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A. Appendix
A.1. Proof of Theorem 1

Proof. We prove the three properties of general metrics in
order.

(1) disS↔T
RSD ≥ 0, and disS↔T

RSD = 0 if and only if S = T .

It is shown in (Golub & Van Loan, 1996): θi ∈
(0, π/2), sin θi ∈ [0, 1) Hence disS↔T

RSD ≥ 0 is proved. It is
also shown in (Golub & Van Loan, 1996): ∀θi, S = T if
and only if θi = 0. Thus disS↔T = 0 is satisfied.

(2) disS↔T
RSD = disT ↔S

RSD . (symmetric)

We can easily prove it in the definition:
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cos function is symmetric, thus θS↔T
i =θT ↔S

i , for i =
1, ..., b. It is observed that disS↔T

RSD is symmetric.

(3) disS↔T
RSD ≤ disS↔A

RSD + disT ↔A
RSD . (triangle inequality)

We first introduce the concept of weak majorization: Ma-
jorization is a preorder on vectors of real numbers. For
a vector a ∈ Rd, we denote by a↓ ∈ Rd the vector
with the same components, but sorted in descending or-
der. Given a,b ∈ Rd, we say that a weakly majorizes
(or dominates) b from below written as a �w b if and
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only if
k∑

i=1

a↓i ≥
k∑

i=1

b↓i for k = 1, . . . , d. Thus if we want

to prove disS↔T
RSD ≤ disT ↔A

RSD + disS↔A
RSD , we can prove

| sin ΘS↔A − sin ΘT ↔A| ≺w sin ΘS↔T instead.

We first use several weak majorization results. Marshall
et al. (1979) give a starting point, for Hermitian A and B,
we have

Λ(A + B) ≺w Λ(A) + Λ(B), (2)

where Λ(A) denote the vector of all eigenvalues of A in
nonincreasing order. Inspired by that, Horn & Johnson
(2012) give anthor two results:

Λ(A)− Λ(B) ≺w Λ(A−B), (3)

Σ(A±B) ≺w Σ(A) + Σ(B), (4)

Σ(A−B) ≺w Σ(A)− Σ(B), (5)

where Σ(A) denote the singular values of all eigenvalues of
A in nonincreasing order.

Based on these results, Knyazev & Argentati (2007) prove
| sin ΘS↔A − sin ΘT ↔A| ≺w sin ΘS↔T as follows:

Denote by PS , PT and PA the corresponding orthogonal
projectors onto the subspaces S, T and A, Knyazev & Ar-
gentati (2007) give anthor result:

[Σ(PS − PT ), 0, . . . , 0] =

[1, . . . , 1, (sin ΘS↔T , sin ΘS↔T )
↓
, 0, . . . , 0],

(6)

where there are |dim(S)− dim(T )| extra 1s upfront. The
set sin ΘS↔T is repeated twice and ordered, and extra 0s at
the end may need to be added on either side to match the
sizes.

In our definiation of RSD, all representation subspaces are
the same dimension. Thus this result in our case is:

[Σ(PS − PT ), 0, . . . , 0] =

[(sin ΘS↔T , sin ΘS↔T )
↓
, 0, . . . , 0],

(7)

Based on that, Knyazev & Argentati (2007) give a new
result: (PS − PA)− (PT − PA) = (PS − PT ). Using (5),
we have Σ(PS−PA)−Σ(PT −PA) = Σ(PS−PT ). Then
we use (7), the set of nonzero entries of |Σ(PS − PA) −
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Table 1. Sum of MAE across three regression tasks on dSprites: unsupervised domain adaptation (ResNet-18).

Method C→ N C→ S N→ C N→ S S→ C S→ N Avg

ResNet-18 (He et al., 2016) 0.94 ± 0.06 0.90 ± 0.08 0.16 ± 0.02 0.65 ± 0.02 0.08 ± 0.01 0.26 ± 0.03 0.498
ResNet-18 w/ BN 0.97 ± 0.03 0.92 ± 0.06 0.18 ± 0.02 0.67 ± 0.02 0.08 ± 0.00 0.30 ± 0.02 0.520
DANN (Ganin et al., 2016) 0.47 ± 0.07 0.46 ± 0.07 0.16 ± 0.02 0.65 ± 0.05 0.05 ± 0.00 0.10 ± 0.01 0.315
DANN w/ BN 0.68 ± 0.05 0.71 ± 0.04 0.18 ± 0.02 0.63 ± 0.05 0.06 ± 0.01 0.11 ± 0.01 0.393

Table 2. Sum of MAE across two regression tasks and cosine values of principal angles on three transfer tasks on MPI3D.

RL → T T → RL T → RC

Method MAE cos θS↔T
1 cos θS↔T

36 MAE cos θS↔T
1 cos θS↔T

36 MAE cos θS↔T
1 cos θS↔T

36

ResNet-18 (He et al., 2016) 0.44 0.951 0.029 0.51 0.938 0.017 0.50 0.935 0.016
Geodesic Distance 0.32 0.973 0.097 0.52 0.962 0.083 0.46 0.966 0.076
RSD (ours) 0.23 0.991 0.049 0.41 0.987 0.032 0.42 0.985 0.035

Σ(PT −PA)| consists of nonzeros entries of | sin ΘS↔A −
sin ΘT ↔A| repeated twice. AndΣ(PS − PT ) consists of
nonzeros entries of sin ΘS↔T repeated twice. Thus we can
get | sin ΘS↔A − sin ΘT ↔A| ≺w sin ΘS↔T .

A.2. More Experimental Details

For Figure 1(a)(b) in the paper, we use L2 regularization to
change the Frobenius norm of feature matrix:

regnorm = (‖|Fs‖2F −R)2, (8)

where R is the expected Frobenius norm of source feature
matrix. We give 0.05 as a trade-off hyper-parameter for
regnorm and we run 10000 iterations.

For Figure 1(c) in the paper, we tune the best hyperparamters
in DANN and AFN. Average of the Frobenius norm of
source feature matrix is reported. The reason why we only
report results in source domain is that when distribution
discrepancy is minimized, the Frobenius norm of target
feature matrix is the same as the Frobenius norm of source
feature matrix.

A.3. Normalization

It is well known that normalization techniques are useful
in deep learning, and they have the potential to solve the
problem of feature scaling. Ioffe & Szegedy (2015), Ba
et al. (2016) and Wu & He (2018) are the most widely used
techniques. We choose batch normalization (BN) to solve
the problem of feature scaling (using BN before regressor).
Results are shown in Table 1. We observe that add a BN
layer before regressor is harmful to domain adaptation per-
formances. This is consistent with the observation of (Lath-

uilière et al., 2019): add a BN layer before the regressor in
deep regression may have negative effects on ResNet.

A.4. Geodesic Distance

Geodesic Distance (GD) is a commonly used geomet-
rical distance to measure the similarity of subspaces:
disS↔T

GD (Us,Ut) =
∥∥ΘS↔T

∥∥
2
. And it can be used as

a regularizer in the representation learning process. The
main difference is that RSD gives larger gradients to the
minimum angle (due to sin and L1-norm), while GD gives
larger gradients to the maximum angle (the L2-norm am-
plifies it). Since a large angle means low similarity, it is
unreasonable to match two dissimilar bases with GD mini-
mization. We conduct experiments using GD regularization
in Table 2. It is observed that using GD will make small
principal angles smaller, while RSD prefers to make the
large principal angles smaller.

References
Ba, J. L., Kiros, J. R., and Hinton, G. E. Layer normalization.

arXiv preprint arXiv:1607.06450, 2016.

Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle,
H., Laviolette, F., Marchand, M., and Lempitsky, V.
Domain-adversarial training of neural networks. The
Journal of Machine Learning Research (JMLR), 17(1):
2096–2030, 2016.

Golub, G. H. and Van Loan, C. F. Matrix computations (3rd
ed.). DBLP, 1996.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition. In IEEE conference on



Representation Subspace Distance for Domain Adaptation Regression

computer vision and pattern recognition (CVPR), pp. 770–
778, 2016.

Horn, R. A. and Johnson, C. R. Matrix analysis. Cambridge
university press, 2012.

Ioffe, S. and Szegedy, C. Batch normalization: Accelerating
deep network training by reducing internal covariate shift.
In International conference on machine learning (ICML),
pp. 448–456. PMLR, 2015.

Knyazev, A. V. and Argentati, M. E. Majorization for
changes in angles between subspaces, ritz values, and
graph laplacian spectra. SIAM journal on matrix analysis
and applications, 29(1):15–32, 2007.

Lathuilière, S., Mesejo, P., Alameda-Pineda, X., and Horaud,
R. A comprehensive analysis of deep regression. IEEE
transactions on pattern analysis and machine intelligence
(TPAMI), 2019.

Marshall, A. W., Olkin, I., and Arnold, B. C. Inequalities:
theory of majorization and its applications, volume 143.
Springer, 1979.

Wu, Y. and He, K. Group normalization. In Proceedings of
the European conference on computer vision (ECCV), pp.
3–19, 2018.


