
Cyclically Equivariant Neural Decoders for Cyclic Codes

A. The parity check matrix used in our neural decoder and the permutations used in the list
decoding algorithm

We first describe how to produce the generator matrix and the parity check matrix for BCH codes and punctured RM codes
with code length n = 2m − 1 in our decoding algorithm.
Step 1: Find a primitive element α of the finite field F2m . Then the elements of this finite field are 0, 1, α, α2, . . . , α2m−2.
Step 2: Find the generator polynomial of the code. For 1 ≤ j ≤ 2m − 2, let M (j)(x) be the minimal poly-
nomial of αj over the binary field. For BCH code with designed distance 2δ + 1, the generator polynomial is
g(x) = lcm{M (1)(x),M (3)(x), . . . ,M (2δ−1)(x)}, where lcm stands for least common multiple; see Chapter 7.6 of
(MacWilliams & Sloane, 1977). For rth order punctured RM code, the generator polynomial is

g(x) = lcm{M (j)(x) : 1 ≤ j ≤ 2m − 2, 1 ≤ w2(j) ≤ m− r − 1}, (13)

where w2(j) is the number of 1’s in the binary expansion of j. For example, w2(3) = 2 because the binary expansion of 3
is (1, 1), and w2(5) = 2 because the binary expansion of 5 is (1, 0, 1). See Theorem 11 in Chapter 13.5 of (MacWilliams &
Sloane, 1977) for a proof of (13). For an (n, k) cyclic code, the degree of the generator polynomial is n− k, so g(x) can be
written as g(x) = g0 + g1x+ g2x

2 + · · ·+ gn−kx
n−k, where the coefficients g0, g1, . . . , gn−k are either 0 or 1. Then the

following k × n matrix is a generator matrix of the code:

g0 g1 g2 . . . gn−k 0 0 . . . 0
0 g0 g1 g2 . . . gn−k 0 . . . 0
...

...
...

...
...

...
...

...
...

0 0 . . . 0 g0 g1 g2 . . . gn−k

. (14)

Step 3: For cyclic codes, it always holds that g(x) divides xn − 1, and the parity check polynomial of the code is
h(x) = (xn − 1)/g(x). Since the degree of g is n − k, the degree of h is k, and so h(x) can be written as h(x) =
hkx

k + · · · + h2x
2 + h1x + h0, where the coefficients hk, . . . , h2, h1, h0 are either 0 or 1. This explains how to obtain

hk, . . . , h2, h1, h0 in the parity matrix (9). As already mentioned in Section 3, matrix (9) is used in (Nachmani et al., 2016;
2018). In contrast, we use an n× n parity check matrix consisting of all the n cyclic shifts of the first row of matrix (9) in
our decoder.

Next we describe how to find the permutations used in the list decoding algorithm. More precisely, we explain how to find
the set S consisting of n + 1 = 2m permutations; see the beginning part of Section 4. Note that for all BCH codes and
punctured RM codes with code length n, we use the same set S of permutations. In other words, the set S only depends on
the code length n, and it does not change with code dimension or other parameters.

It is well known that both RM codes and extended BCH codes are invariant to the affine group (Kasami et al., 1967). Since
S is a subset of this group, let us begin with describing the affine group. Let C be a BCH code or a punctured RM code with
code length n, and let G be its generator matrix obtained from the procedure described above, so G is of the form (14). Let
(C1, C2, . . . , Cn) be a codeword generated from the matrix G. Notice that the matrix G specifies the order of coordinates
in the codeword. (For example, swapping two columns of G amounts to swapping the two corresponding coordinates in
the codeword.) As already mentioned in Section 4, by prepending an overall parity bit C0 we obtain (C0, C1, . . . , Cn), a
codeword from an extended BCH code or a RM code with length n+ 1. Next we define a one-to-one mapping f between
the index set {0, 1, . . . , n} and the finite field F2m = {0, 1, α, α2, . . . , αn−1}:

f(0) = 0, f(i) = αi−1 for i ∈ [n].

For a, b ∈ F2m , a 6= 0, the affine mapping X 7→ aX + b defines a permutation on the finite field F2m , and through the
function f it also induces a permutation on the index set {0, 1, . . . , n}. More precisely, for 1 ≤ i ≤ n and 0 ≤ j ≤ n, we
use σi,j to denote the permutation on {0, 1, . . . , n} induced by the mapping X 7→ f(i)X + f(j):

σi,j(v) = f−1
(
f(i)f(v) + f(j)

)
for v ∈ {0, 1, . . . , n}.

The permutations {σi,j : 1 ≤ i ≤ n, 0 ≤ j ≤ n} form the affine group to which the extended code is invariant.

For the special case of j = 0, we have

σi,0(0) = 0, σi,0(v) = f−1(αi+v−2) =

{
v + i− 1 for 1 ≤ v ≤ n− i+ 1

v + i− 1− n for n− i+ 2 ≤ v ≤ n .



Cyclically Equivariant Neural Decoders for Cyclic Codes

Therefore, σi,0 is the permutation that fixes C0 and performs (i − 1) cyclic right shifts on (C1, C2, . . . , Cn). It is not a
surprise that the extended code is invariant to such a permutation because (C1, C2, . . . , Cn) belongs to a cyclic code.

For the purpose of list decoding, we focus on another special case i = 1, and we write σj = σ1,j to simplify the notation. By
definition, σj is the permutation on {0, 1, . . . , n} induced by the mappingX 7→ X+f(j), so σj(v) = f−1(f(v)+f(j)) for
0 ≤ v ≤ n. Clearly, σ0 is the identity permutation. The set S used in our list decoding algorithm is S = {σ0, σ1, . . . , σn}.
Here we give a concrete example for n = 15. Each row in the following matrix represents a permutation σj . From top to
bottom, these permutations are σ0, σ1, σ2, σ5, σ3, σ9, σ6, σ11, σ4, σ15, σ10, σ8, σ7, σ14, σ12, σ13.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 0 5 9 15 2 11 14 10 3 8 6 13 12 7 4
2 5 0 6 10 1 3 12 15 11 4 9 7 14 13 8
5 2 1 11 8 0 9 13 4 6 15 3 14 7 12 10
3 9 6 0 7 11 2 4 13 1 12 5 10 8 15 14
9 3 11 1 14 6 5 15 12 0 13 2 8 10 4 7
6 11 3 2 12 9 0 10 14 5 7 1 4 15 8 13
11 6 9 5 13 3 1 8 7 2 14 0 15 4 10 12
4 15 10 7 0 8 12 3 5 14 2 13 6 11 9 1
15 4 8 14 1 10 13 9 2 7 5 12 11 6 3 0
10 8 4 12 2 15 7 6 1 13 0 14 3 9 11 5
8 10 15 13 5 4 14 11 0 12 1 7 9 3 6 2
7 14 12 4 3 13 10 0 11 15 6 8 2 5 1 9
14 7 13 15 9 12 8 1 6 4 11 10 5 2 0 3
12 13 7 10 6 14 4 2 9 8 3 15 0 1 5 11
13 12 14 8 11 7 15 5 3 10 9 4 1 0 2 6

As a final remark, all the methods described above can be efficiently programmed using the Communications Toolbox of
Matlab. The Matlab code is available at github.com/cyclicallyneuraldecoder

B. Our neural decoder is equivariant to all cyclic shifts
Recall the definition of cyclic shifts πj , j ∈ [n] in (7). Observe that (Cπj(1), Cπj(2), . . . , Cπj(n)) is obtained by (j − 1)
cyclic left shifts of (C1, C2, . . . , Cn). In particular, (Cπ2(1), Cπ2(2), . . . , Cπ2(n)) = (C2, C3, . . . , Cn, C1) is obtained by
one cyclic left shift of (C1, C2, . . . , Cn).

Let (L1, L2, . . . , Ln) be an LLR vector and let (o1, o2, . . . , on) be the corresponding decoding result of our neural decoder.
We will prove that for every j ∈ [n], if the LLR vector is (Lπj(1), Lπj(2), . . . , Lπj(n)), then the decoding result of our
decoder becomes (oπj(1), oπj(2), . . . , oπj(n)). In fact, we only need to prove this claim for j = 2, and the claim for other
values of j follows by a simple induction. Below we will write π = π2 to simplify the notation.

Recall that we use (3) to calculate the messages in even layers and we use (11) for odd layers. Finally, we use (12) to
calculate the output layer. Also recall that E is the set of edges in the Tanner graph. Let x[s](e), e ∈ E be the messages in
the sth layer when the input LLR vector is (L1, L2, . . . , Ln), and let x̃[s](e), e ∈ E be the messages in the sth layer when
the input LLR vector is (L̃1, L̃2, . . . , L̃n) = (Lπ(1), Lπ(2), . . . , Lπ(n)). We will prove that

x̃[s]((ci, vj)) = x[s]((cπ(i), vπ(j))) for all (ci, vj) ∈ E. (15)

Notice that whenever (ci, vj) ∈ E, we always have (cπ(i), vπ(j)) ∈ E; see Fig. 2 for an illustration.

We prove (15) by induction on s. It holds for s = 0 because we set the initialization (both x[0] and x̃[0]) to be the all-zero
vector in our algorithm. This establishes the induction base.

https://github.com/cyclicallyneuraldecoder/CyclicallyEquivariantNeuralDecoders


Cyclically Equivariant Neural Decoders for Cyclic Codes

Now let s be an odd number and suppose that (15) holds for s− 1. Let us prove that (15) also holds for s. By (11),

x̃[s]((cπj(ib), vj)) = tanh
(1

2

(
w

[s]
b L̃j +

∑
b′∈[u]\{b}

w
[s]
b′,b x̃

[s−1]((cπj(ib′ ), vj))
))

= tanh
(1

2

(
w

[s]
b Lπ(j) +

∑
b′∈[u]\{b}

w
[s]
b′,b x

[s−1]((cπ(πj(ib′ )), vπ(j)))
))

= x[s]((cπ(πj(ib)), vπ(j))),

where the second equality follows from the induction hypothesis.

Now let s be an even number and suppose that (15) holds for s− 1. Let us prove that (15) also holds for s. By (3),

x̃[s]((ci, vj)) = 2 tanh−1
( ∏

(ci,vj′ )∈N(ci)\{(ci,vj)}

x̃[s−1]((ci, vj′))
)

= 2 tanh−1
( ∏

(ci,vj′ )∈N(ci)\{(ci,vj)}

x[s−1]((cπ(i), vπ(j′)))
)

= 2 tanh−1
( ∏

(cπ(i),vπ(j′))∈N(cπ(i))\{(cπ(i),vπ(j))}

x[s−1]((cπ(i), vπ(j′)))
)

= x[s]((cπ(i), vπ(j))).

This establishes the inductive step and completes the proof of (15).

Finally, denote the output corresponding to (L̃1, L̃2, . . . , L̃n) as (õ1, õ2, . . . , õn). Then by (12),

õj = L̃j +
∑
b∈[u]

wout
b x̃[2t]((cπj(ib), vj))

= Lπ(j) +
∑
b∈[u]

wout
b x[2t]((cπ(πj(ib)), vπ(j)))

= oπ(j).

Thus we have proved that our neural decoder is equivariant to all cyclic shifts.

C. More plots of the simulation results



Cyclically Equivariant Neural Decoders for Cyclic Codes

(a) BCH(63,24) (b) BCH(127,36)

(c) BCH(127,64) (d) Punctured RM(127,99)

(e) Punctured RM(63,22) (f) Punctured RM(63,42)



Cyclically Equivariant Neural Decoders for Cyclic Codes

(a) BCH(127,64) List decoding (b) Punctured RM(127,64) List decoding


