap between
UGS and random pruning, even on heavily pruned graphs.
Since nodes with high degrees in denser graphs have less
chance to be totally isolated during pruning, it may con-
tribute to more robustness to sparsification. Similar observa-
tions can be drawn from the comparison between PubMed
and other two small graphs in Figure 3 and 4.

4.3. Graph Lottery Ticket from Pre-training
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Figure 6. Drawing graph lottery tickets from randomly initialized
and self-supervised pre-trained (GraphCL (You et al., 2020b))
GCNs on node classification (low label rate: only 5.0% and 3.6%
nodes in Cora and Citesser are labeled) and link prediction.

High-quality lottery tickets can be drawn from self-
supervised pre-trained models, as recently found in both
NLP and computer vision fields (Chen et al., 2020b;a). In
the GLT case, we also assess the impact of replacing ran-
dom initialization with self-supervised graph pre-training,
i.e., GraphCL (You et al., 2020b), on transductive semi-
supervised node classification and link prediction.

From Figure 6 and A12, we gain a few interesting observa-
tions. First, UGS with the GraphCL pre-trained initializa-
tion consistently presents superior performance at moderate
sparsity levels (≤ 40% graph sparsity ' ≤ 85% MACs sav-
ing). While the two settings perform similar at extreme spar-
sity, it indicates that for excessively pruned graphs, the ini-
tialization is no longer the performance bottleneck; Second,
GraphCL benefits GLT on multiple downstream tasks includ-
ing node classification and link prediction; Third, especially
on the transductive semi-supervised setup, GLTs with ap-
propriate sparsity levels can even enlarge the performance
gain from pre-training, for example, see GLT on Citeseer
with 22.62% graph sparsity and 2068M inference MACs.
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4.4. Ablation Study

Pruning ratio pg and pθ. We extensively investigate the
pruning ratios pg, pθ in UGS for graph and GNN sparsi-
fication. As shown in Figure 7, with a fixed pθ = 20%,
only the setting of pg = 5% can identify the GLT, and it
performs close to pg = 10% at higher sparsity levels (e.g.,
≥ 25%). Aggressively pruning the graph’s connections
in each round of iterative UGS, e.g., pg = 20%, leads to
substantially degraded accuracies, especially for large spar-
sities. On the other hand, with a fixed pg = 20%, all there
settings of pθ = 10%, 20%, 40% show similar performance,
and even higher pruning ratios produce slight better results.
It again verifies that the key bottleneck in pruning GNNs
mainly lies in the sparsification of graphs. In summary, we
adopt pg = 5% and pg = 20% (follow previous LTH works
(Frankle & Carbin, 2018)) for all the experiments.
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Figure 7. Ablation studies of pruning ratios for the graph and GNN
sparsification by UGS, i.e., pg, pθ . Each curve records the achieved
performance of 20 rounds iterative UGS. GCN on Cora is adopted
here. The embedded sub-graph is a zoom-in of the red box region.

Table 2. Performance comparisons of Random GLT versus GLT
from GCN on Cora, at several sparsity levels.

Settings (Graph Sparsity, GNN Sparsity)=(sg%, sθ%)

(18.55,59.04) (22.62,67.23) (36.98,86.58) (55.99,97.19)

Random GLT 79.70 78.50 75.70 63.70
GLT 80.80 80.30 79.30 75.30

Random graph lottery tickets. Randomly re-initializing
located sparse models, i.e., random lottery tickets, usually
serves as a necessary baseline for validating the effective-
ness of rewinding processes (Frankle & Carbin, 2018). In
Table 2, we compare GLT to Random GLT, the latter by ran-
domly re-initializing GNN’s weights and learnable masks,
and GLT shows aapparently superior performance, consis-
tent with previous observations (Frankle & Carbin, 2018).

4.5. Visualization and Analysis

In this section, we visualize the sparsified graphs in GLTs
from UGS in Figure 8, and further measure the graph

properties1 shown in Table A5, including clustering co-
efficient (Luce & Perry, 1949), as well as node and edge
betweenness centrality (Freeman, 1977). Specifically, clus-
tering coefficient measures the proportion of edges between
the nodes within a given node’s neighborhood; node and
edge betweenness centrality show the degree of central a
vertex or an edge is in the graph (Narayanan, 2005). Re-
ported numbers in Table A5 are averaged over all the nodes.
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Figure 8. Visualization of sub-graphs (Original/Sparsified) from
Cora, Citeseer, and PubMed. Original sub-graphs in the first
and third columns are randomly sampled from full graphs. The
corresponding unified sparsified sub-graphs of GLTs at 48.67%
sparsity, are provided in the second and forth columns.

Both Figure 8 and Table A5 show that sparse graphs ob-
tained from UGS seem to maintain more “critical” vertices
which used to have much denser connections. It may pro-
vide possible insights on what GLTs prefer to preserve.

5. Conclusion and Discussion
In this paper, we first propose unified GNN sparsification
to generalize the notion or pruning in GNNs. We further
establish the LTH for GNNs, by leveraging UGS and con-
sidering a novel joint data-model lottery ticekt. The new
unified LTH for GNNs generalizes across various GNN ar-
chitectures, learning tasks, datasets, and even initialization
ways. In general, we find GLT to tremendously trim down
the inference MACs, without sacrificing task performance.

It remains open how much we could translate GLT’s high
sparsity into practical acceleration and energy-saving ben-
efits. Most DNN accelerators are optimized for dense and
regular computation, making edge-based operations hard to
implement efficiently. To our best knowledge, the hardware
acceleration research on GNNs just starts to gain interests
(Auten et al., 2020; Abadal et al., 2020; Geng et al., 2020;
Wang et al., 2020; Kiningham et al., 2020). We expect
GLT to be implemented using sparse-dense matrix multi-
plication (SpMM) operations from highly optimized sparse
matrix libraries, such as Intel MKL (Wang et al., 2014) or
cuSPARSE (Naumov et al., 2010).

1NetworkX ( https://networkx.org) is used for our analyses.

https://networkx.org
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