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Abstract

We consider the learning and prediction of non-
linear time series generated by a latent symplectic
map. A special case is (not necessarily separa-
ble) Hamiltonian systems, whose solution flows
give such symplectic maps. For this special case,
both generic approaches based on learning the
vector field of the latent ODE and specialized ap-
proaches based on learning the Hamiltonian that
generates the vector field exist. Our method, how-
ever, is different as it does not rely on the vector
field nor assume its existence; instead, it directly
learns the symplectic evolution map in discrete
time. Moreover, we do so by representing the
symplectic map via a generating function, which
we approximate by a neural network (hence the
name GFNN). This way, our approximation of
the evolution map is always exactly symplectic.
This additional geometric structure allows the lo-
cal prediction error at each step to accumulate
in a controlled fashion, and we will prove, un-
der reasonable assumptions, that the global pre-
diction error grows at most linearly with long
prediction time, which significantly improves an
otherwise exponential growth. In addition, as a
map-based and thus purely data-driven method,
GFNN avoids two additional sources of inaccu-
racies common in vector-field based approaches,
namely the error in approximating the vector field
by finite difference of the data, and the error in
numerical integration of the vector field for mak-
ing predictions. Numerical experiments further
demonstrate our claims.
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1. Introduction
Given a collection of sequences, each being a multidimen-
sional time series produced by the same latent mechanism,
we consider learning this mechanism and predicting a se-
quence’s future evolution. More precisely, suppose there is
an unknown (possibly highly nonlinear) map φ that evolves
any initial condition in discrete time i according to

xi+1 = φ(xi).

Provided with training data {xi,j}, where each j ∈ [M ]
corresponds to such a sequence (i ∈ {0, . . . , Nj}), we’d
like to learn φ purely from the data, or more precisely an
approximation of its image φ̃(x) ≈ φ(x) for any x in the
problem domain. This way, one can for example perform
continuation of existing sequences via x̃i+1,j = φ̃(x̃i,j) for
i ≥ Nj and x̃Nj ,j = xNj ,j , or predict a sequence evolved
from a new initial condition via yi+1 = φ̃(yi) for i > 0.

This task of course appears in many contexts (see e.g.,
Sec.1.1). This article considers a very specific one, for
which the latent map φ is assumed to be symplectic: for sim-
plicity we will work with finite dim. vector spaces equipped
with canonical symplectic structure, which means each x
can be written as x = [p, q] where p, q ∈ Rd, and the
Jacobian of φ satisfies

(φ′)TJφ′ = J,

where J =

[
0 I
−I 0

]
is a 2d-by-2d matrix with 0 and I

being d-by-d blocks.

The consideration of symplectic evolution maps is largely
motivated by the learning and prediction of mechanical be-
haviors, which recently attracted significant attention (see
Sec.1.1 3rd paragraph). More precisely, if the latent evolu-
tion mechanism is provided by a Hamiltonian mechanical
system, each time series is given by a solution to the Hamil-
tonian ODE system sampled at discretized time points. That
is, xi = [pi, qi], pi = p(ih), qi = q(ih), with

ṗ(t) = −∂H
∂q

(p(t), q(t)), q̇(t) =
∂H

∂p
(p(t), q(t)), (1)

where H(·, ·) is the latent Hamiltonian function and h > 0
is the sampling time step. In this case, the latent φ we’re
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trying to learn is the flow map of ODE (1), defined as

φ[p(t), q(t)] := [p(t+ h), q(t+ h)], ∀t.

Given any h > 0, the corresponding φ is a symplectic
map (e.g., Goldstein, 1980), and that is why the learning of
symplectic maps is relevant.

Worth noting is, a popular and successful line of thoughts is
based on learning the right hand side of the latent ODE,
which in our case (eq.1) amounts to either generic ap-
proaches that learn the vector-valued function f(p, q) :=
[−∂H/∂q, ∂H/∂p] (see Sec.1.1 1st paragraph), or special-
ized methods that utilize the problem structure and learn the
scalar-valued function H(p, q) (see Sec.1.1 3rd paragraph).
This article, however, is based on a different idea, namely
to directly learn the evolution map φ.

The advantages of doing so include: (i) Generality: it
works no matter whether there is an underlying ODE sys-
tem (see Sec.4.4 for an example where there isn’t). (ii)
Local Accuracy: for purely data driven problems, learning
the map has one source of error, namely the approximation
error of the map, whereas learning vector field generally
has three: first one has to estimate the vector field from
data, for example by finite difference which incurs error,
then there is approximation error of the vector field, and
finally the vector field needs to be numerically integrated
in order to make predictions and this creates error too. (iii)
Symplecticity (and Global Accuracy): we will propose a
simple way to exactly maintain the symplecticity of φ de-
spite using an approximation1; we will also rigorously show,
when considering how local error accumulates for making
long time predictions, exact symplecticity can help signifi-
cantly by keeping the error accumulation additive, so that
global error grows linearly instead of exponentially.

Example 1. To make things concrete, consider latent Hamil-
tonian dynamics ẋ = Ax where A = −AT . A vector-
field-based method aims at learning the function Ax, but if
discrete time-series are the only available data, it actually
learns Ãx instead, where Ã = (exp(Ah)−I)/h if 1st-order
finite difference is used for estimating the vector-field. A
map-based method seeks the map exp(Ah)x instead. When
later making predictions, the vector-field-based method nu-
merically integrates the vector field Ãx, which oftentimes
corresponds to constructing a polynomial in h approxima-
tion of exp(Ãh); on the contrary, a map-based method
requires no numerical integration. A similar comparison
holds for nonlinear cases too.

In order to learn a symplectic evolution map, we use a tool
known as generating functions, which have one-to-one corre-
spondence with symplectic maps. We use a Neural Network,

1Vector-field-based methods can also be designed to make
symplectic predictions; see Sec.1.1 4th paragraph.

however not for approximating the latent symplectic map,
but to approximate its corresponding Generating Function
(the method is thus called GFNN). By doing so, the asso-
ciated evolution map is always symplectic, whether or not
it is a good approximation of the latent evolution map, and
an appropriate neural network, even just a feedforward one,
will be a good approximation after training (see Rmk.3).
This symplectic map representation is intrinsic, purely due
to the symplectic structure, and no regularization is used.

Moreover, the guaranteed symplecticity originated from the
generating function technique allows us to obtain a nontriv-
ial, linearly growing bound on the prediction error:

Theorem 1 (Informal version of Thm.4). Consider latent
dynamics far from chaos (more precisely, being integrable).
If the latent generating function is approximated with ≤ ε
error in first derivatives, then except for a set of initial
conditions whose measure goes to 0 as ε ↓ 0, the deviation
between the predicted sequence (p0, q0) , (p1, q1, ) , . . . and
the true sequence satisfies{

‖pn − p (nh)‖2 ≤ C · (nh) · ε,
‖qn − q (nh)‖2 ≤ C · (nh) · ε, ∀n ≤ h−1ε−1,

for some constant C > 0, where n is the number of predic-
tion steps and h is the sampling time step of the data.

The merit of this bound lies in long time predictions: note n
can be arbitrarily large as ε can be infinitesimal (h is fixed
by the training data, and nh is the physical prediction time).

A brief summary of main contributions:

• (Algorithm) Learn map instead of vector field. Exact sym-
plecticity guaranteed by generating function representation.

• (Theory) Linear bound on long-time prediction error.

• (Validation) Systematic empirical investigations.

1.1. Related Works and Discussion

Learning and then predicting dynamics from data is an ex-
tremely active research direction. While it is impossible to
review all important works, we first mention the classical
area of time series (e.g., Box et al., 2015; Abarbanel, 2012;
Kantz & Schreiber, 2004; Bradley & Kantz, 2015), where la-
tent differential equations may or may not be assumed. For
cases where a latent differential equation is believed to exist,
which may correspond to a complex and/or un-modeled
underlying dynamical process, some seminal works include
(Baake et al., 1992; Bongard & Lipson, 2007; Schmidt &
Lipson, 2009), and more recent progress include those based
on learning (part of) the vector field via sparse regression
of a library (e.g., Brunton et al., 2016; Tran & Ward, 2017;
Schaeffer et al., 2018; Lu et al., 2019; Rudy et al., 2017;
Kang et al., 2021; Reinbold et al., 2021), learning the vector
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field via neural network (e.g., Raissi et al., 2018; Rudy et al.,
2019; Qin et al., 2019; Long et al., 2018), and learning the
vector field via other approaches such as Gaussian processes
(e.g., Raissi & Karniadakis, 2018).

‘Model-free’ approaches that are based on machine learn-
ing techniques for sequences have also been proposed,
such as (Bailer-Jones et al., 1998) (vanilla RNN), (Wang,
2017) (LSTM), (Pathak et al., 2018) (reservoir computing),
(Mukhopadhyay & Banerjee, 2020) (CNN), and (Shalova &
Oseledets, 2020) (transformer).

Faced with the extreme success of these generic methods,
interests have also been growing in incorporating domain
knowledge and specific structures of the underlying prob-
lems into the otherwise-black-box schemes (see e.g., Raissi
et al., 2019). In terms of mechanical problems modeled
by Hamiltonian systems, seminal progress include HNN
(Greydanus et al., 2019) and an independent work (Bertalan
et al., 2019), SRNN (Chen et al., 2020), SympNets (Jin
et al., 2020), and (Lutter et al., 2019; Toth et al., 2020;
Zhong et al., 2020; Wu et al., 2020; Xiong et al., 2021), all
of which, except SympNets, are related to learning some
quantity that produces the Hamiltonian vector field.

In particular, both HNN and SRNN are based on the great
idea of learning (using a neural network) the Hamiltonian
that generates the vector field (VF), instead of learning
the VF itself; this improves accuracy as the Hamiltonian
structure of the VF will not be lost due to approximation.
HNN learns the Hamiltonian by matching its induced VF
with the latent VF (when such information is unavailable,
for example in a purely data driven context, data-based ap-
proximation such as finite-difference is needed). Then it
predicts by numerically integrating the learned VF, and for
this we note a Hamiltonian VF doesn’t guarantee the sym-
plecticity of its integration2. SRNN, on the other hand,
learns the Hamiltonian by matching its symplectic inte-
gration with the training sequences, and its prediction is
then given by symplectic integration of the learned Hamil-
tonian. It is therefore the closer to GFNN as it essentially
learns a symplectic map; it is just that SRNN represents
this map by a symplectic integration of a neural-network-
approximated Hamiltonian, whereas GFNN represents it
by a neural-network-approximated generating function. Be-
cause of this, SRNN doesn’t need finite-difference approxi-
mation and has good prediction accuracy, but it only works
for symplectic maps originated from Hamiltonian ODEs,
and its accuracy is hampered if the latent Hamiltonian is

2Unless a symplectic integrator is used. Note the seminal work
of HNN used RK45 which is not symplectic, however with small
error tolerance (thus good precision but high computation cost).

nonseparable3.

In comparison, GFNN is not based on Hamiltonian vector
fields. It is purely data driven, always symplectic, and
works the same for separable-, nonseparable-, or even non-
Hamiltonian latent systems.

Worth mentioning is the clever recent work of SympNets
(Jin et al., 2020), which also enjoys most of the aforemen-
tioned qualitative features of GFNN. It complements GFNN
and echoes with our view that directly approximating sym-
plectic maps (instead of Hamiltonian vector fields) in an
exactly symplectic way is advantageous (note SRNN can
also be seen as a (different) way of doing so). Algorith-
mically, SympNets stack up triangular maps (inspired by
symplectic integrator) to construct specialized (new) neu-
ral networks, which represent only symplectic maps, and
then use them to directly approximate the latent evolution
map; GFNN on the other hand uses generating function
to indirectly represent the evolution map, and because of
its mathematical structure, exact symplecticity is automati-
cally guaranteed, and no special neural network is needed
for representing the generating function. Consequently, the
theory of SympNets is devoted to a universal approxima-
tion theorem that characterizes the local prediction error,
whereas we focus on the global prediction error (i.e., error
after many steps of prediction, instead of one) and rigorously
show a nontrivial fact that local errors only accumulate lin-
early into global error; no approximation theorem needed
as it’s already established for generic networks. In terms of
performance, we observe SympNets outperforming vector-
field-based approaches (as reasoned above), but GFNN has
further improved performance; see e.g., Fig. 2, for which
we tried up to 30 layers with 10 sublayers using SympNets’
code (both LA- and G-SympNets) and plotted its best re-
sult, namely LA-SympNets with 30 layers and 10 sublayers
(c.f., here GFNN used 5 layers). We feel SympNets gener-
ally require a significantly deeper network than GFNN to
achieve high approximation power, but then training and
computational challenges may arise.

One more remark is, a good amount of existing work con-
sidered predicting chaotic dynamics, but a major part of this
work is concerned with structured, non-chaotic dynamics,
for which controlled long time (strong) accuracy in indi-
vidual trajectories becomes possible. Predicting chaos is
nontrivial, but sometimes the existence of a chaotic attractor
makes the system forgiving, and because of that, prediction
errors do not accumulate as much as they can in non-chaotic
systems. Besides, one often cares more about statistical
accuracy for chaotic systems (e.g., Tsai et al., 2020), as op-
posed to strong accuracy in trajectory (which usually grows

3The original SRNN is based on symplectic integrators for
separable Hamiltonians, and nonsymplectic integrators for nonsep-
arable ones; see Footnote 6 for additional information.
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too fast in chaos; see Rmk.4). Meanwhile, accurately pre-
dicting the trajectory of non-chaotic systems is desirable in
numerous applications. Nevertheless, GFNN’s predictive
power for chaos will be empirically confirmed too.

2. Methods
2.1. Symplectic Map and Generating Function

As we do not assume or seek a latent ODE system but di-
rectly approximate the evolution map, a representation of
this symplectic map is essential. Instead of directly approxi-
mating it, which has the extra difficulty of losing symplec-
ticity (which has to be exact), we use a mathematical tool
known as generating function. Let us be more specific:

Firstly, given a (type-2) generating function, there is an as-
sociated symplectic map (a.k.a. canonical transformation):

Lemma 1. Consider a differentiable function F (q,P )
which shall be called a generating function. The map
[p, q] 7→ [P ,Q] implicitly defined by p = ∂F

∂q (q,P ),
Q = ∂F

∂P (q,P ), is a symplectic map.

Proof. See e.g., (Goldstein, 1980).

The converse is also true, as long as the latent map doesn’t
correspond to an evolution time too long (otherwise singu-
larities can be developed):

Lemma 2. For any infinitesimal symplectomorphism (i.e.,
symplectic map) on T ∗Rd (i.e., vector phase space), there
is a corresponding generating function.

Proof. This is because the first cohomology group of T ∗Rd
is trivial; see e.g., (Da Silva, 2008).

Remark 1 (generating functions and Hamiltonian system).
We do not assume the latent map that generates the data
in discrete time corresponds to an underlying Hamiltonian
ODE system in continuous time. There are symplectic maps
that do not have such correspondence (see e.g., Sec.4.4).

On the other hand, given a Hamiltonian system, its flow map,
defined as φt : [p(0), q(0)] 7→ [p(t), q(t)], is symplectic
for any t. Therefore, there is a family of corresponding gen-
erating functions F (q,P , t), each of which generates the
symplectic map [P ,Q] = φt[p, q]. Moreover, the relation
between the Hamiltonian H and F can be made more direct
via the Hamilton-Jacobi PDE: H

(
∂F
∂q , q, t

)
+ ∂F

∂t = 0.

Because of their 1-to-1 correspondence, instead of approxi-
mating the symplectic evolution map φ : [p, q] 7→ [P ,Q],
we use a Feedforward Neural Network to approximate the
corresponding generating function F (q,P ). This way, no
matter how much error the FNN has in approximating F , it
always gives to an evolution map that is exactly symplectic.

2.2. Learning Based on Generating Function Training

The type-2 generating function corresponding to a h-time
flow map is F (q,P ) = q · P + O(h), and what varies
across different problems is inside the O(h) term. There-
fore, for easier training we learn an equivalent, modi-
fied generating function Sh, defined through F (q,P ) =
q · P + h · Sh (q,P ). It generates a sequence via iteration{

pi = pi+1 + h · ∂1Sh (qi,pi+1) ,

qi+1 = qi + h · ∂2Sh (qi,pi+1) ,
(2)

as long as an initial condition [p0, q0] is provided.

To learn the latent Sh, GFNN uses a neural-network approx-
imation Sθh, and trains for a good parameterization θ to best
satisfy (2). See Algorithm. 1.

Algorithm 1 GFNN

Data: The data set
{(

[pi,j , qi,j ]
Nj
i=0

)M
j=1

}
is observed

from sequences generated by a symplectic map φh,
with [pi,j , qi,j ] ∈ D ⊆ Rd × Rd ∼= T ∗Rd and
pi+1,j , qi+1,j = φh (pi,j , qi,j).
Training: Optimize the loss function

LGFNN =
1∑M

j=1Nj

M∑
j=1

Nj−1∑
i=0(∥∥h∂2Sθh(qi,j ,pi+1,j)− (qi+1,j − qi,j)

∥∥2
2

+
∥∥h∂1Sθh(qi,j ,pi+1,j)− (pi,j − pi+1,j)

∥∥2
2

)
.

(3)

with respect to neural network parameters θ (see Ap-
pendix for our experimental details).
Prediction: Given any initial condition (q0,p0) ∈ D,
one step evolution to (q̃1, p̃1) can be solved from{

p0 = p̃1 + h · ∂1Sθh (q0, p̃1) ,

q̃1 = q0 + h · ∂2Sθh (q0, p̃1) .
(4)

This can be iterated.

3. Global Error Analysis
We now show that, under reasonable assumptions, GFNN’s
prediction will be close to the true sequence (continued by
the latent φ) for a very long time, as a linearly growing long
time error bound will be established. This will be contrasted
with an obtainable exponentially growing error bound for
generic vector-field-based methods. The latter methods are
of course more versatile but they do not utilize the special
symplectic structure. Proofs are based on normal form and
KAM-type techniques and deferred to Appendix.
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The main condition needed for this mild error growth is
integrability, which, very roughly speaking, requires the
latent system to be far from chaos, but it could still be
highly nonlinear; see e.g., (Arnol’d, 2013). In order to make
it precise, some mathematical preparations are needed, but
one can jump to Thm.4 for the main results if preferred.

Definition 1. A function g(p, q) is called a 1st-integral or
a constant of motion of the dynamics if it remains constant
as p, q evolves in (continuous or discrete) time.

Definition 2. The (canonical) Poisson bracket of two arbi-
trary functions f(p, q), g(p, q) is another function defined
as {f, g} := 〈∂f/∂q, ∂g/∂p〉 − 〈∂f/∂p, ∂g/∂q〉.
Theorem 2 (Arnold-Liouville). Consider a d-degree-of-
freedom Hamiltonian system. Assume there exist d indepen-
dent 1st integrals in the sense that the Poisson bracket of
every pair is 0. If the d-dim. surfaces implicitly defined
by the level sets of those 1st integrals are compact, then
there exists a canonical transformation from p, q to I,ϕ,
such that ϕ can be defined on the d-torus, and in the new
variables the Hamiltonian only depends on I . In this case,
I , ϕ, and the Hamiltonian are respectively called the action,
angle variables, and an integrable Hamiltonian.

Proof. See e.g., (Arnol’d, 2013).

Remark 2. In an integrable system, the action variables I
remain constants (they are canonical versions of the first in-
tegrals), while the angle variables ϕ evolve on an invariant
torus

{
I = I (0) ,ϕ ∈ Td

}
, where

Td = Rd/(2πZd) = {(ϕ1, . . . , ϕd) mod 2π;ϕi ∈ R} .

It is easy to show that the fixed time step generating function
for an integrable system takes the form of Sh (I0,ϕ1) =
H (I0), as the exact time-h flow is defined as the following{

I1 = I0,

ϕ1 = ϕ0 + h ∂1Sh (I0,ϕ1) = ϕ0 + h∇H (I0) .
(5)

Denote∇H (I) by ω (I) = [ω1 (I) , . . . , ωd (I)]. It can be
directly seen from Eq. (5) that ωi (I) represents the change
rate (i.e., frequency) of the angle variable ϕi.

Our theory works for almost all initial frequencies, and to
describe what are the exceptions we need the following
definition, which generalizes irrational numbers in some
sense.

Definition 3 ((γ, ν)-Diophantine condition4). Frequency
vector ω = {ω1, ω2, . . . , ωd} satisfies (γ, ν)-Diophantine
condition iff |k · ω| ≥ γ · ‖k‖1

−ν , ∀k ∈ Zd, k 6= 0, for
some γ > 0, ν > 0.

4also known as strong non-resonance condition

Definition 4 (ε-neighborhood condition). (p, q) ∈ Rd×Rd
of an integrable system satisfies ε-neighborhood condition
if there exists I∗ ∈ Rd, such that ω (I∗) satisfies the (γ, ν)-
Diophantine condition (Def.3), and ‖I (p, q)− I∗‖2 ≤ c ·
|log ε|−ν−1 for some ε independent constant c (defined in
the Appendix) with I (p, q) being the actions of the system.

With these preparations, we see the action and angle vari-
ables I,ϕ form a new coordinate system alternative to p, q
(note even if the system is not integrable and/or time is no
longer continuous, one is still free to perform any canonical
coordinate transformation; it’s just doing so may or may
not reveal structured dynamics any more). In fact, they give
finer estimates of the prediction error:

Theorem 3 (GFNN’s long-time prediction error in actions
and angles). Consider an integrable Hamiltonian system
written in action-angle variables, whose exact time-h flow
map corresponds to generating function Sh(·, ·). Predict
its trajectory using GFNN with learned generating function
Sθh (·, ·) in a bounded data domainD = D1×Td ⊆ Rd×Td.
∃ ε > 0, ρ > 0, such that if the learned generating function
Sθh (extended in a complex neighborhood of D) is analytic
and satisfies∑

i=1,2

∥∥∂iSθh (·, ·)− ∂iSh (·, ·)
∥∥
∞ ≤ C1ε,

for some ε independent constant C1, where the L∞ norm
is defined over the ε independent complex neighborhood
Bρ (D) of D, then, ∀ (I0,ϕ0) ∈ D that satisfies ε-
neighborhood condition (Def.4), the predicted sequence
(I0,ϕ0) , (I1,ϕ1, ) , . . . generated by GFNN satisfies{
‖In − I(0)‖2 ≤ C · ε,
‖ϕn −ϕ(nh)‖2 ≤ C · (nh) · ε, ∀n ≤ h−1ε−1, (6)

for some constant C.

The intuition behind the proof of Thm. 3 (which is in Ap-
pendix) is the following: the predicted dynamics (In,ϕn)
and the true dynamics (I(nh),ϕ(nh)) deviate because each
step of the prediction introduces some error due to inaccu-
rate Sθh, but these errors accumulate in a very delicate way;
in fact, earlier errors cannot be amplified too much in order
for a linear bound to exist. The key reason, as the proof will
recover, is that In’s dynamics is mostly just oscillatory in
time. We show this by decomposing the predicted dynamics
into a macroscopic part plus microscopic oscillations. The
macroscopic part can be proved to correspond to a barely
changing action. The microscopic part, on the other hand,
does not accumulate.

Specifically, we introduce a carefully-chosen near-identity
canonical coordinate change T : [I,ϕ] 7→ [J ,θ], T ≈
id+O(ε), and show that the new variables [Jn,θn] describe,
roughly, the macroscopic part of the predicted dynamics.
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We then prove, when compared to the true dynamics,{
‖I(nh)− Jn‖2 = O (ε) ,

‖ϕ(nh)− θn‖2 = nh · O(ε),
∀nh = O

(
ε−1
)
.

Since T is near-identity, [Jn,θn] = [In,ϕn] +O(ε) for all
n, and the triangle inequality then completes the proof. �

[In,ϕn] [pn, qn] , Sθh

[I(t),ϕ(t)]∈
Invariant Torus
{I=I(0),ϕ∈Td}

exact
[p(t),q(t)]

∃ [Jn,θn]

canonical

same set
of variables same set of variables

different dynamics

canonical

dynamics: O(ε) close till t=O(ε−1)

canonical T

Figure 1. Main components in the proof of linear error growth.

Now we can relate the error bound in Thm. 3 back to that for
the original variables p, q. The big picture is summarized
by Fig.1. In the end, our theory only requires the existence
of action and angle variables, and no knowledge about how
to find the actions and angles is needed.

Theorem 4 (linear growth of GFNN long-time prediction
error). Consider an integrable Hamiltonian system whose
exact solution is denoted by p(t), q(t) ∈ Rd. Denote by
Sh (·, ·) the generating function corresponding to its exact
time-h flow map. Consider predicting its trajectory us-
ing GFNN with learned generating function Sθh (·, ·) in a
bounded data domain D ⊆ Rd × Rd. ∃ ε > 0, ρ > 0, such
that if the learned generating function Sθh (extended in a
complex neighborhood of D) is analytic and satisfies∑

i=1,2

∥∥∂iSθh (·, ·)− ∂iSh (·, ·)
∥∥
∞ ≤ C1ε, (7)

for some ε independent constant C1, where the L∞

norm is defined over the ε independent complex neigh-
borhood Bρ (D) of D, then, ∀ (p0, q0) ∈ D that satis-
fies ε-neighborhood condition (Def.4) with nonlinear fre-
quency ω(·) being given by Sh, the predicted sequence
(p0, q0) , (p1, q1, ) , . . . generated by GFNN satisfies{
‖pn − p (nh)‖2 ≤ C · (nh) · ε,
‖qn − q (nh)‖2 ≤ C · (nh) · ε, ∀n ≤ h−1ε−1, (8)

for some constant C > 0.

Remark 3. It is known that neural networks can approxi-
mate functions and their derivatives with any precision; see
e.g., the classical work (Hornik et al., 1990) and a more
recent discussion (Yarotsky, 2017). (7) can thus be attained.

Remark 4. The integrability assumption in Thm.4 is non-
trivial, however reasonable. This is because it rules out
the possibility of a positive Lyapunov exponent, which by
definition indicates that a deviation between two trajecto-
ries can exponentially grow in time (e.g., Alligood et al.,
1996). Naturally, if the latent system does have a positive
Lyapunov exponent, then in general one should not expect
a linearly growing prediction error, as an arbitrarily small
approximation error, even if it’s just made in one step, can
be exponentially amplified.

A simple illustration of this is a Hamiltonian system ẋ =
y, ẏ = x, which is not integrable due to noncompactness
(not even chaos). It has a Lyapunov exponent of +1. Con-
sider predictions based on approximation ẋ = y + δx, ẏ =
x+ δy, then no matter how small δx and δy are, the differ-
ence between its solution and the original one grows like
exp(t) except for measure zero δx and δy values.

As a comparison, if the prediction map is not symplectic,
either due to nonsymplectic numerical integration, or be-
cause the learned vector field is no longer Hamiltonian, local
prediction error (in each step) may get amplified and long
time prediction error may grow exponentially:

Theorem 5. Consider the latent dynamics ẋ = f(x) and
its prediction via an Euler integration of the learned vector
field xi+1 = xi + hf̃(xi), with consistent initial condition
x(0) = x0. Assume f is L-Lipschitz continuous, C1, the
learned vector field is accurate up to δ in the sense that
‖f̃ − f‖∞ ≤ δ, and the prediction remains bounded. Then
the accuracy of the prediction at time T = nh satisfies

‖x(T )− xn‖ ≤
exp(LT )− 1

L
(δ + Lh/2).

Proof. See Appendix.

Remark 5. This exponential growth with T (and n) is
not an overestimation. A simple example that attains it
is f(x) = x and f̃(x) = x + δ. This is of course because
the latent dynamics is structurally bad and does not forgive
past errors, but that is exactly our point: when the latent
dynamics has specific structures such as being a symplectic
flow, utilizing those structures in the prediction could lead
to much better controlled accumulation of errors.

Remark 6. In the context of learning dynamics from data,
two sources contribute to the difference between f and f̃ .
One is approximation error, for instance of the neural net-
work; the other is because one doesn’t have an oracle about
the latent vector field f but only its approximation from the
data, for example f(xi) ≈ (xi+1 − xi)/h. A map based
approach doesn’t directly use f and thus can avoid the lat-
ter error, and it doesn’t have numerical integration errors
in the next phase of predictions either. A neural ODE type
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treatment (Zhong et al., 2020) can avoid the latter error too,
but integration errors in the prediction phase remain (unless
computationally expensive small steps are used).

4. Experiments
Let’s now systematically (within the page limit) investi-
gate the empirical performances of GFNN. It was conjec-
tured that invariant sets of a smooth map with a dense
trajectory are typically either periodic, quasiperiodic5, or
chaotic (Sander & Yorke, 2015). Thus, Sec.4.1-4.4 will
study classical examples that respectively correspond to pe-
riodic, quasiperiodic+chaotic, quasiperiodic, and quasiperi-
odic+chaotic cases. We’ll see smaller and linearly growing
errors of GFNN in both periodic and quasiperiodic cases,
even when the latent system is not integrable. In chaotic
cases, GFNN will also exhibit pleasant statistical accuracy.

VFNN stands for: learning the Vector Field via a Neural
Network (without caring about the Hamiltonian structure).

Details of data preparation and training are in appendix B.

4.1. An Integrable and Separable Hamiltonian: 2-Body
Problem

Consider the motion of 2 gravitationally interacting bodies.
Letting their distance be q(t) and the corresponding mo-
mentum be p(t), the problem can be equivalently turned
into (after unit normalization) an ODE system governed by

H (p, q) = ‖p‖22/2− 1/ ‖q‖2 .

Despite its high nonlinearity, this is an integrable system.
Analytical solutions known as Keplerian orbits exist and are
periodic in bounded cases. Each solution is described by im-
portant physical quantities known as orbital elements, which
include semi-major axis and eccentricity, that characterize
the shape of the elliptic orbit. As shown in Fig. 2, GFNN
outperforms other methods and keeps the errors of semi-
major axis and eccentricity small and bounded, which is
consistent with Thm. 3 because semi-major axis and eccen-
tricity are functions of actions known as Delaunay variables
(Morbidelli, 2002). The advantage of GFNN can also been
seen in the original variables (e.g., q), and the zoomed-in
plots in row 2 show that the next two top performers are
SRNN (seq len=2) and SRNN (seq len=5); SympNets has
notably larger error in the orbital phase but its accuracy in
the orbital shape is actually comparable to SRNN.

5A function f(t) is quasiperiodic if ∃ some constants n ∈
Z+, Ω1, · · · ,Ωn ∈ R, and some function F 1-periodic in each
argument, s.t., f(t) = F (Ω1t, · · · ,Ωnt). An integrable system’s
solution is quasiperiodic if LCM(ω1(I), · · · , ωd(I)) doesn’t exist
(see Rmk.2 for ωi(I)); otherwise it is periodic.
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Figure 2. Comparison of 2D Keplerian orbit predicted by different
methods. The 1st row is the error growth of two variables of
physical importance, namely semi-major axis and eccentricity (for
this problem, their true values are both constants). Mean values
of prediction errors starting from 1,000 i.i.d. initial conditions are
plotted with shades corresponding to 1 standard deviation. The
2nd row zooms in the position variables of one predicted sequence
(in q1 and q2 respectively). Data sequences are prepared with time
step 0.1.

4.2. A Non-integrable but Separable Hamiltonian
System: Hénon-Heiles

The Hénon-Heiles system describes the motion of stars
around a galactic center (Hénon & Heiles, 1964). It is a clas-
sical non-integrable system with very complex dynamics,
governed by Hamiltonian

H (p1, p2, q1, q2) =

(
p21 + p22

)
2

+

(
q21 + q22

2
+ q21q2 +

q32
3

)
.

Both chaotic and (quasi)-periodic solutions exist. Initial
conditions corresponding to higher energy (i.e., H’s value)
are more likely to be chaotic. We investigate GFNN’s per-
formance in both cases.

4.2.1. NON-PERIODIC BUT REGULAR MOTIONS

For a non-chaotic initial condition, numerically observed
was that the long time prediction error of GFNN still grows
linearly even though the latent system is no longer inte-
grable; see Fig. 3. Notably, SRNN also exhibits linear error
growth (although at a higher rate), and this is consistent
with our intuition as SRNN also learns a symplectic evo-
lution map (indirectly via the symplectic integration of a
Hamiltonian to-be-learned). HNN, on the other hand, has
exponentially growing error which quickly saturates to max-
imum values (due to boundedness of trajectories).

GFNN’s linear error growth despite non-integrability is due
to the existence of mathematical objects known as KAM-
tori (e.g., Pöschel, 1982). They correspond to part of the
phase space where dynamics are topologically equivalent to
integrable ones. A by-product is, solutions in this region are
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Figure 3. Error of predictions of a quasi-periodic trajectory with
energy level near 1

12
of the Hénon-Heiles system. Data sequences

are prepared with time step 0.5.

either quasiperiodic or periodic (see Footnote 5).

4.2.2. DYNAMICS IN CHAOTIC SEA

To visualize the prediction of chaotic dynamics, which take
place in 4D, we use the standard tool of Poincaré section,
which plots where an orbit intersects with a 2D slice of the
3D constant-energy manifold. Fig. 4 shows the Poincaré
section produced by predictions of different methods, based
on the same initial condition that leads to chaotic motion via
the latent dynamics. The true chaotic motion is ergodic on
a submanifold of the phase space, and when restricting to
the Poincaré section, it gives intersections that are dense in
a subset known as the chaotic sea. Therefore, the shapes of
the dense area and the holes inside it (often corresponding to
regular islands on which motions are (quasi)-periodic) are in-
dicators of the prediction accuracy. Among methods tested
in Fig. 4, only VFNN didn’t produce a pattern similar to
the truth. Quantitative comparisons are conducted by com-
paring the empirical distributions of points on the Poincaré
section, and KL divergences between their marginals and
the truth are annotated along with the histograms. GFNN
has the smallest errors.

Figure 4. Quantifying the statistical accuracy in predicting a
chaotic orbit of the Hénon-Heiles system. Left 3 columns:
Poincaré section; right column: marginal distributions and their
KL divergences from the truth. The plotted orbit corresponds to
energy 1

6
; Poincaré section is given by q2(t), p2(t) at q1(t) = 0.

Data sequences are prepared with time step 0.5.

4.3. A Non-integrable and Non-separable Hamiltonian:
Planar Circular Restricted 3-Body Problem (PCR3BP)

PCR3BP is a special case of the gravitational 3-body prob-
lem. In addition to a co-planar restriction, it assumes two
bodies massive and the third infinitesimal, which models
settings like mission design for a space shuttle near Earth
and Moon (Koon et al., 2000), and understanding a planet’s
motion around binary stars (Li et al., 2016; Quarles et al.,
2020). Its Hamiltonian takes the form

H (p, q) =
p21 + p22

2
+ p1q2 − p2q1

− 1− µ
‖(q1 + µ, q2)‖2

− µ

‖(q1 + µ− 1, q2)‖2
,

with µ ∈ (0, 1) a constant mass parameter. Note it cannot
be written as K(p) + V (q), hence nonseparable.

In order to focus on comparing with SOTA methods for
trajectory accuracy, we predict solutions in the nearly-
integrable (non-chaotic) regime of PCR3BP; see Fig.5.
GFNN still has the smallest error among those experimented,
and its growth is again linear. SRNN typically performs the
best among tested existing approaches, but its published ver-
sion loses symplecticity in this case due to non-separability6,
and its accuracy deteriorated. Note also that for methods
that learn, in the separable case, V (q) in the Hamiltonian or
∇V (q) in the vector field, now they cannot just do so but
have to learn the entire H(p, q) in doubled dimensions.

0 100 200 300 400 500

time
0

5

10

15

20

l 2
E
rr

or
of

S
ta

te
s

0 20 40 60 80 100

time

−10

−5

0

5

q 1
(t

)

True

VFNN finite diff

HNN finite diff

L-L O-NET seq len=5

GFNN

Figure 5. Comparison of PCR3BP orbit predicted by different
methods. L-L O-NET (in SRNN paper) is selected instead of
SRNN as the Hamiltonian is not separable. Data sequences are
prepared with time step 0.1.

4.4. A Discrete-time Non-(Smooth-)Hamiltonian
System: the Standard Map

The standard map is a classical model in accelerator physics.
It is a chaotic system whose statistical property is (relatively)

6A possible remedy based on our nonseparable symplectic inte-
grators (Tao, 2016) was mentioned in SRNN as a future direction.
This remedy is implemented in a concurrent work (Xiong et al.,
2021), which successfully reduces the error of predicting nonsepa-
rable dynamics to the level of SRNN for separable dynamics.
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well understood. It is a symplectic map in 2D given by

{
pn+1 = pn +K sin(θn),

θn+1 = θn + pn+1.
(9)

The dynamics is genuinely in discrete time, as no smooth
Hamiltonian ODE can produce a flow map like it7. K is a
positive constant that controls the strength of nonlinearity,
and it has been estimated that the region of initial condi-
tions leading to chaos has size increasing with K (Chirikov,
1979).

Methods based on vector fields (e.g., VFNN) or Hamiltonian
(e.g., HNN, SRNN) are not very suitable for this prediction
task because there is no latent continuous (Hamiltonian)
dynamics. One can still apply these methods regardless, for
example by using finite differences to construct a fictitious
vector field for VFNN and HNN to learn, or just use SRNN
without realizing that no Hamiltonian will be able to produce
the training data. Their results (obtained using h = 1) will
be compared with those of GFNN, which is still applicable
here as it directly learns evolution maps.

Fig. 6 illustrates the predicted evolutions of a fixed initial
condition in the chaotic sea (of the true dynamics, K = 1.2)
by various methods. Note both θ and p have been mod 2π
as this quotient compactifies the phase space into the 2-torus
without affecting the dynamics (see Eq. (9)). Like before,
the prediction quality can be inferred from the geometric
shape of the set of plotted points, which should match that
of the truth (i.e., the latent chaotic sea), and quantitative
comparisons can be made using distances between empir-
ical distributions of p, θ values collected along long time
predictions (KL divergences from the truth are provided).

One can see GFNN is the only method that captures the
major regular islands (the big holes), but even GFNN does
not capture the minor regular islands well. The standard
map seems to be a challenging problem; HNN and SRNN
did not manage to reproduce any chaotic motion, and VFNN
completely distorted the chaotic sea.

Fig. 7 on the other hand illustrates predictions in regular
islands (of the true dynamics, K = 0.6). The two (not three,
note periodic boundary conditions) elliptical shapes near
p ≈ π and θ ≈ 0, π correspond to quasiperiodic orbits,
and GFNN is the only one that captures them: the exact
trajectory is jumping back and forth between two islands,
so does GFNN’s prediction, while other methods tend to
produce continuous trajectories without capturing the jumps.

7This is because autonomous Hamiltonian systems in 2D are
never chaotic (the Hamiltonian itself is a 1st integral) but the
standard map is chaotic.

Figure 6. Predict a chaotic orbit of the standard map. Left 3
columns: the predicted orbit in phase space; right column:
marginals of its empirical measure and their KL divergences from
the truth.

Figure 7. Predict a regular orbit of the standard map. The 1st plot
is orbits predicted by various methods in phase space. The 2nd
and 3rd plots shows how their two coordinates change with time.
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