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Abstract
In previous Capsule Neural Networks (CapsNets),
routing algorithms often performed clustering pro-
cesses to assemble the child capsules’ represen-
tations into parent capsules. Such routing algo-
rithms were typically implemented with iterative
processes and incurred high computing complex-
ity. This paper presents a new capsule structure,
which contains a set of optimizable receptors and
a transmitter is devised on the capsule’s represen-
tation. Specifically, child capsules’ representa-
tions are sent to the parent capsules whose recep-
tors match well the transmitters of the child cap-
sules’ representations, avoiding applying compu-
tationally complex routing algorithms. To ensure
the receptors in a CapsNet work cooperatively,
we build a skeleton to organize the receptors in
different capsule layers in a CapsNet. The recep-
tor skeleton assigns a share-out objective for each
receptor, making the CapsNet perform as a hier-
archical agglomerative clustering process. Com-
prehensive experiments verify that our approach
facilitates efficient clustering processes, and Cap-
sNets with our approach significantly outperform
CapsNets with previous routing algorithms on
image classification, affine transformation gen-
eralization, overlapped object recognition, and
representation semantic decoupling.

1. Introduction
Capsule Neural Networks (CapsNets) (Sabour et al., 2017;
Hinton et al., 2018; Hahn et al., 2019; Rajasegaran et al.,
2019; Tsai et al., 2020; Ribeiro et al., 2020b) offer effective
capabilities of assembling object part representations to syn-
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Figure 1. (a) The idea of CapsNets, which clusters low-level rep-
resentations to synthesize higher-level representations. (b) The
typical routing algorithms (Sabour et al., 2017; Hinton et al., 2018)
use iterative processes to implement clustering, requesting agree-
ments between the parent and child capsules repeatedly. (c) In our
approach, we define receptors and transmitters for capsules, and
cluster the child capsules’ representations for the parent capsules
based on the matching between the parent capsules’ receptors and
the transmitters of the child capsules’ representations.

thesize object whole representations for better generaliza-
tion and robustness (see Fig. 1(a)), thus performing well in
image classification (Tsai et al., 2020), affine transformation
generalization (Sabour et al., 2017), and occluded/ over-
lapped object (e.g., organs in an X-ray) recognition (Sabour
et al., 2017; LaLonde & Bagci, 2018; Bonheur et al., 2019).
In a typical CapsNet, several neurons are grouped as units,
called capsules, whose representations are convex combina-
tions of (possibly some of) the child capsule representations
under the guidance of various routing algorithms.

It was pointed out (Malmgren, 2019) that typical routing
algorithms are in essence clustering algorithms, organizing
the capsules in different layers to hierarchically assemble
the representations of object parts into object wholes. For
example, Dynamic Routing (Sabour et al., 2017) was a soft
k-Means, and EM Routing (Hinton et al., 2018) was based
on the Gaussian mixture model (Reynolds, 2009). Cluster-
ing in such a routing algorithms is typically implemented by
iterative processes (see Fig. 1(b)), which repeatedly request
agreements between the representations of the parent and
child capsules before finalizing the clusters. Unlike a neural
layer (e.g., a fully connected layer) in which low-level rep-
resentations are combined into high-level representations
with the parameter coefficients, those routing algorithms
assemble low-level representations to synthesize high-level
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representations according to the coefficients determined by
the similarities with the estimated cluster centroids.

However, the iterative processes in routing algorithms incur
high computing complexity. Then, some straight-through
routing algorithms were given to avoid iterative processes,
such as single-layer perceptron (Hahn et al., 2019), attention
module (Choi et al., 2019), and Gumbel-Softmax (Ahmed &
Torresani, 2019). These straight-through routing algorithms
passed representations forward according to the learnable
parameters, and did not explicitly cluster low-level repre-
sentations. An inverted dot-product based attention rout-
ing (Tsai et al., 2020) used a space-time trade-off strategy
but did not fundamentally reduce the computing complex-
ity. In summary, clustering in a routing algorithm picks
major representations and learns the part-whole relation-
ship (Sabour et al., 2017). However, the previous routing
algorithms did not provide an efficient way to handle clus-
tering; thus, the low computing complexity of these routing
algorithms did not seem to directly benefit representation
clustering.

In this work, we present a new capsule structure by adding
optimizable receptors to capsules, in which the receptors are
on behalf of cluster centroids in the representation clustering.
Also, we devise a transmitter on the capsule’s representa-
tion. Using our approach, the representations of the parent
capsules are convex combinations of the child capsules’ rep-
resentations whose transmitters match well with the parent
capsule’s receptors (as illustrated in Fig. 1 (c)). Previous
routing algorithms obtained the combination coefficients
by iteratively computing the capsule representation similari-
ties, while our approach directly determines the coefficients
based on the similarities of receptors and transmitters, thus
avoiding the iterative process of common routing algorithms.
Since our approach performs a process similar to informa-
tion transmission among neurons in which neurotransmitters
released by a neuron are received by some specific receptors
of the target neurons, we call the proposed compositions
transmitters and receptors, respectively.

As the receptors are learnable and determine which child
capsule representations to pick, it is clear that the capsule’s
representations can be highly affected by its receptors. Pre-
vious CapsNets naturally learn the part-whole relationship
hierarchically via layer-by-layer clustering. But, in this de-
sign, if each receptor in a CapsNet operates independently,
then there is no guarantee that all the clustering centroids
represented by the receptors serve for the part-whole rela-
tionship capture. Hence, we embed a receptor skeleton into
the CapsNet to organize the receptors, constructing associ-
ated relations among receptors. In (Wan et al., 2020), the
average of representations was used to obtain their higher-
level semantics, providing good interpretations. Inspired by
this, we require that the parent capsules’ receptors be the

averages of some receptors in the child capsules using the
skeleton, embedding a hierarchical relationship of receptors
in adjacent layers. Thus, the parent capsules’ receptors can
be regarded as “outlines” of the child capsules’ receptors,
while the child capsules’ receptors can be viewed as various
“embodiments” of the parent capsules’ receptors. In data
processing, as the receptors represent the cluster centroids,
the representations can be grouped and combined hierar-
chically by “attaching” to the receptors of the skeleton. To
avoid introducing biases to this skeleton, we propose three
reasonable conditions for the skeleton topology, in order to
ensure that the receptors are treated uniformly and specifi-
cally, and provide a solution for finding a skeleton topology
inspired by the Latin square design (Colbourn & Dinitz,
2006).

In summary, the contributions of our work are as follows:

• We develop a new capsule structure and a new ap-
proach to assemble the child capsule representations
into the parent capsules using a process similar to in-
formation transmission among neurons. Our approach
performs a representation clustering process without
using the time-consuming iterations of common rout-
ing algorithms.

• We propose a receptor skeleton to specify a hierarchi-
cal relationship of receptors in adjacent layers which
provides a share-out objective to each receptor, making
the receptors in a CapsNet work collectively to recog-
nize objects by hierarchically organizing objects via a
composition of part representations.

• Extensive experiments conducted on several datasets
demonstrate the superiority of our approach, which out-
performs the previous routing algorithms with lower
computing complexity on various applications, espe-
cially occluded/overlapped object recognition and affin-
ity transformation generalization.

2. Preliminaries
2.1. CapsNets

In (Sutskever et al., 2011), neurons in a layer were divided
into groups called capsules, and a capsule neural network
(called CapsNet) was proposed (Sabour et al., 2017) in
which capsule representations were presented as vectors.
A matrix capsule was introduced in (Hinton et al., 2018)
which is beneficial for dealing with image data. Later, many
CapsNets (e.g., (Tsai et al., 2020; Choi et al., 2019; Ribeiro
et al., 2020a;b)) followed these capsule structure, and vari-
ous routing algorithms were explored. When voting which
child capsule representations to be used by the parent cap-
sules, given the representations ui of the i-th child capsule,
it is first transformed into representation votes ûj|i for the
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j-th parent capsule, by:

ûj|i = Wij(ui) (1)

whereWij(·) is a learnable transformation function (e.g., an
affine transformation). Then, a routing algorithm combines
ûj|i (i ∈ {1, 2, . . . , A}) to synthesize the representations of
the j-th parent capsule, uj , by uj =

∑A
i=1 cj|iûj|i, where

the coefficients cj|i of ûj|i are computed based on their
similarities to the estimated cluster centroids and A is the
number of child capsules. Note that some of the coeffi-
cients cj|i are close to zero (since the clustering processes in
routing algorithms are soft versions (Malmgren, 2019)). Re-
lated work on new capsule structures was limited, including
probabilistic models (Ribeiro et al., 2020b), stacked cap-
sule autoencoder (Kosiorek et al., 2019), and 3D versions
for point clouds (Zhao et al., 2019; Srivastava et al., 2019).
Our paper presents a new capsule structure, which provides
individual parameters to select the desired representations.

2.2. Routing algorithms

Some routing algorithms seek similar representations for
parent capsules by clustering, implemented with iterative
processes (Sabour et al., 2017; Hinton et al., 2018; Ra-
jasegaran et al., 2019). The Dynamic Routing (Sabour et al.,
2017) could be regarded as a soft k-Means algorithm (Malm-
gren, 2019). In (Hinton et al., 2018), a routing algorithm
was presented, implemented by the Expectation-Maximum
(EM) algorithm and the Gaussian mixture model (Reynolds,
2009), which are commonly used in clustering. However,
the iterative processes incurred high computing complexity.
To address this, a single-layer perceptron (Hahn et al., 2019),
attention scores computed by the child capsules (Choi
et al., 2019; Xinyi & Chen, 2018), global variational infer-
ence (Ribeiro et al., 2020b), and Gumbel-Softmax (Ahmed
& Torresani, 2019) were proposed to substitute the routing
algorithms with iterative processes. DeepCaps (Rajasegaran
et al., 2019) performed only the iterative processes in the
last capsule layer, thus reducing the computing complexity.
An inverted dot-product based attention routing (Tsai et al.,
2020) substituted the iterative processes with a new parallel
operation, which accelerated the inference. But, the parallel
operation actually provided a trade-off between the memory
space and inference time, and the high computing complex-
ity still remained. In general, these approaches did not take
into account both the clustering mechanism and reduction
of computing complexity of the routing algorithms.

3. Receptors in a Capsule
We propose a new approach for clustering representations
with low computing complexity. In previous work, the
representations of a capsule are determined by routing al-
gorithms, and the capsule is just a representation container.

Given the representations of A child capsules for the j-th
parent capsule ûj|i (obtained by Eq. (1), i ∈ {1, 2, . . . , A}),
routing algorithms progressively estimate the representation
centroids iteratively. These routing algorithms ignore some
irrelevant representations and focus on some fixation pat-
terns (Sabour et al., 2017). However, the process of human
vision does not work in this way. In a scene, people make
some preliminary judgments according to certain cognitive
prioris (Spelke, 1990), so that human can respond to a scene
subconsciously and quickly. Such prioris, learned from
some related experiences, are activated by a few representa-
tive details in the scene.

Following this view, we design a new capsule structure with
a set of optimizable receptors. Also, we define a transmitter
on a representation of the capsule, which is on behalf of
the representation. In data processing, a receptor picks the
relevant representations for the parent capsule by matching
with the transmitters of the child capsules’ representations,
just like a priori (receptor) being activated by some repre-
sentative information (transmitter).

3.1. Receptors and transmitters

The receptors of a capsule are defined as {vm ∈ RC} (m ∈
{1, 2, . . . ,M}), where C is the capsule size and M is the
number of receptors per capsule. The receptors can be
directly optimized by back-propagation without any extra
losses. Notably, each receptor belongs to a capsule, which
is not a shared element like routing algorithms.

A transmitter is defined on a capsule representation. For a
representation of the i-th matrix child capsule for j-th parent
capsule, ûj|i ∈ RC×W×H (where W and H are the width
and height of the feature maps, respectively), we define a
lower-dimensional transmitter sj|i ∈ RC of ûj|i using a
squeezing function S, as:

sj|i = S(ûj|i) (2)

such that the squeezing function S reduces the dimensions
(e.g., the W dimension and H dimension) of ûj|i. In prac-
tice, the squeezing function is implemented by the global av-
erage pooling, adopting the idea from (Hu et al., 2018). The
transmitter sj|i can be viewed as a simplified version of ûj|i,
providing core information of ûj|i. Note that the transmit-
ters should have the identical size as the receptors, for ease
of similarity computing. We do not use high-dimensional
tensors (like RC×W×H ) to define the receptors and transmit-
ters, since this would incur high computation complexity.

3.2. How does a receptor match to transmitters?

To obtain the representation of the j-th parent capsule, we
compute the similarities between the parent capsule’s re-
ceptor (here we assume M = 1) and all the child capsules’
transmitters sj|i (i ∈ {1, 2, . . . , A}). Formally, the simi-
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Algorithm 1 A procedure for synthesizing the j-th parent
capsule’s representation by our proposed approach.

1: Input: The representations of A child capsules, ui

(i ∈ {1, 2, . . . , A}); the receptors of the j-th parent
capsule, {vm} (m ∈ {1, 2, . . . ,M}); the number K
of the nearest neighbors (see Sec. 3.2); the coefficient
vector r (see Eq. (5)).

2: Output: The j-th parent capsule’s representation uj .
3: Transform ui to ûj|i by function Wij . . by Eq. (1)
4: Compute the transmitters sj|i of ûj|i. . by Eq. (2)
5: for m = 1 to M do
6: Compute the similarities between the transmitters

sj|i and the receptors vm. . by Eq. (3)
7: Rank the similarities and combine the K nearest

neighboring representations to be ûj;m. . by Eq. (4)
8: end for
9: Combine ûj;m (m ∈ {1, 2, . . . ,M}) with r to obtain

the j-th parent capsule’s representation ûj . . by Eq. (5)

larity dj|i;m between the receptor vm and a representation
transmitter sj|i is defined as:

dj|i;m = sigmoid(sTj|i ·
vm
||vm||2

) ∈ (0, 1) (3)

where dj|i;m is a scalar. We use a sigmoid function to limit
the bounds of dj|i;m to avoid extreme values. The receptor
vm is normalized by its l2 norm to avoid the influence of
the vector length.

After obtaining the similarities dj|i;m (i ∈ {1, 2, . . . , A}),
we pick the K nearest neighboring representations from the
A child capsules, {ûj|k;m} (k ∈ {1, 2, . . . ,K}), using the
K nearest neighbor grouping (K-NN grouping). Then, the
K picked representations are combined to form a higher-
level representation, with similarity-based coefficients, by:

ûj;m =

K∑
k=1

wj|k;mûj|k;m (4)

where the coefficients are computed as w = softmax(d),
in which w = [wj|1;m, wj|2;m, . . . , wj|K;m], and d =
[dj|1;m, dj|2;m, . . . , dj|K;m]. Thus, those K representations
whose transmitters are similar to the receptor vm are com-
bined into a higher-level representation ûj;m.

3.3. How do receptors of a capsule collaborate?

A capsule can represent complex semantics (e.g., compound
semantics) with multiple neurons (Sutskever et al., 2011;
Sabour et al., 2017). Typically, a representation ûj;m pro-
vided by a receptor (see Eq. (4)) can represent only one
single semantic. We define a set of receptors in a capsule,
making it available to learn compound semantics. Given
ûj;m (m ∈ {1, 2, . . . ,M}) obtained by M receptors in the

j-th capsule, we define the j-th parent capsule’s representa-
tion as a convex combination of {ûj;m}. Besides, we add
the averages of representation votes (by a shortcut connec-
tion) to smooth the output representation to stabilize the
training process. Formally, the representation of the j-th
parent capsule is defined by:

uj =

M∑
m=1

γj;mûj;m +
1

A

A∑
i=1

ûj|i (5)

where γj;m is an element in a vector r = [γj;1, γj;2, . . .,
γj;M ], r = softmax(z), and z is an optimizable vector of
the size |r|. Then, the representation uj of the j-th parent
capsule is further passed forward, and is possibly combined
into its parent capsule’s representation in the next layer.

The whole procedure for synthesizing a capsule’s repre-
sentation by our approach is given in Alg. 1. For ease of
understanding, we show the operations of the receptors us-
ing the loop in Lines 5–8 of Alg. 1. In practice, the receptors
can perform in parallel. In our approach, the capsules pick
the low-level representations via the receptors, avoiding us-
ing routing algorithms. Actually, our approach plays the
role of the routing algorithms.

4. Receptor Skeleton
Previous CapsNets worked in a hierarchical agglomerative
clustering process to learn the part-whole relationship in
recognizing objects. In our approach, we add a constraint
on the receptors to ensure that a receptor is associated with
those receptors in the adjacent capsule layers, presenting the
hierarchical cluster centroids for the global part-to-whole
assembling. In (Wan et al., 2020), the averages of the low-
level representations were used as the higher-level represen-
tations, attaining good hierarchical interpretations for the
objects. Inspired by this, we require the receptors (repre-
senting cluster centroids) v(p)m of a parent capsule be the
averages of some receptors {v(c)i } of the child capsules, by:

v(p)m =

∑Nm

i=1 v
(c)
i

Nm
(6)

where v(c)i (i ∈ {1, 2, . . . , Nm}) denote the child capsules’
receptors connecting to the parent capsule’s receptor v(p)m

(we call the relationship between two receptors a “connec-
tion”), and Nm is the number of {v(c)i }. An example of
receptor relationships is shown in Fig. 2. In this way, the
semantics learned by v(c)i are possibly part of the compound
semantics learned by v(p)m . In implementation, we can ini-
tialize some meta-receptors and synthesize receptors for all
capsules, sharing the underlying data storage. Below we
will introduce our skeleton topology design.
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4.1. Skeleton topology

For building the skeleton to specify the receptor relations in
adjacent capsule layers, we assume that the following three
reasonable conditions hold for the skeleton of receptors,
making the receptors be treated uniformly and individually
and avoiding introducing biases. The three conditions re-
spectively ensure that all the receptors (i) are considered in
the skeleton, (ii) are equally treated in the view of the child
and parent capsules, and (iii) represent specifically different
semantics. These three conditions are as follows.

Condition 1. Each parent-child capsule pair should have
at least one connection (by receptors).

Remark. In two adjacent capsule layers, each high-level
capsule possibly takes in the representations from any low-
level capsules. This means that every high-level capsule
is potentially the parent capsule of the low-level capsules.
Thus, there should be at least one receptor in each high-level
capsule connecting to a receptor of each low-level capsule.

Condition 2. All the parent-child capsule pairs should have
identical connection amounts, and all the receptors in the
same capsule layer are connected with identical amounts.

Remark. To treat all the capsules and receptors equally, we
require that the connections be distributed uniformly. This
means that we do not give any priori to a CapsNet, and all
the properties of the CapsNet (e.g., the importance of certain
capsules) are adaptive to the dataset.

Condition 3. No two receptors should have identical con-
nections.

Remark. It is more efficient to make every receptor unique,
facilitating the CapsNet to learn more varied semantics.

Suppose there areB parent capsules and each parent capsule
contains M receptors. A naive solution is: each receptor
in every child capsule connects to a different receptor of
the parent capsules; thus the receptor number inside a child
capsule is equal to the total receptor number of the parent
capsules (B ×M ). Furthermore, if there are A child cap-
sules, then there should beA×B×M receptors inside each
grandchild capsule. This means that the number of receptors
in a CapsNet increases exponentially with its layers, which
will cause high computing complexity. A better solution is
to keep the receptor number per capsule a constant, and let
each receptor of the child capsules connect to more than one
receptor in the parent capsules (if possible).

To satisfy the three conditions above and keep the receptor
number M per capsule a constant, we propose an intuitive
solution inspired by the Latin square design (Colbourn &
Dinitz, 2006; Hedayat et al., 2012). Let the number A of the
low-level capsules, the number M of receptors per capsule,

𝑣1 𝑣2 𝑣1 𝑣2

𝑣1 𝑣2 𝑣1 𝑣2 𝑣1 𝑣2 𝑣1 𝑣2

𝑝1 𝑝2

𝑐1 𝑐2 𝑐3 𝑐4

transmitter
receptor

capsule
connections

Figure 2. An example of connection topology (see Eq. (8)) in a
two-capsule-layer module. The first receptor v1 of the first parent
capsule p1, as specified by Eq. (6), is the average of some child
capsule receptors, by v

(p1)
1 = (v

(c1)
1 +v

(c2)
1 +v

(c3)
2 +v

(c4)
2 )/4.

and the number B of the high-level capsules satisfy:

B ×M = A (7)

Note that the constraint in Eq. (7) is not a strong one, since
the number of the higher-level capsules should be less than
the lower-level capsules, in a clustering view.

We define the skeleton connection topology using
an A × A square matrix Γ. In the matrix Γ, let
the rows index the child capsules in a fixed permu-
tation, and the columns index the receptors in the
parent capsules (since B × M = A) by a sequence
[v

(p1)
1 , v

(p2)
1 , . . . , v

(pB)
1 , v

(p1)
2 , v

(p2)
2 , . . . , v

(pB)
2 , . . . , v

(p1)
M ,

v
(p2)
M , . . . , v

(pB)
M ], where v(pj)

m denotes the m-th receptor in
the j-th parent capsule. An entry Γ[r, c] indicates which
receptor of the r-th child capsule connects to the c-th
receptor in the receptor sequence of the parent capsule layer
(r ∈ {1, 2, . . . , A}, c ∈ {1, 2, . . . , B × M}). Formally,
we connect the parent capsule receptor v(pj)

m with the
(Γ[i, Bm−B+ j] + 1)-th receptor of the i-th child capsule.

To obtain Γ, we adopt the idea of the Latin square design.
A Latin square of order A is an A × A matrix containing
numbers in {0, 1, . . . , A − 1} such that each number oc-
curs exactly once in each row and each column (Hedayat
et al., 2012). The Latin square design uses a Latin square to
uniformly arrange the levels of the factor variables exactly
once in various experimental settings (indicated by rows and
columns). The uniformity and uniqueness properties of the
Latin square meet our three conditions. Thus, we construct
the skeleton connection topology based on a Latin square.

In practice, we construct a standard A×A Latin square L,
by taking the entry L[r, c] = (r + c− 2) mod A (Hedayat
et al., 2012). Given a Latin square L of size A × A, we
obtain Γ as Γ[r, c] = bL[r, c]/Bc ∈ {0, 1, . . . ,M − 1},
where b·c is the floor rounding operator. Here we give an
example with A = 4 and M = 2 to illustrate the procedure
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of building a skeleton topology, in Eq. (8) and Fig. 2.

L =


0 1 2 3
1 2 3 0
2 3 0 1
3 0 1 2

 , Γ =


0 0 1 1
0 1 1 0
1 1 0 0
1 0 0 1

 (8)

Lemma 1. Γ thus obtained satisfies the three conditions
aforementioned.

Proof. In a Latin square L, every element in {0, 1, . . . , A−
1} appears exactly once in each row and each column of L.
Thus, every element in {0, 1, . . . ,M − 1} appears exactly
B times in each row and each column of Γ due to Eq. (7).
Hence condition 1 and condition 2 are satisfied.

For condition 3, by the above construction procedure of L
and Γ, one can easily find that Γ is a Hankel matrix (a row-
reversed Toeplitz matrix) in which each ascending skew-
diagonal from left to right is constant. Based on the above
property of the Hankel matrix, without loss of generality,
we only need to show that the first column of Γ is different
from the other columns.

In the first row of L, L[1, t] = t − 1 for 1 ≤ t ≤ A. In
its last row, L[A, 1] = A − 1 and L[A, t] = t − 2 for
2 ≤ t ≤ A. By the relationship between L and Γ, we have
Γ[1, 1] = 0 6= t−1 = Γ[1, t] forA−B+1 ≤ t ≤ A. Also,
we have Γ[A, 1] = M−1 > Γ[A, t] for 2 ≤ t ≤ A−B+1,
since Γ[A, t] = M − 1 if and only if A−B + 2 ≤ t ≤ A
or t = 1. Hence, the first column of Γ is different from the
other columns and condition 3 is satisfied. �

5. Architecture
We build four capsule layers on the top of the backbones
(the ResNet-18 backbone (He et al., 2016), the simple back-
bone (Tsai et al., 2020)), with our receptor skeleton. We use
a non-linear function for the layer normalization, as in (Tsai
et al., 2020). We take the Cross-Entropy loss as in (Tsai
et al., 2020) as our loss function.

6. Experiments and Results
6.1. Basic setups

We use the PyTorch library to implement our approach. We
letK = 6 for theK nearest neighbor grouping (see Sec. 3.2),
and the number of receptors per capsule M = 2. The num-
bers of capsules in the four capsule layers are 40, 20, 10,
and the class number of the corresponding dataset, respec-
tively. In the training process, we use the SGD optimizer
with weight decay 5−4 and momentum 0.9 (Sutskever et al.,
2013). We run 300 epochs, and the initial learning rate is
0.1, which is reduced by 10× at the 60-th, 120-th, and 160-
th epochs. The models are trained and tested on GeForce
RTX 3090 Ti GPUs. For fair comparison, we unify the back-
bones, number of capsule layers, capsule number, capsule

sizes, etc. The performances of the known approaches are
obtained by running their open source codes.

6.2. Performance comparison

(1) Classification performances
We evaluate the classification performances of CapsNet
with our approach on several non-performance-saturated
datasets, including AffNIST, Fashion-MNIST, SmallNorb,
SVHN, Multi-MNIST (following (Sabour et al., 2017)),
CIFAR-10, and CIFAR-100. We generate the Multi-MNIST
dataset similarly as in (Sabour et al., 2017), and the only
difference is that each digit is shifted up to 2 pixels in each
direction, which results in an image of size 32× 32. With
larger occluded areas than those in (Sabour et al., 2017),
the classification task becomes more difficult. The Multi-
MNIST dataset was used to evaluate the ability in processing
overlapped objects. The images in the AffNIST dataset are
MNIST images transformed by 32 random affine operators.
To verify the affine transformation robustness, we train all
the CapsNets only on the MNIST training set (Notably,
the training set of AffNIST is not used), and evaluate their
generalization abilities on the AffNIST test set. Similar
to (Sabour et al., 2017; Ribeiro et al., 2020b;a), the MNIST
images for training are randomly placed in a 40× 40 black
background. For the SmallNorb dataset, we follow the
experimental design as in (Ribeiro et al., 2020b) to evaluate
the viewpoint-invariance. For the CIFAR-10 and CIFAR-
100 datasets, we use the following data augmentations as
in (Tsai et al., 2020): (1) pad four zero-value pixels to
the input images, (2) randomly crop the images to size
32× 32, and (3) horizontally flip images with a probability
of 0.5. For the other datasets, the official train-test splits
are adopted, and no data augmentation is applied. To keep
fairness, we use the same configurations in training and
inference for all the models (CapsNets) on the same datasets.

We unify the simple backbone using a two-layer convolu-
tional neural network as in (Tsai et al., 2020). As for the
ResNet backbones, we use the first two blocks of ResNet-
18 (He et al., 2016). The capsule sizeC is 36 for CIFAR-100,
and 16 for the other datasets. Since our approach is an alter-
native of routing algorithms, we compare our approach with
the state-of-the-art routing algorithms, including Dynamic
Routing (Sabour et al., 2017), EM Routing (Hinton et al.,
2018), 3D Routing (Rajasegaran et al., 2019), and inverted
dot-product attention routing (IDPA-Routing) (Tsai et al.,
2020).

As shown in Table 1, our approach considerably outper-
forms the routing algorithms with simple backbones on the
datasets (except for the SmallNorb dataset) by clear mar-
gins (1.1%–3.9%). On the SmallNorb, our method obtain a
slightly lower performance than 3D-Routing and EM Rout-
ing, but still comparable. Our approach attains good perfor-
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Table 1. Classification performance comparison among various routing algorithms and our approach with simple backbones. The best
performances are marked in bold, and the second-best performances are underlined.

Methods AffNIST Fashion-MNIST SmallNorb SVHN Multi-MNIST CIFAR-10 CIFAR-100

3D-Routing 87.8% 91.4% 97.5% 90.5% 94.8% 82.9% 24.2%
Dynamic Routing 81.2% 92.3% 97.1% 90.9% 95.3% 84.5% 57.4%
EM Routing 93.8% 90.3% 98.0% 90.2% 94.8% 82.2% 34.3%
IDPA-Routing 86.1% 92.0% 96.3% 90.6% 95.6% 85.0% 57.1%
Our approach 96.7% 93.4% 97.2% 94.8% 96.9% 87.4% 60.5%

Table 2. Classification performance comparison among ResNet-18,
the other routing algorithms, and our approach on the ResNet-18
backbones. The best performances are marked in bold.

Methods CIFAR-10 CIFAR-100

ResNet-18 95.1% 77.9%

3D-Routing 91.2% -
Dynamic Routing 90.4% -
EM Routing 86.2% -
IDPA-Routing 93.5% 72.3%
Our approach 93.7% 72.8%

Table 3. Overlapped object segmentation results (Dice scores, %)
on the JSRT dataset. “LL” and “RL” denote the left and right
lungs, “LC” and “RC” denote the left and right clavicles, and “H”
denotes the heart, respectively. The prefix “V” indicates using
vector capsules, and “M” indicates using matrix capsules.

Methods Dice (%)
LL RL LC RC H Mean

M-Dual 96.8 97.3 88.0 87.2 94.1 92.68
M-(Ours) 97.4 98.0 89.8 88.3 95.1 93.72

V-Dual 96.5 97.1 86.3 86.2 93.3 91.88
V-Dynamic 95.4 96.3 82.7 82.3 92.3 89.80
V-(Ours) 97.1 97.7 88.2 87.6 94.0 92.92

mances on Multi-MNIST, which indicates that our approach
can separate overlapped objects, possibly due to the part-
to-whole learning scheme. Besides, one can observe our
performance gains compared with the previous CapsNets on
the AffNIST test set. Recall that we train the CapsNets only
using the original MNIST images without affine transfor-
mation, this experiment verifies that our proposed approach
can better handle affine transformation than the known ap-
proaches. Also, with the ResNet-18 backbone, our approach
outperforms the known previous work, especially the current
best-performed routing algorithm IDPA-Routing, as shown
in Table 2. These results on the complex datasets show that
our approach has good potential for image classification.

(2) Segmentation performances
CapsNets with routing algorithms can pick similar repre-
sentations and thus are effective in segmenting highly over-

receptor
transmitter

Figure 3. T-SNE embeddings of the receptors (orange) and trans-
mitters (grey) in the penultimate layer. One can see that the distri-
butions of the transmitters and receptors are overlapped.

lapped objects (Bonheur et al., 2019; Sabour et al., 2017).
Radiograph is a type of medical images in which tissues
and organs can largely overlap. Hence, we follow the model
in (Bonheur et al., 2019), replacing Dynamic Routing and
Dual Routing (Bonheur et al., 2019) by our approach and
embedding two receptor skeletons in the U-shape model
(one in the encoder and the other in the decoder). We com-
pare our approach with those with the matrix capsule ver-
sion (Hinton et al., 2018) and vector capsule version (Sabour
et al., 2017) on the Japanese Society of Radiological Tech-
nology (JSRT) dataset (Shiraishi et al., 2000). The JSRT
dataset contains 247 chest radiographs, and segmentation
annotations of the left and right lungs, the left and right clav-
icles, and the hearts are provided. The Dice scores of Dual
Routing and Dynamic Routing are from (Bonheur et al.,
2019). As shown in Table 3, our approach outperforms
the two routing algorithms by 1.04%–3.12%. Since our
approach performs well on Multi-MNIST classification (as
shown in Table 1) and overlapped object segmentation, it
suggests that our approach excels at overlapped object pro-
cessing, which is possibly due to our design (the receptors,
transmitters, and receptor skeleton) for clustering.

6.3. How well does our approach work?

(1) How do the receptors and transmitters perform?
Here we inspect the performances and operation mecha-
nism with the MNIST dataset. Transmitters are on behalf
of representations; receptors are on behalf of representation
centroids. The receptors pick representations for the parent
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（a）Our approach （b）An attention Routing

higher-level representation
lower-level representation

Figure 4. T-SNE embedding illustration of the representations in
two adjacent layers. The blue points indicate the parent capsules’
representations and the grey points indicate the child capsules’
representations. (a) The T-SNE embedding of the representations
learned with our approach; (b) the T-SNE embedding of the repre-
sentations learned with an attention routing without the skeleton.

Land vehicles

Large vehicles

Figure 5. A heatmap illustrating the correlation of 10 classes on
the CIFAR-10 dataset based on the capsule activation frequencies.

capsules by matching with the transmitters. As shown in
Fig. 3, the transmitters are twinkled around the receptors,
verifying that the receptors act as representation centroids.
Also, the distributions of the receptors and transmitters are
highly overlapped, suggesting that the receptors work col-
lectively, seeking varied semantics for the parent capsules.

(2) Is the receptor skeleton helpful?
In Fig. 4 (a), the t-SNE embedding shows that the represen-
tations are clustered hierarchically by our approach. With
10 digits (on the MNIST dataset), the representations in
adjacent layers are coarsely partitioned into 10 clusters, and
the parent capsules’ representations “generalize” the major
patterns of the child capsules’ representations. This is be-
cause the model objective (classification) transmits to each
capsule via the receptor skeleton. Without such a skeleton,
an attention routing does not obtain a similar embedding
(see Fig. 4(b)). Thus, the receptor skeleton can make a
CapsNet work as an agglomerative clustering process.
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Figure 6. Bar graphs for illustrating computing complexities. One
can see that our approach saves 5.5× — 1600× inference time
and uses only 22% — 83% GPU memory.

(3) How does our approach affect capsules?
To further explore how our approach guides the capsules
to learn semantics, we compute the capsules’ activation
frequencies (in the penultimate layer) for each class on
the CIFAR-10 dataset, and then compute the correlations
among object classes based on the capsule activation fre-
quencies. As shown in Fig. 5, the semantics are captured by
the capsules with our approach; further, the more semanti-
cally similar objects (e.g., cars and trunks) activate the same
capsules more largely, while semantically irrelevant objects
hardly activate the same capsules.

6.4. Computing complexity

To fairly evaluate the computing complexity of the rout-
ing approaches, we compare the inference time (frames per
second (fps)) and the GPU memory usage (M) instead of
the parameter count on GeForce RTX 3090 Ti GPUs, as
some routing algorithms are “parameterless” but compute
many intermediate variables during iterations. We focus
on the computing costs of the procedure for processing the
representation ûj|i to obtain uj (which is what the routing
algorithms and our approach are for). The results are shown
in Fig. 6. Clearly, our approach takes less GPU memory
and much shorter inference time in dealing with input and
output tensors (in computing GPU memory, batch size =
64, capsule number = 40, capsule size = 16, width = 8, and
height = 8; in computing fps, batch size = 1). Comparing
with the routing algorithms, our approach outperforms them
by 5.5× (comparing with 3D routing) to 1600× (com-
paring with EM routing) on inference time, with only
22% (comparing with EM routing) to 83% (comparing
with 3D routing) GPU memory. The reason for our re-
duction on computing complexity is that we avoid using
iterative processes, and thus accelerate the procedure and
avoid storing many intermediate variables.

6.5. Reconstruction and dimension perturbation

To inspect the semantics of the individual dimensions repre-
sented by the class capsules, we employ the decoder network



A Receptor Skeleton for Capsule Neural Networks

Ring size

Tail length

Width

Rotation

Stroke thickness

Figure 7. Illustrating dimension perturbations. Each row presents
our reconstruction results when one of the class capsule dimensions
is tweaked (by intervals of 0.04 in the range [-0.2, 0.2]). The first
digit in each row is the original digit.

in (Sabour et al., 2017) and tweak the values in the class
capsule dimensions by intervals of 0.04 in the range from
-0.2 to 0.2. Some reconstruction results with dimension
perturbations are illustrated in Fig. 7, which shows that our
approach preserves the reconstruction information of dig-
its, and every dimension in the class capsules represents
steady and explainable semantics, including the stroke thick-
ness, width, tail length, rotation, ring size, as summarized
in Fig. 7. It is also evident that our approach performs well
in reconstruction.

6.6. Impacts of various combinations of K and M

We evaluate the classification performance of our approach
with the simple backbone on the CIFAR-10 dataset, with
various combinations of K = 2, 4, 6, 8, 10 for the K-NN
grouping (see Sec. 3.2) and the receptor number per capsule
M = 1, 2, 3, 6. Since the receptor number M is under the
constraint of Eq. (7), we build a CapsNet with M = 6 as
baseline, and obtain another CapsNet version with M = 3
by combining every two receptors inside each capsule into
one, by computing the average in the combination. Similarly,
we obtain CapsNets withM = 1, 2. ForM = 1, we discard
some connections randomly to make the connections in
different capsules vary.

As shown in Table 4, as the K value increases, the clas-
sification performance of our approach on the CIFAR-10
dataset first increases and then decreases. For example, with
M = 2, the best classification performance is attained at
K = 6. This may be because clusters of medium sizes
work better in representation clustering. For the receptor
number M per capsule, M = 2 yields better performance
than M = 1, with various K values. When M > 2 increas-
ing, the classification performances fluctuate slightly. The
reason for this may be that a capsule does not combine many
semantics well (e.g., 6 types of semantics when M = 6) in
one step (in a capsule layer), and a better solution may be to
combine few representations (e.g., with M = 2) in a step
and capture the complex compound semantics progressively.
In our experiments, we use M = 2 and K = 6 to keep a
balance between the performance and the model size.

Table 4. Classification performances of our approach with the sim-
ple backbone on the CIFAR-10 dataset with various combinations
of K = 2, 4, 6, 8, 10 for the K-NN grouping and the receptor num-
ber per capsule M = 1, 2, 3, 6. Bold entries denote the best perfor-
mances of the columns (the best M with a certain K); underlined
entries denote the best performances of the rows (the best K with
a certain M ).

M K

2 4 6 8 10

1 85.6% 86.1% 86.8% 86.5% 85.1%
2 86.6% 87.0% 87.4% 86.8% 85.2%
3 86.9% 87.2% 87.5% 86.9% 85.2%
6 86.8% 87.5% 87.2% 86.3% 85.3%

7. Conclusions
In this paper, we proposed a new approach to replace rout-
ing algorithms in CapsNets. We introduced a new capsule
structure with a set of receptors and devised a transmitter on
a representation loaded in each capsule. By matching the re-
ceptors and transmitters, the child capsules’ representations
are clustered without iterative processes. To hierarchically
cluster the representations, we designed a receptor skeleton
to organize the receptors. Under three conditions in view
of uniformity and uniqueness, we developed an intuitive
solution by adopting the idea of Latin square design. Ex-
periments on multiple datasets provided strong evidences
for the superiority of our new approach for image classifi-
cation, overlapped object recognition, affine transformation
robustness, and representation clustering, with lower model
complexity.
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