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Abstract

In this paper we present a scalable deep learning
framework for finding Markovian Nash Equilibria
in multi-agent stochastic games using fictitious
play. The motivation is inspired by theoretical
analysis of Forward Backward Stochastic Differ-
ential Equations (FBSDE) and their implementa-
tion in a deep learning setting, which is the source
of our algorithm’s sample efficiency improvement.
By taking advantage of the permutation-invariant
property of agents in symmetric games, the scal-
ability and performance is further enhanced sig-
nificantly. We showcase superior performance
of our framework over the state-of-the-art deep
fictitious play algorithm on an inter-bank lend-
ing/borrowing problem in terms of multiple met-
rics. More importantly, our approach scales up
to 3000 agents in simulation, a scale which, to
the best of our knowledge, represents a new state-
of-the-art. We also demonstrate the applicability
of our framework in robotics on a belief space
autonomous racing problem.

1. Introduction

Stochastic Differential Games (SDG) represent a framework
for investigating scenarios where multiple players make
decisions in a stochastic environment. The theory of dif-
ferential games dates back to the seminal work of Isaacs
(1965) studying two-player zero-sum dynamic games, with
the stochastic extension first appearing in Kushner & Cham-
berlain (1969). A key step in the study of games is to obtain
the Nash equilibrium among players (Osborne & Rubinstein,
1994). A Nash equilibrium represents the solution of non-
cooperative games where two or more players are involved.
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At the equilibrium, each player cannot gain any benefit
by modifying his/her own strategy given opponents’ strat-
egy. In the context of adversarial multi-objective games, the
Nash equilibrium can be represented as a system of coupled
Hamilton-Jacobi-Bellman (HJB) equations when the sys-
tem satisfies the Markovian property. Analytical solutions
exist only for few special cases. Therefore, obtaining the
Nash equilibrium solution is usually done numerically, and
this can become challenging as the number of states/agents
increases. Despite extensive theoretical work (Buckdahn
& Li, 2008; Ramachandran & Tsokos, 2012), the algorith-
mic part has received less attention and is limited to special
cases of differential games (e.g., Duncan & Pasik-Duncan
(2015)), or suffers from the curse of dimensionality (Kush-
ner, 2002). Nevertheless, SDG has a variety of applications
including in robotics, autonomy, economics and manage-
ment. Relevant examples include Mataramvura & @ksendal
(2008), which formulates portfolio management as a SDG
in order to obtain a market portfolio that minimizes the
convex risk measure of a terminal wealth index value, as
well as Prasad & Sethi (2004), which investigates optimal
advertising spending in duopolistic settings via SDG.

Researchers have also been solving differential games via
Reinforcement Learning (RL) (Harmon et al., 1995). Ka-
malapurkar et al. (2016) seeks to combine differential game
theory and RL to solve cooperative control problems in
which agents are coupled by graphs. Multi-agent RL
(MARL) is an extension of RL, which is a more complex
task due to internal interactions between agents and external
interactions with environment. Independent learning (Tan,
1993) is an approach which assumes other agents are part
of environment, and it suffers from the unstable learning
problem. Training agents by augmenting their states and ac-
tions is called centralized training and executing (Yang et al.,
2019), and scalability of it is limited. Another method is
centralized training and decentralized execute (CTDE), how-
ever the challenge therein lies on how to decompose value
function in the execute phase for value-based MARL. Sune-
hag et al. (2018); Zhou et al. (2019); Rashid et al. (2018);
Son et al. (2019); Mahajan et al. (2019) achieve remarkable
success in this vein. However, RL usually adopts model-
free learning scheme in discrete time. Here we leverage the
HJB PDE which contains information of the dynamics to
develop data-efficient algorithm in continuous time. The de-
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composition of value function is characterized by decoupled
property of HIB PDE by modifying nonlinear Feynman-Kac
Lemma (Karatzas & Shreve, 1991) in multi-agent scenario.

Another vein of related research marries the mathemati-
cal formulation of a differential game with nonlinear PDE.
This motivates the algorithmic development for differen-
tial games that combines elements of PDE theory with
deep learning. Recent encouraging results (Han et al.,
2018; Raissi, 2018) in solving nonlinear PDEs with deep
learning illustrate the scalability and numerical efficiency
of neural networks. The transition from a PDE formula-
tion to a trainable neural network is done via a system of
Forward-Backward Stochastic Differential Equations (FB-
SDEs). Specifically, certain PDE solutions are linked to
solutions of FBSDEs, and the latter can be solved using a
suitably defined neural network architecture. This is known
as the Deep FBSDE approach. Han et al. (2018); Pereira
et al. (2019); Wang et al. (2019b) utilize various deep neu-
ral network architectures to solve such stochastic systems.
However, these algorithms address single agent dynamical
systems. Two-player zero-sum games using FBSDEs were
initially developed in Exarchos et al. (2019) and transferred
to a deep learning setting in Wang et al. (2019a). Recently,
Hu (2019) brought deep learning into fictitious play to solve
multi-agent non-zero-sum games. Han & Hu (2019) intro-
duced the Deep FBSDEs to a multi-agent scenario and the
concept of fictitious play. Furthermore, Han & Long (2020)
gives the convergence analysis of the framework. Our work
mainly focuses on stochastic differential game with homo-
geneous agents which can also be seen as the case of mean
field game with finite number of agents. Under mild as-
sumptions, the approximation error of mean field game is
of order N~1/(¢+4) (Carmona & Delarue, 2013) where N
is the number of agents and d is the state dimension of indi-
vidual agent. Our algorithm can mitigate the approximation
error when the number of agents is moderate.

In this work, we first extend the theoretical analysis in Han
& Long (2020) to the scenario where the forward process
includes a drift term. Suggested by the theoretic result, we
integrate importance sampling (Bender & Moseler, 2010)
into the existing framework. Furthermore, by leveraging
the property of symmetric game, we introduce an invariant
feature representation to reduce the complexity and signif-
icantly increase the number of agents the framework can
handle. The main contribution of our work is threefold:

1. We theoretically analyze FBSDE with drift term under
fictitious play problem setup, and explain the efficiency
of importance sampling analytically and numerically.

2. We introduce an efficient Deep FBSDE framework for
solving stochastic multi-agent games via fictitious play
that outperforms the current state-of-the-art in perfor-
mance and runtime/memory efficiency on an inter-bank

lending/borrowing example. We demonstrate that our
approach scales to a much larger number of agents (up
to 3,000 agents, compared to 100 in existing works).
To the best of our knowledge, this represents a new
state-of-the-art.

3. We showcase the applicability of our framework to
robotics on a belief-space autonomous racing problem
which has larger individual control and state space. The
experiments demonstrate that the BSDE has decoupled
property and provides the possibility of applications
for competitive scenario, and the model can extract
informative features with partially observed input data.

The rest of the paper is organized as follows: in §2 we
present the notation and mathematical preliminaries. In
83 we introduce the Scaled Deep Fictitious Play FBSDE
(SDFP-FBSDE) algorithm, with simulation results follow-
ing in §4. We conclude the paper in §5.

2. Notation and Preliminaries

Table 1. Mathematical notation.

CHARACTERS ‘ DEFINITIONS
X quantities for all agents
X'/X; quantities for ith agent
X _; | quantities from all agents except ith

x realization of X

Throughout the paper the notation will be:

—_

Bold letters denote quantities for all players'

2. (sup)subscript 7 indicates quantities for player 7.

3. Bold letters with (sup)subscript —: indicates quantities
for all players except <.

4. Lower case letter is the realization of the upper case

random variable.

Table.1 contains examples for the notation defined above.
The baseline used in this paper refers to Han & Hu (2019).

2.1. HJB PDE and FBSDE

Fictitious play is a learning rule (Brown, 1951) where each
player presumes other players’ strategies to be fixed. An
N-player game can then be decoupled into N individual
decision-making problems which can be solved iteratively
over M stages. When each agent converges to a stationary
strategy at stage m — 1, this strategy will become the sta-
tionary strategy for other players at stage m. We consider a
N-player non-cooperative SDG with dynamics:

dX; = (f( X, 1) + G(X, ) U(Xy))dt + B( Xy, t)dW,
Xto = Ty, (1)

! Agent and player are used interchangeably in this paper
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where X = (X1,Xs,...,Xy) is a vector containing
the state process of all agents generated by their controls
U = (U1,Us,...,Uy) defined on the space X' and U,
with X; € &; € R"™ and U; € U; C R"™. Here,
f o X x [to,T] — X represents the drift dynamics,
G : X x [ty,T] — X x U represents the actuator dy-
namics, and ¥ : X X [tg,T] — X x R™> represents the
diffusion term. The state process is also driven by an n,,-
dimensional independent Brownian motion W;, and denoted
W = (W, Wa,...,Wy).

Given the other agents’ strategies, the stochastic optimal
control problem for agent ¢ under the fictitious play as-
sumption is defined as minimizing the expectation of the
cumulative cost functional J;

Jtl(Xa Ui,m; Ufi,mfl) -
T B
E |g(Xr) + / O (X, Vs (X, ): Ui )dr |
t

2

where g : X — R™ is the terminal cost, and Ct: X xU —
R is the running cost for the i-th player. In this paper we
assume that the running cost is of the form C*(X,U;) =
¢'(X)+ iU RU; + XTQU;. We use the double subscript
Ui m to denote the control of agent ¢ at stage m. We can
define value function of each player as

V(X)) = b [JHX, Ui Uoin )]
‘ Wi m EU; (3)
Vi(X1) = g(X7).

Assume that V}/ in eq. (3) is once differentiable w.r.t. ¢t and
twice differentiable w.r.t. X . Here we drop the functional
dependencies for simplicity. Then, standard stochastic opti-
mal control theory leads to the HIB PDE:

. ) . 1 .
Vi + inf {ViT(f+GU)+C'} + §tr(V;$ZZT) =0
utel;

4)

The function inside the infimum is known as the Hamil-
tonian function H (¢, X,U, Z%). Z is known as adjoint
states and is defined as Z° = XV in literature (Yong &
Zhou, 1999). If the optimal control can be obtained, by
plugging back to eq.4, one can have,

Vi+h+VI(f+GUy ) + %tr(vjzzzT) =0,

o ©
where h* = C"* + GU, . The first and second sub-
script of U represents for the control taken by ith and
—ith agent respectively. The * denotes the optimal con-
trol computed from U = —R™ 1G]V} + QF X) and
the ’zero’ represents for taking zero control U_; = 0.
For instance, Uy . denotes the augmentation of U; = 0

IEN

Feature Feature Feature Feature
Extractor Extractor Extractor Extractor

Figure 1. FBSDE Network for a single agent. The dashed arrow
indicates hidden states propagation if LSTM is chosen as backbone.
The dash arrow would disappear when FC is chosen.

andU_; = U*; as (Uy,--- U’ 1,0,Uf,, - ,Uy) and
U.o = (0,---,0,U7,0,---,0). The derivation is in-
cluded in Appendix A for completeness. The value function
V! in the HIB PDE can be related to a set of FBSDEs by
non-linear Fayman-Kac Lemma Karatzas & Shreve (1991),

dX; = (f + GUy . )dt + XdW;, X, = x;, (FSDE),
dY) = —hidt + Z:dW,, Yi = g(X7), (BSDE),
(6)

where the backward process corresponds to the value func-
tion, and ¢ € [to,T]. The derivation can be found in Ap-
pendix B. Here we denote value function V" as Y in order to
be aligned with classic FBSDE literature.

Remark 1. The problem of solving HIB PDE (5) will be
transformed to solve a FBSDE system. (6). The ith player
will provide zero control in the drift term in the forward
process, and the rest of agents will execute the optimal
policy according to the Value function.

The HIB PDE (5) can be solved by Numerical PDE solvers
based on finite element and finite difference methods (Greif,
2017). Howerver, these methods do not scale beyond very
few dimensions, as they rely on discretization.

2.2. Deep Fictitious Play FBSDE Controller

In Han & Hu (2019), the FBSDE system in (6) is solved by a
neural network where each agent has a Deep Fictitious Play
FBSDE Controller (DFP-FBSDE) to generate the policy.

The neural network architecture is described as Fig.1, where
the backbone is a unique fully connected neural network fol-
lowed by a BatchNorm module (Ioffe & Szegedy, 2015)
(hereafter we shorthand this backbone as FC) at each
timestep. Since Han & Hu (2019) do not apply feature
extraction, it is equivalent to setting feature extractor as
identity mapping: F,=1-X, The output of the network
is Z component in functions (6). The use of a neural net-
work allows for the BSDE to be propagated forward (red
path) from the initial condition predicted by another FC
along with the FSDE (green path).

The training set of DFP-FBSDE contains randomly selected
initial states xg, and the training labels are defined as the
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value function at terminal time YTi(6) which depends on
random variable X 7. The training loss (24) is defined as
the mean square error between the predicted value f/r} prop-
agated by BSDE and the true terminal value. The metrics
used on training/test data are summarized in Appendix C.

By collecting the FBSDEs from all agents, the final DFP-
FBSDE framework will be formed and the architecture can
be found in Appendix H.4. Furthermore, Pereira et al. (2019)
extends Deep FBSDE to robotics applications and Han & Hu
(2019) applys Deep FBSDE for searching Nash-Equlibrium
with convergence proof (Han & Long, 2020).

3. SDFP-FBSDE

In this section we propose a novel SDFP-FBSDE algorithm.
Motivated by the convergence analysis of DFP-FBSDE, we
introduce an Importance Sampling term to facilitate explo-
ration and accelerate convergence. Scalability is further
increased by Invariant Layer Embeddings, leading to an
order of magnitude lower time and memory complexity.

3.1. Motivation of Importance Sampling (IS)

We first analyze FBSDE (6) with drift term by extending
previous work (Han & Long, 2020) where the drift term is
ignored. The analysis focuses on one representative agent.
Therefore, the agent index is omitted in this subsection.
Assumption 1. There exists a measurable function ¢ :
0,T] x X — X and T 0,T] xU — X so
that 2(t, X)o(t, X) = f(t,X), and S(t, X)T'(¢t, X) =
G(t, X).

Assumption 2. For a general FBSDE system,

T T
X0® =x+ / peds + / ¥, dW, (FSDE),
t t

T T
YV = g(Xh®) - / H,ds + / Z.dW, (BSDE),
t t

(N
The drift function us, Hy and diffusion function X in (7),
terminal objective function g(-), and control function U (")
satisfy Lipschitz continuous properties with Lipschitz con-
SLants by, oy, 2y Hyy H,, 9z, Uy vespectively. The detailed
and formal description can be found in Appendix D. 1.
Lemma 1. Denote (X!1* Y1*® Z0®), <1 as the solu-
tion for the FBSDE system (7) satisfying assumptions 1 and
2. Denote the difference of Y component at two different

states x1 and x5 as:
80X, = Xtto’wl _ Xfo,wz,é}/t _ }/ttoﬂn _ Y;tmwz. ®)
62, = Z{0% — Z,~

Then we can have:

16Y7|? < Li|zy — x2|?, |0V, | < Lo|&r — xa2?,  (9)

Where L1 and Ly are defined as:

Ly = g:cegT
es(T—to) _q

Lo = ¢H=(T—t0) meﬁ(T—to) +H,———
2 9 SoIHT

=T+ pig + puliy + Xz,
Following arguments in (Ma et al., 2002), one further has,
1Z:I% < |IZIEIVLYillE < Ms Lo (11)

Where iy, by, Uy, 20g, Hyy Hy, g are Lipschitz constants
defined in Assumption.2. My, is the upper bound of 3. The
proof can be found in Appendix D.2.

Lemma 1 bridges the connection between the states and
their corresponding value functions. Note that the training
labels Y7 are not fixed since it is a function of X driven by
stochastic diffusion W} which is distinct at each training iter-
ation. Furthermore, the Lemma 1 suggests that scope of the
training dataset [, Y,4] and initial values functions Y;, can
be controlled by Lipschtiz constants iz, iy, Hy, H,, ug,
since Lipschtiz constants X, g, are determined as long
as the stochastic dynamics and terminal loss function are
defined.

Increasing data complexity is crucial element for improv-
ing model performance in RL and supervised learning. In
RL, agents are encouraged to explore more states by adding
the entropy term in cost function (Haarnoja et al., 2018) or
adding artificial stochasticity in observed states (Fortunato
et al., 2017) to gain complex training data for the learning of
action-value function. In supervised learning, connections
between deep neural networks’ generalization and complex-
ity of dataset also has attracted considerable attention as a
principled tool to explain deep learning(DL) (Schmidt et al.,
2018),(Rozen et al., 2019). In practice, Data-Augmentation
is an efficient approach adopted to improve the generaliza-
tion performance of a deep learning model (Cubuk et al.,
2018),(Fawzi et al., 2016). Motivated by the success of
previous work in DL and RL community, we would like
to modify the FBSDE system (6) to improve the complex-
ity of training label 0Y7 and 0Y;, (9) by encouraging the
exploration of agents while solving the same HJB PDE (5).
Theorem 1. (Bender & Moseler, 2010): Let
(Xite yite 76s2) be the solution of the FBSDE
system (6) for ith agent, and let K : [0,T] x Q@ — R"= be
any bounded and square integrable process for ith agent.

Consider the forward process whose drift term is modified
by K

dX, = [ps + LK,]ds + 2dW,, X, = x,, (12)
along with the corresponding BSDE
dY! = [~h! + Z,K,|ds + Z1dW,, Y3 = g(X7). (13)
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Here we denote (X0® Y14% 7657 gs the solution for
modified FBSDE system (12,13). For all s € [t,T),
(X;',t,z’ }N/Si,t,w7 Z;’,s,ac) (X;',t,x’ szi’t’w, Z;’,s,ac) as. If
(Yite Z05%) are defined as (Vi, S TV?) with V' being
the solution to 5, then V' = V' a.e.

Theorem 1 is also known as IS in the literature (Exarchos
& Theodorou, 2018). By modifying the FSDE and BSDE
simultaneously, the HIB PDE will be solved identically
almost everywhere. We further bound |6Yr|?, |§Y;, |? and
||Z4||% with constant L, and Ly when IS is applied in the
FBSDE system in Lemma 2. The detailed description and
proof can be found in Appendix D.3.

Theorem 2. Denote (X'® Y1® Z4%) o, is the so-
lution for the FBSDE system with IS (12,13), and
(XL= Yh® ZL®), < i< is the solution for the FBSDE sys-
tem (7). and they satisfy the assumption (1,2). Then given
the identical training data Xy for FBSDE w/ and w/o IS,

combining Lemma I and Lemma 2, one can have,

max |§Yyp|? < max|6Yp|?,

- (14)
max |§Y;|? < max [§Yp|?

Theorem 2 hints that, given identical training data , the
model equipped with IS could obtain more diverse and
complex training dataset, which means the generalization
performance can potentially be enhanced. Fig.2 testifies the
performance difference for the model with and without IS
over identical dataset whose size is limited on the inter-bank
problem (§4.1). The metric is chosen as the evaluation loss
(24) and Relative Square Error (RSE) loss (23). We can find
IS improve the performance for both backbones. In order
to highlight the influence of IS term XK and 4 K, we
detached/stopped the gradient of them. In other words, the
IS term will be treated as a constant during training phase,
and the rapid convergence is not the result of the additional
gradient path introduced by IS.

As a value-based optimal decision algorithm, a natural ques-
tion will be how the policy performs based on the learnt
value function. Proposition 1 demonstrates the convergence
rate of Deep FBSDE policies in fictitious play.

Proposition 1. (Han & Long, 2020) Denote duy* = uj* —
u; as difference between the policy obtained at mth stage
of fictitious play at time step t and the optimal policy, then,

T T
| ourt e <) [ msaE a9
0 0

Where 1(\) is the convergence rate.

The theoretical analysis of proposition 1 uncovers the con-
vergence property of fictitious play of FBSDE system. How-
ever, choice of constant A is tricky in order to obtain strict

FC+w/o IS (Baseline) 351 | FC+w/o IS (Baseline)
1.0 FC+w/ IS \ FC+w/ IS
\ LSTM+w/o IS 3014 LSTM+w/o IS
0.8 LSTM+w/ IS 25 | LSTM+w/ IS
w20

Evaluation Loss$
g
R

°

IS
=
o

S 5 \
S~ —— 0 \777 —

o
N
|

1000 2000 3000 4000 1000 2000 3000 4000
number of initial state samples in training dataset

Figure 2. Performance difference of DFP-FBSDE w/ and w/o
importance samping over limited training dataset. The simulation
is executed on 100 agents inter-bank game.

x10%

—— FC+w/o IS (Baseline)

FC+w/ IS 5.
—— LSTM+w/o IS 4.
—— LSTM+w/ IS

—— FC+w/o IS (Baseline)
o \ FC+wW/ IS

01 —— LSTM+w/o IS

\ —— LSTM+w/ IS

0 10 20 30 40 0 10 20 30 40
Stages Stages

Figure 3. Numerical value of convergence rate ﬁ and the model
performance evalued by RSE. The simulation is executed on 100

agents inter-bank game.

converge: 0 < n(A) < 1. We demonstrate the numerical
value of ﬁ for Deep FBSDE model w/ and w/o IS with FC
backbone (Han et al., 2018) and LSTM backbone (Pereira
et al., 2019) in Fig.3. For the same backbone, IS accelerates
the convergence of the policy significantly.

3.2. Mitigating Curse of Many Agents

Scalability is a crucial criterion of RL. In DFP-FBSDE, each
agent is equipped with policy computed by a distinct neural
network. As the number of agents increases, the number
of neural network copies would increase correspondingly.
Meanwhile, the size of each neural network should be en-
larged to gain enough capacity to capture the representation
of many agents, leading to the infamous curse of many
agents (Wang et al., 2020). This limits the scalability of
prior works. However, one can mitigate the curse of many
agents in this case by taking advantage of the symmetric
game setup. We summarize merits of symmetric game as:

1. Since all agents have the same dynamics and cost func-
tion, only one copy of the network is needed. The
strategies of other agents can be inferred by applying
the same network.

2. Thanks to the symmetric property, we can apply the
IL embedding (Zaheer et al., 2017) to extract invariant
features.

Sharing one network: Here we introduce some techniques
to improve the time and memory complexity. When shar-
ing same network, we can query the policy of other agents
simply by inferring own freeze network at m — 1 stage. It’s
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Figure 4. Comparison between DFP-FBSDE w/ and w/o IL. The
backbone is chosen as LSTM. The simulation is inter-bank game.

important to note that querying the policy of other agents
should not introduce additional gradient paths, which signif-
icantly reduces the memory complexity.

When querying other agents’ strategy, one can either iterate
through each agent or feed all agents’ states to the network
in a batch. Here we denote them as iterative scheme and
batch scheme respectively. The latter approach reduces the
time complexity by adopting the parallel nature of modern
GPU but requires O(/N?) memory complexity rather than
O(N) for the first approach.

Invariant Layers (IL): A comprehensive introduction of
invariant network can be found in (Zaheer et al., 2017).
Later applications in robotics (Shi et al., 2020) and RL (Liu
et al., 2020), (Wang et al., 2020) verify the success of this
technique. The memory complexity can be further reduced
with an IL embedding (Zaheer et al., 2017) in our work.
The IL utilizes an averaging function along with the features
in the same set (known as feature averaging) to render the
network invariant to permutation of agents. We apply the
IL on X _; which is insensitive to permutation and concate-
nate the resulting features to the features extracted from X;.
However, vanilla IL embedding does not reduce the memory
complexity, because the dimension of feature space is com-
monly high even though the dimension of averaged feature
is small. Thanks to the symmetric problem setup, one can
apply a technique to reduce the IL memory complexity form
O(N?) to O(N). A detailed introduction to the IL and our
implementation techniques can be found in Appendix E.

Furthermore, the invariant representation, especially for
feature averaging, can increase the performance of deep
learning model theoretically (Lyle et al., 2020) when fea-
tures have the invariant property. Learning the invariant
representation for X _; will become harder when the num-
ber of agents increases. This is illustrated in fig.4 where
the DFP-FBSDE model equipped with IL can handle the
complex invariant representation, and the performance gap
becomes even larger when the number of agents increase.

3.3. Algorithm

Following the analysis in §3.1 and §3.2, here we introduce
the SDFP-FBSDE algorithm which is scalable up to 3000

>¢baseline+Iterative baseline+Batch ><baseline+IL+Batch ¢Ours (LSTM+IL+Batch)

15

N
o

i
w

10

Memory (GB)
=
o

5

w

Time per iteration (s)

ﬁ\// 0

10! 102 10° 10! 10? 10°
number of agents number of agents

Figure 5. Time and memory complexity comparison between
batch, iterate and IL+batch implementations. Time complexity is
measured by per-iteration time. IL stands for invariant layer.

agents and has appreciable time and memory complexity by
integrating IS and IL. We empirically verify the time and
memory complexity shown in Fig.5.

The neural network structure is same as shown in Fig.1.
However, the feature extractor module (the blue boxes) will
be replaced by an IL whose details can be found in Appendix
E.2. Meanwhile, the forward and backward process of
X and V;' will be modified according to the Theorem 1.
Inspired by previous work (Theodorou et al., 2010), the IS
term (K, = IUY) term is selected as the control calculated
from previous run of the algorithm. LSTM will be chosen
as the backbone in our algorithm from experimental result.
Notably, our algorithm will also improve the performance
for the framework with FC backbone as used in (Han &
Hu, 2019), and the comparison will be elaborated in the
simulation section. The full algorithm can be found in
Appendix K.

4. Simulation

In this section, we demonstrate the capability of SFDP-
FBSDE on two different systems in simulation. We first
apply the framework to an inter-bank lending/borrowing
problem, which is a classical multi-player non-cooperative
game with an analytical solution. We compare against both
the analytical solution and prior work (Han & Hu, 2019).
We also apply the framework to a variation of the prob-
lem for which no analytical solution exists. Finally, we
showcase the general applicability of our framework in an
autonomous racing problem in belief space and discuss how
BSDE plays an importance role in a SDG. All experiment
configurations can be found in Appendix F. we plot the
results of 3 repeated runs with different seeds with the line
and shaded region showing the mean and mean-+standard
deviation respectively. The hyperparameters and dynamics
coefficients used in the inter-bank experiments are the same
as (Han & Hu, 2019) unless otherwise noted. Technical
differences between Baseline (Han & Hu, 2019) and SDFP-
FBSDE are shown in Table.4. The hardware used to run all
simulations is included in Appendix J.
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ALGO | BACKBONE | BarcH | IL | IS

FC+BN X1 X| X
LSTM VIiVv]VY

BASELINE
SDFP

Table 2. Technical differences between baseline (Han & Hu, 2019)
and SDFP. Batch stands for the batch scheme.

—— FBSDE Estimated Solution

: A/,ww‘/‘/\f\’\ 0-5
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’ \\/ -1.0
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Figure 6. Comparison of SDFP and analytical solution for the
inter-bank problem. Both the state (leff) and control (right) tra-
jectories are aligned with the analytical solution (represented by
dots).
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4.1. Inter-bank lending/borrowing problem

We first consider an inter-bank lending/ borrowing model
(Carmona et al., 2013) where the dynamics of the log-
monetary reserves of N banks is

dX} = [a(X; — X]) + U] dt
+o(pdW) + /1 — p2dWy),

_ 1 )
Xe=—>Y Xiiel (16)

The state X; € R denotes the log-monetary reserve of
bank i at time ¢ > 0. The control u{ denotes the cash
flow to/from a central bank, where as a(X — X}) denotes
the lending/borrowing rate of bank 7 from all other banks.
The system is driven by /N independent standard Brownian
motion Wf, which denotes the idiosyncratic noise, and a
common noise Wto. The cost function has the form,

CH(X, U U ) = JU? =~ qUI(X — X1) + 5(X = X)),

a7)
The constants g, € can be found in Appendix F. The deriva-
tion of the FBSDESs and analytical solution are in Appendix
E. We compare the result of our algorithm on a 10-agent
problem with analytical solution and the baseline with the
same hyperparameters. Fig. 6 shows the performance of
SDFP-FBSDE compared with analytical solution. The state
and control trajectories outputted by SDFP-FBSDE solution
are aligned closely with the analytical solution. Table 3
shows the numerical performance compared against prior
work by Han & Hu (2019). Our method outperforms by
RSE (23) and computation wall time.

Ablation Experiments: In order to verify the effect of com-
bination of IL and IS introduced in §3.1 and §3.2, we per-
form the ablation experiments on the 500 agents inter-bank

FRAMEWORK RSE  TIME (HR)
BASELINE 0.0423 2.23
SFDP 0.0105 1.55

Table 3. Comparison with Han & Hu (2019) on the 10-agent inter-
bank problem.
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Figure 7. Ablation experiments on LSTM and FC backbone.

problem. Fig.7 shows the model equipped with IS and IL
would obtain superior convergence rate and better results on
evaluation set regardless of the choice of backbone.

High Dimension Experiments: Convinced by the ablation
experiments, we conducted comparison between baseline
and our proposed algorithm on different numbers of agents
(up to 3000). Because of the limitation of graphical memory
of hardware, the maximum number of agents for baseline is
700. The result is demonstrated in Fig.8. SDFP-FBSDE out-
performs the baseline by cumulative total cost (25) and RSE
(23). As been shown in FBSDE theory (6), the augmented
control is characterized by Uy .. This means more agents
will lead to more actuator and better explorations hence the
RSE loss would decrease when number of agent is smaller
than 300. When the number of agents keeps growing, the
network would have difficulty of learning many agents rep-
resentation, thus leading to the increase of RSE. Our method
mitigates the curse of many agent, and postpones the RSE
turning point to 1000 agents. Notably, SDFP-FBSDE has
only marginally larger RSE loss at 3000 agents compared
with baseline at 300 agents. The left subplot in Fig.8 shows
our algorithm found more reasonable control sequence than
baseline. The margin between SDFP-FBSDE and baseline
is even larger on evaluation loss (24). Since this plot is
not informative because of the large difference of scale, we
defer it to Appendix H.1.

Superlinear Experiments: We also consider a variant of
dynamics in equation (16):

dX} = [a(X — X})® + U/] dt
+ o (pdW + /1 — p2dW}),

N
_ 1 .
X; = N ;:1 Xi1el (18)

Due to the nonlinearity in the drift term, analytical solution
or simple numerical representation of the Nash equilibrium
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Figure 8. Comparison of SDFP-FBSDE and Baseline for inter-
bank problem with different number of agents evaluated on cumu-
lative loss(25) and RSE(23).

—— Analytic
0.6 Predict Linear 0

1.
0.5 / —— Predict superliear
N 0.8
f °

—— Analytic
Predict Linear
—— Predict superliear

z z
3 0.4 % oe |
0.3 \ [T
o i\ (=] A
0.2 / Y 0.4 1 \
y I Al
0.1 / 0 0.2 All A
il Q\\ LA \\
0.0 0.0
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3
Xi Ui

Figure 9. Terminal time step state X and control U distribution
of ith agent for linear and superlinear dynamics. The analytic and
predicted distribution for linear case are very similar.

does not exist (Han & Hu, 2019). The drift rate a is set to
1.0 to compensate for the vanishing drift term caused by
super-linearity. Heuristically, the distribution of control and
state should be more concentrated than that of the linear
dynamics. We compare the state and control of agent ¢ at
terminal time against analytical solution and Deep FBSDE
solution of the linear dynamics with the same coefficients.
Fig. 9 is generated by evaluating the trained Deep FBSDE
model with a batch size of 50000. Fig.9 shows that the
solution from superlinear dynamics is more concentrated as
expected. The terminal control distribution verifies that the
superlinear drift term pushes the state back to the average
faster than linear dynamics and thus requires less control
effort. Since the numerical solution is not available, we
compare the cumulative loss (25) loss and evaluation loss
(24) between baseline and our algorithm (see Appendix H.2).

4.2. Extension to Partially Observed Game in Robotics

In this section, we demonstrate the general applicability
of our framework on an autonomous racing example in
belief space, and show how BSDE influences the game
when competition is triggered experimentally. we consider
a autonomous racing problem with race car dynamics

X, = [vcosf,vsinb, uye. — Cdmguusteerv/L}T (19)

where X; = [z,y,v,0]T represent the z, y position, forward
velocity and heading of the ith vehicle. Here we assume
Z,Y, U, Upee € R, Ugeer € [—1, 1]. The goal of each player is
to drive faster than the opponent, stay on the track and avoid
collision. The running cost C* is defined in Appendix 1.2.
During the game, players have access to partially observed
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Figure 10. The plots contains 64 trials of racing. The performance
varies with respect to the competition loss.

global augmented states estimated by an Extended Kalman
Filter (EKF) and opponent’s controller in the past games.
Additionally, we assume that stochasticity enters the system
through the control channels and have a continuous-time
noisy observation model with full-state observation. The
FBSDE derivation of belief space stochastic dynamics is in-
cluded in Appendix I. We focus on the 2-car racing scenario
for the interpretability of results, since no analytical solu-
tion exists for the problem. With the 2-car setup, interesting
behaviors arise when the cost function of each car is altered.
Since all the trials complete 1 lap, here we only show the
first 8 seconds’ result for neatness.

Non-cooperative and Non-competitive Case We first test
the capability of our framework on a partially observed
learning problem where all states are estimated with obser-
vation noise and additive noise in the system. Both cars can
stay in the track as expected. Since there is no competition
between the two cars, they demonstrate similar behaviors.
The plot of trajectories with 64 trails of games can be found
on the top left of Fig.10. The EKF posterior estimation is
not drawn in Fig.10 for neatness. For single trails plot with
EKF posterior can be found in Appendix H.3.

Competitive Case When we add competition loss (see
Appendix 1.2) on the cars, the propagation of BSDE (6)
will be modified accordingly. Therefore, the racing game
demonstrates interesting properties. When competition loss
is applied on both cars, both of them try to cut the corner
in order to occupy the leading position as shown on the top
right of Fig. 10, and both of them travel longer distance
compared with the ones do not have competitive loss. When
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competition loss is present in only one of the two cars, then
the one with competition loss dominates the game as shown
in the botton subplots of Fig.10.

5. Conclusion

In this paper, we first extend the theoretical analysis from
(Han & Long, 2020) and introduce importance sampling
to improve the sample efficiency and convergence rate. To
further push our work to handle larger number of agents
with appreciable time and memory complexity, batch query
scheme and invariant layer implementation are proposed.
The scalability of our algorithm, along with a detailed sen-
sitivity analysis, is demonstrated in an inter-bank borrow-
ing/lending example. Our framework achieves better perfor-
mance in different metrics and scales to significantly higher
dimensions than the state-of-the-art. The general applicabil-
ity of our framework is showcased on a belief space racing
problem in the partially observed scenario.
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