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Abstract

Neural decoders were introduced as a generaliza-
tion of the classic Belief Propagation (BP) decod-
ing algorithms, where the Trellis graph in the BP
algorithm is viewed as a neural network, and the
weights in the Trellis graph are optimized by train-
ing the neural network. In this work, we propose
a novel neural decoder for cyclic codes by ex-
ploiting their cyclically invariant property. More
precisely, we impose a shift invariant structure
on the weights of our neural decoder so that any
cyclic shift of inputs results in the same cyclic
shift of outputs. Extensive simulations with BCH
codes and punctured Reed-Muller (RM) codes
show that our new decoder consistently outper-
forms previous neural decoders when decoding
cyclic codes. Finally, we propose a list decod-
ing procedure that can significantly reduce the
decoding error probability for BCH codes and
punctured RM codes. For certain high-rate codes,
the gap between our list decoder and the Maxi-
mum Likelihood decoder is less than 0.1dB. Code
available at github.com/cyclicallyneuraldecoder

1. Introduction

In recent years, machine learning methods have been suc-
cessfully applied to the area of decoding error-correcting
codes. The usage of neural networks (Nachmani et al., 2016;
Gruber et al., 2017; Cammerer et al., 2017; Nachmani et al.,
2018; Kim et al., 2018a;b; Vasic¢ et al., 2018; Teng et al.,
2019; Buchberger et al., 2020), autoencoders (Jiang et al.,
2019), graph neural networks (Nachmani & Wolf, 2019)
and reinforcement learning (Carpi et al., 2019; Habib et al.,
2020) have demonstrated improvements over classical al-
gorithms in decoding various families of error-correcting
codes with short to moderate block length, including BCH
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codes, polar codes, LDPC codes and Reed-Muller (RM)
codes.

In particular, one line of research pioneered by (Nachmani
et al., 2016; 2018) introduced neural decoders as a gener-
alization of the classic Belief Propagation (BP) decoding
algorithm. More precisely, the Trellis graph in the BP algo-
rithm is viewed as a fully connected neural network (Nach-
mani et al., 2016), and the weights in the Trellis graph are
optimized by training the neural network. Later, (Nachmani
et al., 2018) suggested to replace the fully connected neural
networks with recurrent neural networks (RNNs). More
recently, the tools of graph neural networks were also intro-
duced to this setting (Nachmani & Wolf, 2019). While these
neural BP decoders improve upon the vanilla BP decoder
for a wide range of error-correcting codes, their designs
rarely utilize the algebraic properties of any particular code
family. On the other hand, certain algebraic properties of
some code families have proven to be the key to their good
performance in error correction, e.g., the recursive structure
of polar codes (Arikan, 2009) and the doubly transitive prop-
erty of BCH codes and RM codes (Kudekar et al., 2017).

In this paper we design a novel neural decoder for an im-
portant class of codes called cyclic codes, including two
extensively studied and widely applied code families—BCH
codes and punctured RM codes. As suggested by their name,
cyclic codes are invariant to cyclic shifts, and this property
is fully exploited in the design of our new decoder. Inspired
by the fact that the Maximum Likelihood (ML) decoder of
any cyclic code is equivariant to cyclic shifts, we impose a
shift invariant structure on the weights of our neural decoder
so that it shares the equivariant property of the ML decoder,
i.e., any cyclic shift of inputs results in the same cyclic shift
of the decoding outputs.

We carry out extensive simulations to test the performance
of our new decoder on BCH codes and punctured RM codes
with short to moderate code length. Simulation results show
that our decoder consistently outperforms previous neural
decoders. In particular, we observe a consistent 0.7dB im-
provement over the neural decoder proposed in (Nachmani
et al., 2018) for various choices of code parameters. Our
decoder also demonstrates a 0.3dB improvement over the
hyper-graph-network decoder proposed in (Nachmani &
Wolf, 2019) with 300 times smaller training time. As a con-
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Figure 1. (a) The Tanner graph corresponding to the parity matrix in (1). The variable node v; corresponds to the jth column of the matrix,
and the check node c; corresponds to the ith row. (b) The corresponding Trellis graph with two iterations. The 12 nodes in each of the 4
middle layers(columns) represent the 12 edges in the Tanner graph, whose order is listed in the rightmost column. Node e in the sth
middle layer is connected to node €’ in the (s — 1)th layer if z*~!(¢’) is involved in the calculation of !*! (e); see (2)~(4).

crete example, for BCH codes with length 63 and dimension
45, it only takes 10 minutes to train our decoder while the
training of the hyper-graph-network decoder (Nachmani &
Wolf, 2019) takes more than 2 days on the same platform.

Finally, we propose a list decoding procedure that can sig-
nificantly reduce the decoding error probability for BCH
codes and punctured RM codes. Our list decoding procedure
exploits the rich automorphism groups of extended BCH
codes and RM codes. More precisely, extended BCH codes
and RM codes are obtained by adding an overall parity bit
to the BCH codes and punctured RM codes, respectively,
and these two extended code families are invariant to a large
automorphism group of permutations. In order to make use
of this property, we add a dummy symbol to the received
noisy codeword and then apply the permutations in the auto-
morphism group to the extended noisy codeword. For each
permutation, our neural decoder gives us an intermediate
decoding result, and the final decoding result of the list de-
coding procedure is given by a ML decoding among all the
intermediate decoding results. Extensive simulations show
that the list decoding method provides up to 3dB gain. As a
final remark, we note that this list decoding method can be
coupled with any decoding algorithm for BCH codes and
punctured RM codes, not just our neural decoder.

To conclude this section, we summarize the main contribu-
tions of this paper:

* We propose a novel neural decoder that is provably
equivariant to cyclic shifts.
 Extensive simulations with BCH codes and punctured

RM codes show that our neural decoder consistently
improves upon (Nachmani et al., 2018) by 0.7dB, and
it also improves upon the hyper-graph-network decoder
(Nachmani & Wolf, 2019) by 0.3dB with 300 times
smaller training time.

* We propose a list decoding procedure that provides up
to 3dB gain for BCH codes and punctured RM codes.
For certain high-rate codes, our list decoder with list
size n + 1 has almost the same performance as the ML
decoder, where n is the code length.

2. Background and Previous Neural Decoders

A linear code with code length n and code dimension &
is a k-dimensional subspace of F}, where Fo = {0, 1} is
the binary field. It can be defined in two equivalent ways—
either by a binary generator matrix G of size k x n or by a
binary parity check matrix H of size (n — k) x n.

Each parity check matrix [ entails a Tanner graph, which
is a bipartite graph with n variable nodes labelled as
V1,3, ...,U, on the left side and n — k£ check nodes la-
belled as cj,ca,...,cn—r on the right side. An edge is
connected between v; and ¢; in the Tanner graph if and only
if H;; = 1. As a concrete example, a parity check matrix of
the (n = 7,k = 4) Hamming code is

S O =
o = O

1
0
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= O
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and the corresponding Tanner graph is given in Fig. la. In
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BP algorithms, messages propagate back and forth through
the edges in the Tanner graph, and this message passing
procedure is best depicted by the Trellis graph, obtained
from unrolling the Tanner graph; see Fig. 1b. A Trellis
graph with ¢ iterations of message passing consists of one
input layer, one output layer, and 2¢ middle layers. Both the
input and output layers consist of n variable nodes while
the nodes in each middle layer correspond to the edges in
the Tanner graph.

In BP algorithms, messages propagate through the Trellis
graph from left to right. The n variable nodes in the input
layer hold the log likelihood ratios (LLR) of the n input

bits:
P(y;|C; = 0)

L; =log for j € [n],
J ]P)(yﬂCj — 1) [ ]
where (Ci,...,C,) is a randomly chosen codeword,
and (y1,...,yn) is the channel output after transmitting
(C1,...,Cy) through n independent copies of some noisy

channel. BP algorithm aims to recover the codeword from
the channel output, or equivalently, from the LLRs. Let E
be the set consisting of all the edges in the Tanner graph,
and we use e = (vj,¢;) and e = (¢;, v 1nterchangeably to
denote the same edge. Let the vector x{] ,e € E)
be the message vector held by the sth mlddle layer in the
Trellis graph. Suppose that the BP algorithm has ¢ itera-
tions. For each s = 1,2,...,2t, the message vector zls]
is calculated recursively from z[*~!l and the LLR vector
(Li,...,Ly,), where the initialization 2% is the all zero vec-
tor. More precisely, for odd s and an edge e = (¢;,v;) € E,
the message z[*! (e) is given by

29(e) = 2(ci, )

=tanh (% (Lj + Z

' EN(v)\{e}

zls=1 (e/))) 2

where N (v;) C E is the set of all the edges containing v;
as an endpoint in the Tanner graph. For even s and an edge
e = (ci,vj) € E, the message x[*l(e) is given by

z¥l(e) = 2tanh™* ( H

e’€N(ci)\{e}

x[H](e’)), 3)

where N (c;) C F is the set of all the edges containing ¢; as
an endpoint in the Tanner graph. Finally, the output of the
classic BP algorithm is

oj=L;+ Z z2t(e)

e€N (vj)

for j € [n]. 4)

In (Nachmani et al., 2016; 2018), a set of learnable weights
are added into the calculations of odd and output layers
while the calculations of even layers, i.e., (3), remain un-

changed. More precisely, (2) and (4) are replaced by
1 .
z(e) = 21 ((¢i, v;)) = tanh (5 (w[s] (4, e)L; (5)
+ Y wlle el le),
e’€N(v;)\{e}
ando; = L; + Z out(e ) zl?(e), (6)
e€EN (v;)

respectively.

3. Cyclic Codes and Our New Decoder

A cyclic code C is a linear code satisfying the following
property: If (Cy,Cs,...,C,) € C is a codeword, then its
cyclic shift (Cy,, C1,Cs, ..., Cyr—1) is also a codeword in C.
This implies that cyclic codes are invariant under all cyclic
shifts. More precisely, for b € [n], let us define the cyclic
shift 7, on the set [n] as

mp(i) =i+b—1 for 1 <i<n-—b+1,

N . (7
m(i)=i+b—1—n for n—b+2<i<n.
Then for every cyclic code C and every b € [n],
{(C‘n'b(l)a Cﬂb(2)7 sy Cﬂb(n)) : (Cla C27 ceey Cn) S C}
—c. ®)

Now consider the Maximum Likelihood (ML) decoder of a
cyclic code C. By definition, given the channel outputs
Yy = (Y1,---,Yn), the ML decoding result CML(y) =

( C,,) satisfies that

Ci,. ..,
H (y51C;) H (y;]C;) forall (C1,...,C,) €C.

Therefore, for every b € [n],

[1PWe ) Cri)) = TIP3 Cra)
j=1 j=1

forall (Cy,...,Cy) €C.

The cyclically invariant property (8) further implies that

n n
[ Pr)1Cry ) H (U (1|Ci)

j=1
forall (C1,...,Cp) €C.
Thus the ML decoding result of (4, (1), - - - » Y, (n)) i
CM (Y1) - Umm) = (Crp1ys -+ -+ Cruy)

for all b € [n]. This proves that the ML decoder of a cyclic
code is equivariant to all cyclic shifts.
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Figure 2. The parity check matrix of the (7,4) Hamming code used in our decoder (left) and the corresponding Tanner graph (right). Each
column of the matrix is obtained by one cyclic downward shift of its previous column. The weight w!*! ((ex; (1), v5)s (€ (a), v5)) In (5)

can be viewed as a measure of “importance” of z[*~ ) ((ex;(1)5v5)) in the calculation of ! ((cx(ays v5)), where 7 is defined in (7).
The cyclically invariant structure implies that the relation between the edges (cx (1), v;) and (¢, (a),v;) is the same for all j € [n], so in

our decoder we set w!®! ((ex; 1), v5), (Crj(a),5)) = wgs% for all j € [n]. The superscript of wgsg is omitted in the figure.
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Figure 3. The Trellis graph corresponding to the matrix in Fig. 2. The order of edges in the middle layers is listed in the rightmost column.
Due to the cyclically invariant property, each (!*! ((er;1)5v5)), x[s]((cwj (1), V5))s x[S]((c,rj(5), v5)), ac[S]((cﬂj(G)7 v;))) is the same
linear function of (2~ ((cx, (1), v5)), 21~ 1((cx, 4),v5)), 2 ((en, (57, v5)), 27 ((cr, (6), v5))) and L; for all j € [7], meaning
that the same set of weights is shared among all j € [7] in (5). This is illustrated by the small figures D,3),5. (Weight of L; is

out out out

omitted.) Similarly, in the output layer, the same set of weights w?™", ws"", w§"*, w$"* is shared among all the 7 linear mappings from
(22 ((€x; (1), 7)) x[Qt]((cﬂj (45 V5))s x[Qt]((c,rj@), v;)), x[Qt]((cﬁj(G), v;))) to o; forall j € [7], as illustrated by figures @.@.®.
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In light of this, we use a parity check matrix of size n X n
instead of (n — k) X n, and we impose a shift-invariant
structure on the weights of our new decoder so that it shares
the equivariant property of the ML decoder.

The first new ingredient of our decoder is the choice of the
parity check matrix. A careful inspection of (1) indicates
that the rows of this parity check matrix are cyclic shifts
of each other. This is in fact not a coincidence. According
to Chapter 7.4 of (MacWilliams & Sloane, 1977), every
cyclic code C with length n and dimension k possesses an
(n — k) x n parity check matrix of the form

hg ... hy hi hg 0 0 ... O

0 hg ... hy hiy hg O ... O
: : : : : : : : D ®)

0 0 ... 0 hy ... hy hi ho
where (hy, ..., hi, ho) is a binary vector of length k+1. For

the (n = 7,k = 4) Hamming code, the parity check matrix
in (1) corresponds to (hy, hs, ha, h1, hg) = (1,0,1,1,1).
It is well known that the dual code of a cyclic code is also
cyclic; see Chapter 7.4 of (MacWilliams & Sloane, 1977).
As a consequence, all the cyclic shifts of the rows in (9) are
parity checks of the code C. In our new decoder, we use
an n x n parity check matrix consisting of all the n cyclic
shifts of the first row of matrix (9), as opposed to matrix (9)
itself, which only contains the first (n — k) cyclic shifts of
its first row. Note that matrix (9) is widely used in previous
neural decoders when decoding cyclic codes such as BCH
codes (Nachmani et al., 2016; 2018).

As a concrete example, for the (n = 7,k = 4) Hamming
code, the matrix in Fig. 2 is used in our new decoder.
Each row in this matrix is obtained by one cyclic right
shift of its previous row. As a consequence, each column
is also obtained by one cyclic downward shift of its
previous column. According to (5), only the edges
sharing the same variable node are involved in the
calculations of odd layers. More specifically, for the
Tanner graph in Fig. 2 and for odd s, the calculations of
(@) (e, 1)), 2B ((es,01)), 2P (e, v1)), 28 ((e6,v1))

only involve (:c[s 1]((01 v1)), 257U ((eq,v1)),

2= ((e5,v1)), 271 ((¢cg,v1))) and Ly; calculations of
(2l ((e2,v2)), 21 ((e5, v2)), 2 ((cg, v2)), 21 ((c7,v2)))

only involve (x[s 1]((62 v2)), 25 H((es5, v2)),
27 ((c6,v2)), 27 H((c7,v2))) and Lo; and so on.
The weight w!*!((c1,v1), (c4,v1)) in (5) can be viewed as
a measure of “importance” of z!*~((¢c1,v;)) in the calcu-
lation of z[*)((cq,v1)). Similarly, w*((cz,v2), (cs5,v2))
measures the “importance” of zl*~U((co,v2)) in the
calculation of z*!((c5,v2)). An important observation is
that due to the cyclically invariant structure of the code and
the parity matrix, the relation between the edges (c1,v1)
and (c4,v1) is the same as the relation between (cg, v2) and

(¢5,v2). Therefore, in our decoder, we enforce the weights
wl*l((c1,v1), (ca,v1)) and wl*((ca,v2), (c5,v2)) to take
the same value. More generally, we set

= w[s]((cl,vl), (ca,v1))
(10
for all j € [n], as illustrated in Fig. 2, where the
cyclic shift 7; is defined in (7). In the calculations of
(36[“;]((01,Ul)),x[s]((&uUl)),x[s]((csyvl)),x[s]((0671)1))),
there are 4 x 3 = 12 weights multiplied with
(2l 1((er, 1)), 2571 ((ea, 01)), 2l ((e5, 01)),
.Z'[s_l]((CG,U1))). As a natural generalization of (10), in
our decoder these 12 weights are shared in the calculations
of (x[S] ((Cﬂ'j(l)v vj))a ‘T[S] ((Cﬂ'j(4)7 Uj))a x[s] ((67\']‘(5)7 Uj))v
xll ((cx,(6), v5))) for every j € [n]. In other words, we set

Wl (er, 1), 05), (Cx, (49, 05))

w[S] ((c‘ﬂ'j(h)’ Uj)’ (Cﬂ'j(i2)7 Uj)) = w[S] ((Cil ) Ul)a (Ciz ) Ul))
forall j € [n] and all i1,i2 € {1,4,5,6} such that i1 # ia;
see Fig. 3 for an illustration.

In addition to the changes of w*(¢’, ) in (5), we also
make changes to w!*l (4, e), the weight of L;. Again by the
cyclically invariant structure of the code and the matrix, the
role of L; in the calculation of z!*!((cy,v1)) is the same as
the role of Ly in the calculation of z!*1((co, v5)). Therefore,
in our decoder, we enforce the weights w!*!(1, (¢1,v;)) and
wl*(2, (c2,v2)) to take the same value. More generally,
we set wl® (5, (cx;0),5)) = wll(1, (¢;,v1)) for all j €
[n] and all © € {1,4,5,6}. Finally, in the calculations of
the output layer, we also impose a similar shift-invariant
structure on the weights w°% (e, ) in (6). More precisely,
we set W ((cx, (i), v5),J) = w*"*((ci,v1),1) for all j €
[n] and all ¢ € {1,4,5,6}. see Fig. 3 for an illustration.

Now we have finished the description of our new decoder
for the special case of (7,4) Hamming code. For a gen-
eral cyclic code, the first step of our decoding algorithm
is to extend the (n — k) x n parity check matrix in (9)
to obtain an n X n parity check matrix H of the form
in Fig. 2. Suppose that the number of 1’s in each col-
umn of H is u, and let {i1,42,...,4,} C [n] be the set
satisfying H;, 1 = H;,1 = --- = H;,1 = 1. Then
(Cr; (1) V3)s (Coj(in)s Vg)s -+ -5 (o (i) ) are the u edges
that contain v; as an endpoint in the Tanner graph. In the
calculations of each odd layer, we use the following u?
weights: {wy’}, : b0/ € [u],b# '} and {w}’ : b € [u]}.
More precisely, for odd s and an edge e = (cx, (4,), vj) With

b € [u], the message z[°](e) is given by

2l (e) = x[s}((cﬂj(ib)mj)) = tanh( ( [S]L (11)

Y wh el ().
b’ e[u]\{b}
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In the calculations of the output layer, we use the following
u weights: {wy" : b € [u]}. The jth output is given by

0j =Lj+ Y wy™ aPl((cr, iy v5))  (12)
beu]

for j € [n], where ¢ is the total number of iterations. As for
the calculations of even layers, we still use the same formula
(3) as in the vanilla BP algorithm. In the supplementary
material, we prove that our new decoder is equivariant to
all cyclic shifts.

4. List Decoding Procedure

BCH codes and punctured RM codes are two families of
extensively studied and widely applied cyclic codes. In
this section we propose a list decoding procedure for these
two code families. Let (C1, Ca, ..., C),) be a codeword of
an (n, k) BCH code. If we prepend an overall parity bit
Co =C14+Cy+- -+ C), to this codeword (addition is over
binary field), then the resulting vector (Cy, C1, Ca, ..., Cy)
is a codeword of an (n+1, k) extended BCH code. Similarly,
prepending an overall parity bit to an (n, k) punctured RM
code results in an (n + 1, k) RM code. Both RM codes
and extended BCH codes are invariant to the affine group
(Kasami et al., 1967). In the list decoding procedure, we use
the permutations from a subset S of the affine group. The
details about how to choose this subset S are elaborated in
the supplementary material. For now we only need to know
that the size of S is equal to the length of the corresponding
RM or extended BCH code.

We will describe our list decoding algorithm for BCH
codes, and the algorithm for punctured RM codes is exactly
the same. Let (L1, Lo,...,Ly) be the LLR vector of
the channel outputs after transmitting a randomly chosen
codeword (C1, ..., C,) from a BCH code with code length
n. Then the size of S is |S| = n + 1. Choose the list size
in the list decoding algorithm to be £ < n + 1, and the
algorithm works as follows:

Step 1: Prepend a dummy symbol Ly, = 0 to the
LLR vector. As mentioned above, (Cy,C4,...,C,) is a
codeword from an extended BCH code, where Cj is the
overall parity. The dummy symbol Ly = 0 is the LLR of
Cy, indicating that the probability of C;; = 0 is the same
as the probability of Cy = 1 because we do not have any
direct information about Cj.

Step 2: Apply ¢ permutations to (Lo, Lq,...,L,).
We pick ¢ permutations from the set S. De-
note them as oy,...,0. Apply these permuta-

tions to (Lg,L1,...,L,) and we obtain ¢ vectors
@ L LYy = La,(ny) for
iell.

Step 3: Decode (Lgi),Léi),...,
decoder. For each i € [{], decode (Lgi),Lg), ce

(Lo, 0)s Loy(1ys - - -5

Lg’ )) using our neural
LY

using our decoder proposed in Section 3 and denote the
result as (C_’Y), C'éi), e C‘ff)).

Step 4: Check whether (C’fi), C’éi), .,C%Y is a code-
word or not. Multiply (C’fi),C’Q(i),...,C',(zi)) with the
parity check matrix of the BCH code. If the result is 0
(meaning that this is a codeword) then we do nothing;
otherwise we set (C’{i), C’Q(i), . ,C'y(f)) to be the all zero
vector.

Step 5: Prepend an overall parity to ((7£2 e ).
Prepend an overall parity C’éi) = C*fi) + C*é") -+ Oy )
to obtain (C’éi)7 C_’fi), e C_'ff)).

Step 6: Apply the inverse permutation o, !

to (C),C ... .CP). Apply the inverse per-
mutation 0_1 to obtain (C’éi),éii),...,éﬁ)) =
(éfj_l C(_)l 1),...,é§i21(n))fora11i € [4).

Step 7 "ML decmiing among the / candi-

.,CA’S)),i € [4. ML decod-
[¢] that minimizes

dates (C’éi), C’fi),
ing amounts to finding ¢ €
LOCA’(()i) + Ly C‘fz) +- 4 LnCAQ(:’). Denote the minimizer as
i* and set (Co, C1, ..., Cp) = (C’Oi*) C'(i* e )-
Step 8: Discard the first bit C. The final decodmg result
is (C1,Ca,...,Cn).

Note that in Step 3, our neural decoder can be replaced by
any decoder of BCH codes. As a final remark, Step 4 is
very important for reducing the decoding error probability
because without this step, some non-codeword might be the
minimizer in Step 7, which results in a decoding error.

5. Simulation Results

Similarly to the neural decoders proposed in (Nachmani
et al., 2016; 2018; Nachmani & Wolf, 2019), it is easy to
verify that our new decoder also satisfies the message pass-
ing symmetry conditions in Definition 4.81 of (Richardson
& Urbanke, 2008). Hence, by Lemma 4.90 of (Richardson
& Urbanke, 2008), the decoding error probability is inde-
pendent of the transmitted codeword. A direct implication
is that we can train our decoder solely using the all-zero
codeword, instead of using randomly chosen codewords.

In the experiments, we find that a simple boosting method
can effectively reduce the decoding error probability. More
precisely, the output vector of neural BP decoders (both ours
and (Nachmani et al., 2016; 2018)) is still an LLR vector
(see (6) and (12)), so we can feed this output LLR vector as
an input to the neural decoder again, and we can repeat this
procedure many times.

We compare the performance of our neural decoder with the
feed-forward (FF) neural decoder proposed in Section III
of (Nachmani et al., 2018) and the hyper graph decoder
in (Nachmani & Wolf, 2019). In (Nachmani et al., 2018),
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Table 1. The negative natural logarithm of BER for three SNR values and different decoders. Higher is better. N18 refers to (Nachmani
et al., 2018), and B is the number of boosting used in the decoder. For all codes, we train with a batch size of 160 samples, among which
we produce 20 samples from each of the following 8 SNR values: 1dB, 2dB, ..., 8dB. We use 10° samples for testing.

Decoder BP N18,B=0 Ni18, B =2 Ours, B=0 Ours, B =2

Code/SNR 4 5 6 4 5 6 4 5 6 4 5 6 4 5 6

BCH(63,24) 3.18 4.07 5.18 3.24 436 580 343 462 6.16 3.78 511 7.07 3.98 542 7.34
BCH(63,36) 3.83 469 591 397 527 7.05 4.00 535 743 4.63 648 8.86 4.75 6.40 10.02
BCH(63,45) 3.94 484 630 437 571 745 442 583 750 5.12 697 946 5.39 7.45 1045
BCH(127,36) 2.21 2.71 3.52 223 276 3.72 231 3.06 438 229 296 424 244 336 4.98
BCH(127,64) 2.99 3.63 433 3.00 3.82 5.01 3.04 391 529 3.17 424 6.05 323 443 6.42
BCH(127,99) 3.67 438 587 4.08 534 7.12 4.07 542 729 4.51 630 8.86 4.63 6.59 9.61
PRM(63,22) 2.83 355 446 2.85 3.76 498 3.07 3.99 533 332 452 623 3.70 5.13 7.16
PRM(63,42) 4.61 6.00 7.79 4.81 647 887 4.85 647 9.11 592 826 10.85 6.27 8.81 11.55
PRM(127,64) 2.95 3.53 4.12 2.89 3.55 490 294 3.69 500 3.14 4.17 593 3.22 437 6.35
PRM(127,99) 4.44 582 7.65 4.56 6.30 835 4.58 6.33 843 5.69 8.19 11.15 5.97 8.83 14.33

Table 2. The negative natural logarithm of FER of the list decoding algorithm. > 11.5 means FER< 10~° since we only use 10° samples
for testing. For all list sizes, our decoder is boosted 20 times for codes with length 63 and 50 times for codes with length 127.

List size /=1 =2 (=4 =28 l=n+1
Code/SNR 4 5 6 4 5 6 4 5 6 4 5 6 4 5 6
BCH(63,24) 2.51 4.02 6.21 3.30 5.08 7.60 440 6.21 >11.5 552 9.21 >11.5 921 >11.5 >11.5
BCH(63,36) 2.89 4.68 7.49 353 565 887 423 726 10.13 5.04 852 >11.5 921 >11.5 >11.5
BCH(63,45) 3.01 5.07 8.15 348 576 8.42  4.01 6.68 990 4.65 749 1041 6.06 957 >11.5
BCH(127,36) 0.62 1.50 3.13 0.94 2.12 4.26 1.35 292 5.71 1.92 395 726 510 921 >11.5
BCH(127,64) 0.79 2.01 4.00 1.10 2.61 5.08 1.51 341 6.34 2.02 4.17 7.52 466 7.82 >11.5
BCH(127,99) 1.63 3.55 7.13 191 4.12 7.82 222 477 >11.5 260 545 >11.5 429 921 >11.5
PRM(63,22) 2.03 345 5.43 2.70 440 7.13 3.61 568 8.11 479 7.82 >11.5 921 >11.5 >11.5
PRM(63,42) 4.06 6.57 990 455 739 >11.5 518 8.62 >11.5 591 9.21 >11.5 6.21 9.72 >11.5
PRM(127,64) 0.69 1.83 3.82 095 2.38 4.84 1.33 3.17 6.07 1.75 395 7.13 434 713 >11.5
PRM(127,99) 3.13 6.15 >11.5 3.61 695 >11.5 4.06 7.82 >11.5 441 842 >11.5 5.50 >11.5 >11.5

Table 3. Ablation analysis. The numbers are negative natural logarithm of BER. N18 refers to (Nachmani et al., 2018).

Code BCH(63,24) BCH(63,36) BCH(63,45) PRM(63,22)
Decoder/SNR 4 5 6 4 5 6 4 5 6 4 5 6
N18, (n — k) X n parity matrix 3.24 436 580 3.97 527 7.05 437 571 745 2.85 3.76 4.98
N18, randomly extended n X m matrix ~ 3.27 4.38 5.78 3.97 528 7.07 4.49 5.81 7.47 290 3.86 5.17
N18, n x m cyclic matrix 3.67 5.08 6.78 442 593 7.84 4.87 6.19 7.76  3.15 4.33 5.86
Ours, n X n cyclic matrix 378 5.11 7.07 4.63 6.48 886 5.12 6.97 9.46 3.32 4.52 6.23
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Table 4. Decoding time of N18 (Nachmani et al., 2018) and our
decoder

Code N18 Ours  N18/Ours
BCH(63,36) 4.09ms 4.68ms 0.87
BCH(63,45) 3.85ms 4.94ms 0.78

BCH(127,64) 8.60ms 8.63ms 0.99
BCH(127,99) 4.05ms 16.7ms 0.24
PRM(127,99) 3.97ms 7.45ms 0.53

several variations of the FF neural decoder were also pro-
posed, such as RNN and min-sum decoders. Yet in many
cases the FF neural decoder gives better performance than
its variations in terms of decoding error probability, so we
only compare with the FF decoder. For the hyper graph
decoder, we are only able to obtain results for BCH(63, 36)
and BCH(63, 45) due to the high complexity of its training
procedure; see Fig. 4a—4b. We also test the performance of
the list decoding algorithm with various list sizes. Follow-
ing the common practice in the literature, we use Bit Error
Rate (BER) to measure the decoding error probability for
neural BP algorithms, and we use Frame Error Rate (FER)
to measure the decoding error probability for list decoding
algorithms. In our simulations, the number of BP iterations
is 5 for all the methods.

The simulation results are given in Tables 1-2 and Fig. 4,
and explanations of these results are given in the captions.
Here we only discuss the comparison between our list de-
coder and the ML decoder: For certain high-rate codes (rate
> 0.7), our list decoder with list size £ = n + 1 provides
almost the same performance as the ML decoder. More
precisely, simulation results in Fig. 4(d)—(f) show that the
gap between our list decoder with £ = n + 1 and the ML
decoder is no larger than 0.1dB for these high-rate codes.
However, for codes with rate < 0.5, the gap between our
decoder with list size ¢ = n + 1 and the ML lower bound
can be larger than 1dB. It remains unclear to us why there
is such a distinction between high-rate codes and medium-
to-low-rate codes. As a final remark, we note that efficient
decoders with almost ML performance were already pro-
posed for low-rate RM codes; see for example (Dumer &
Shabunov, 2006; Ye & Abbe, 2020).

Next we compare the complexity between our decoder and
(Nachmani et al., 2018). The memory requirements of our
decoder is much smaller than (Nachmani et al., 2018) while
the time complexity of our decoder is larger than (Nach-
mani et al., 2018). In both our decoder and (Nachmani et al.,
2018), the memory is used to store the trained weights, so
the memory requirement depends on the number of weights
used in the decoder. In our decoder, we reuse the same set of
weights n times in each odd layer due to the shift-invariant

structure. This effectively reduces the number of weights
compared to (Nachmani et al., 2018). More precisely, ac-
cording to the discussion above (11), the number of weights
in our decoder is u2t, where u is the number of 1’s in each
row of the parity check matrix, and ¢ is the number of iter-
ations in the BP algorithm. A simple analysis shows that
the number of weights in (Nachmani et al., 2018) is at least

Wﬁt. Therefore, except for extremely high-rate codes

where n — k < /n, the memory requirement of our decoder
is typically much smaller than (Nachmani et al., 2018).

As for the time complexity, we note that the number of
additions and multiplications are both proportional to the
number of edges in the Tanner graph. The number of edges
in the Tanner graph of (Nachmani et al., 2018) is u(n — k)
while for our decoder this number is un. Therefore, if
we only count the number of additions and multiplications,
the ratio between (Nachmani et al., 2018) and our decoder
is ",—:k Although the actual ratio of running time is not
exactly ”7—:’“ the above analysis tells us that the running
time ratio between (Nachmani et al., 2018) and our decoder
is smaller for high-rate codes and larger for low-rate codes.
Table 4 compares the decoding time of the vanilla versions
of (Nachmani et al., 2018) and our decoder, i.e., no boosting,
no list decoding.

In Tables 1-2 and Fig. 4, we use the (n — k) X n parity
matrix of the form (9) for the FF neural decoder and hyper
graph decoder, and we use the n X n cyclic parity matrix
for our decoder. To evaluate the contribution of the n X n
cyclic matrix, we ran an ablation analysis, where we further
consider another two cases: (i) we append k random parity
rows to matrix (9) so that we obtain an randomly extended
n X n matrix, and we use the FF neural decoder together
with this matrix; (ii) we use the FF neural decoder together
with the n X n cyclic matrix. Simulation results in Table 3
show that using randomly extended matrix has very little
effect on the BER while using the n x n cyclic matrix for
the FF decoder improves over the (n — k) X n matrix by
0.45dB, so what matters here is not the matrix size, but the
cyclic structure. When both using the n x n cyclic matrix,
our decoder still demonstrates a 0.25dB improvement over
the FF decoder.
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Figure 4. N18 refers to the neural decoder proposed in Section III of (Nachmani et al., 2018); B is the number of boosting used in the
decoder; / is the list size. If we do not specify B (respectively, £), it means that B = 0 (respectively, £ = 1). For the first three plots, we
use BER (the fraction of incorrect bits in the decoding results) to measure the decoding error probability, and for the last three plots, we
use FER (the fraction of incorrect codewords in the decoding results) because it involves list decoding. Some additional plots are provided
in the supplementary material.

Without list decoding, our neural decoder consistently improves upon (Nachmani et al., 2018) by 0.7dB, and it also improves upon the
hyper-graph-network decoder (Nachmani & Wolf, 2019) by 0.3dB. Moreover, the list decoding algorithm provides up to 3dB gain if we
set the list size to be n + 1. Even for a small list size ¢ = 8, it also gives 0.7 ~ 0.9dB gain over the algorithm without list decoding. In
(d)—(f), when the list size is £ = n + 1, our list decoding algorithm has almost the same performance as the ML decoder.
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