
Accelerating Gossip SGD with Periodic Global Averaging

A. Preliminary

Notation. We first introduce necessary notations as follows.

• x(k) = [(x
(k)
1 )T ; (x

(k)
2 )T ; · · · ; (x

(k)
n )T ] ∈ Rn×d

• ∇F (x(k); ξ(k+1)) = [∇F1(x
(k)
1 ; ξ

(k+1)
1 )T ; · · · ;∇Fn(x

(k)
n ; ξ(k+1)

n )T ] ∈ Rn×d

• ∇f(x(k)) = [∇f1(x
(k)
1 )T ;∇f2(x

(k)
2 )T ; · · · ;∇fn(x

(k)
n )T ] ∈ Rn×d

• x̄(k) = [(x̄(k))T ; (x̄(k))T ; · · · ; (x̄(k))T ] ∈ Rn×d where x̄(k) = 1
n

∑n
i=1 x

(k)
i

• x? = [(x?)T ; (x?)T ; · · · ; (x?)T ] ∈ Rn×d where x? is the global solution to problem (1).

• W = [wij ] ∈ Rn×n.

• 1n = col{1, 1, · · · , 1} ∈ Rn.

• Given two matrices x,y ∈ Rn×d, we define inner product 〈x,y〉 = tr(xTy) and the Frobenius norm ‖x‖2F = 〈x,x〉.

• Given W ∈ Rn×n, we let ‖W‖2 = σmax(W ) where σmax(·) denote the maximum sigular value.

Gossip-PGA in matrix notation. For ease of analysis, we rewrite the main recursion of Gossip-PGA in matrix notation:

x(k+1) =

{
W (x(k) − γ∇F (x(k); ξ(k+1))) If mod(k + 1, H) 6= 0
1
n1n1

T
n (x(k) − γ∇F (x(k); ξ(k+1))) otherwise

(10)

Gradient noise. We repeat the definition of filtration in Assumption 2 here for convenience.

F (k)=
{
{x(k)
i }

n
i=1, {ξ

(k)
i }

n
i=1, · · · , {x

(0)
i }

n
i=1, {ξ

(0)
i }

n
i=1

}
(11)

• With Assumption 2, we can evaluate the magnitude of the averaged gradient noise:

E[‖ 1

n

n∑
i=1

∇Fi(x(k−1)
i ; ξ

(k)
i )− 1

n

n∑
i=1

∇fi(x(k−1)
i )‖2|F (k−1)]

(a)
=

1

n2

n∑
i=1

E[‖∇Fi(x(k−1)
i ; ξ

(k)
i )−∇fi(x(k−1)

i )‖2|F (k−1)]
(5)
≤ σ2

n
(12)

where (a) holds because ξ(k)
i is independent for any i and E[∇Fi(x(k−1)

i ; ξ
(k)
i )−∇fi(x(k−1)

i )|F (k−1)] = 0.

• We define gradient noise as s(k)
i = ∇Fi(x(k−1)

i ; ξ
(k)
i )−∇fi(x(k−1)

i ). For any 0 ≤ j ≤ k < `, it holds that

E[
(
s

(k)
i

)T
s

(`)
i |F

(j)]
(a)
= EF(`−1)/F(j)

[
E[
(
s

(k)
i

)T
s

(`)
i |F

(`−1)]
]

= EF(`−1)/F(j)

[(
s

(k)
i

)TE[s
(`)
i |F

(`−1)]
] (4)

= 0 (13)

where F (`−1)/F (j) :=
{
{x(j+1)
i }ni=1, {ξ

(j+1)
i }ni=1, · · · , {x

(`−1)
i }ni=1, {ξ

(`−1)
i }ni=1

}
and (a) holds due to the law of total

expectation.

• For any 0 ≤ k < `, it holds that

E[‖s(`)
i ‖

2|F (k)] = EF(`−1)/F(k)

[
E[‖s(`)

i ‖
2|F`−1]

] (5)
≤ EF(`−1)/F(k)

[
σ2
]

= σ2 (14)
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Smoothness. Since each fi(x) is assumed to be L-smooth in Assumption 1, it holds that f(x) = 1
n

∑n
i=1 fi(x) is also

L-smooth. As a result, the following inequality holds for any x,y ∈ Rd:

fi(x)− fi(y)− L

2
‖x− y‖2 ≤ 〈∇fi(y),x− y〉 (15)

Smoothness and convexity. If each fi(x) is further assumed to be convex (see Assumption 4), it holds that f(x) =
1
n

∑n
i=1 fi(x) is also convex. For this scenario, it holds for any x,y ∈ Rd that:

‖∇f(x)−∇f(x?)‖2 ≤ 2L
(
f(x)− f(x?)

)
(16)

fi(x)− fi(y) ≤ 〈∇fi(x),x− y〉 (17)

Network weighting matrix. Suppose a weighting matrix W ∈ Rn×n satisfies Assumption 3, it holds that

‖W − 1

n
11T ‖2 ≤ β, ‖(W − 1

n
11T )k‖2 ≤ βk, ∀ k. (18)

Submultiplicativity of the Frobenius norm. Given matrices W ∈ Rn×n and y ∈ Rn×d, it holds that

‖Wy‖F ≤ ‖W‖2‖y‖F . (19)

To verify it, by letting yj be the j-th column of y, we have ‖Wy‖2F =
∑d
j=1 ‖Wyj‖22 ≤

∑d
j=1 ‖W‖22‖yj‖22 = ‖W‖22‖y‖2F .

B. Convergence analysis for convex scenario

B.1. Proof Outline for Theorem 1

The following lemma established in (Koloskova et al., 2020, Lemma 8) shows how E‖x̄(k) − x?‖2 evolves with iterations.
Lemma 1 (DESCENT LEMMA (Koloskova et al., 2020)). When Assumptions 1–4 hold and step-size γ < 1

4L , it holds for
k = 1, 2, · · · that

E‖x̄(k) − x?‖2 ≤ E‖x̄(k−1) − x?‖2 − γ
(
Ef(x̄(k−1))− f(x?)

)
+

3Lγ

2n
E‖x(k−1) − x̄(k−1)‖2F +

γ2σ2

n
, (20)

where x̄(k) = [(x̄(k))T ; · · · ; (x̄(k))T ] ∈ Rn×d.
Remark 7. It is worth noting that Lemma 1 also holds for the standard Gossip SGD algorithm. The periodic global
averaging step does not affect this descent lemma.

Next we establish the consensus lemmas in which Gossip-PGA is fundamentally different from Gossip SGD. Note that
Gossip-PGA takes global average every H iterations. For any k = 0, 1, · · · , we define

τ(k) = max{` : ` ≤ k and mod(`,H) = 0} (21)

as the most recent iteration when global average is conducted. In Gossip-PGA, it holds that x̄τ(k) = x
τ(k)
i for any i ∈ [n].

This is different from Gossip SGD in which x̄(k) = x
(k)
i can only happen when k = 0.

For Gossip-PGA, the real challenge is to investigate how the periodic global averaging helps reduce consensus error and
hence accelerate the convergence rate. In fact, there are two forces in Gossip-PGA that drive local model parameters to reach
consensus: the gossip communication and the periodic global averaging. Each of these two forces is possible to dominate
the consensus controlling in different scenarios:

Scenario I. Global averaging is more critical to guarantee consensus on large or sparse network, or when global averaging
is conducted frequently.

Scenario II. Gossip communication is more critical to guarantee consensus on small or dense network, or when global
averaging is conducted infrequently.

Ignoring either of the above scenario will lead to incomplete or even incorrect conclusions, as shown in Remark 5. In
the following, we will establish a specific consensus lemma for each scenario and then unify them into one that precisely
characterize how the consensus distance evolves with iterations in Gossip-PGA.
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Lemma 2 (CONSENSUS LEMMA: GLOBAL AVERAGING DOMINATING). Under Assumptions 1–4, it holds for k =
τ(k), τ(k) + 1, · · · , τ(k) +H − 1 that

E‖x(k+1) − x̄(k+1)‖2F ≤ 6Hγ2β2L2
k∑

`=τ(k)

βk−`E‖x(`)−x̄(`)‖2F

+ 12nHγ2β2L

k∑
`=τ(k)

βk−`E(f(x̄(`))− f(x?))+2nγ2β2Cβ(3b2+σ2) (22)

where b2 = 1
n

∑n
i=1 ‖∇fi(x?)‖2 implies data heterogeneity and Cβ =

∑H−1
k=0 βk = (1− βH)/(1− β).

Lemma 3 (CONSENSUS LEMMA: GOSSIP DOMINATING). Under Assumptions 1–4, it holds for k = τ(k), τ(k) +
1, · · · , τ(k) +H − 1 that

E‖x(k+1) − x̄(k+1)‖2F ≤
6γ2β2L2

1− β

k∑
`=τ(k)

βk−`E‖x(`)−x̄(`)‖2F

+
12nγ2β2L

1− β

k∑
`=τ(k)

βk−`E(f(x̄(`))− f(x?))+2nγ2β2Cβ(
3b2

1− β
+σ2) (23)

Observing Lemmas 2 and 3, it is found that bounds (22) and (23) are in the same shape except for some critical coefficients.
With the following relation: {

y ≤ a1x+ b

y ≤ a2x+ b
=⇒ y ≤ min{a1, a2}x+ b, (24)

we can unify Lemmas 2 and 3 into:
Lemma 4 (UNIFIED CONSENSUS LEMMA). Under Assumptions 1–4, it holds for k = τ(k), τ(k) + 1, · · · , τ(k) +H − 1
that

E‖x(k+1) − x̄(k+1)‖2F ≤ 6Dβγ
2β2L2

k∑
`=τ(k)

βk−`E‖x(`)−x̄(`)‖2F

+ 12nDβγ
2β2L

k∑
`=τ(k)

βk−`E(f(x̄(`))− f(x?))+2nγ2β2Cβ(3Dβb
2+σ2) (25)

where b2 = 1
n

∑n
i=1 ‖∇fi(x?)‖2 implies data heterogeneity, Cβ =

∑H−1
k=0 βk = (1 − βH)/(1 − β), and Dβ =

min{ 1
1−β , H}.

Remark 8. This lemma reflects how the network topology and the global averaging period contribute to the consensus
controlling. For scenario I where the network is large or sparse such that 1/(1 − β) > H , Lemma 4 indicates that the
consensus error is mainly controlled by the global averaging period (i.e., Dβ = H). On the other hand, for scenario II
where the network is small or dense such that 1/(1 − β) < H , Lemma 4 indicates that the consensus error is mainly
controlled by gossip communication (i.e., Dβ = 1/(1− β)).

Using Lemma 4, we derive the upper bound of the weighted running average of E‖xk − x̄k‖2F :
Lemma 5 (RUNNING CONSENSUS LEMMA). Suppose Assumptions 1–4 hold and step-size γ < 1/(4LβDβ), it holds for
T > 0 that

1

T + 1

T∑
k=0

E‖x(k) − x̄(k)‖2F ≤
2c2Dβ

T + 1

T∑
k=0

(
Ef(x̄(k))− f(x?)

)
+ 2c3 (26)

where c2 and c3 are constants defined as

c2 = 12nβ2Dβγ
2L, (27)

c3 = 2nβ2γ2Cβ(3Dβb
2 + σ2) (28)
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With Lemmas 1 and 5, we can establish the final convergence Theorem 1, see the proof in Sec. B.5.

B.2. Proof of Lemma 1.

This lemma was first established in (Koloskova et al., 2020, Lemma 8). We made slight improvement to tight constants
appeared in step-size ranges and upper bound (20). For readers’ convenience, we repeat arguments here.

Recall the algorithm in (10). By taking the average on both sides, we reach that

x̄(k) − x? = x̄(k−1) − x? − γ

n

n∑
i=1

∇Fi(x(k−1)
i ; ξ

(k)
i ), ∀k = 1, 2, · · · (29)

By taking expectation over the square of both sides of the above recursion conditioned on F (k−1), we have

E[‖x̄(k) − x?‖2|F (k−1)]

(4)
= ‖x̄(k−1) − x? − γ

n

n∑
i=1

∇fi(x(k−1)
i )‖2 + γ2E[‖ 1

n

n∑
i=1

∇Fi(x(k−1)
i ; ξ

(k)
i )− 1

n

n∑
i=1

∇fi(x(k−1)
i )‖2|F (k−1)]

(12)
≤ ‖x̄(k−1) − x? − γ

n

n∑
i=1

∇fi(x(k−1)
i )‖2 +

γ2σ2

n
(30)

Note that the first term can be expanded as follows.

‖x̄(k−1) − x? − γ

n

n∑
i=1

∇fi(x(k−1)
i )‖2

= ‖x̄(k−1) − x? − γ

n

n∑
i=1

[∇fi(x(k−1)
i )−∇fi(x?)]‖2

= ‖x̄(k−1) − x?‖2 − 2γ

n

n∑
i=1

〈x̄(k−1) − x?,∇fi(x(k−1)
i )−∇fi(x?)〉︸ ︷︷ ︸

(A)

+ γ2‖ 1

n

n∑
i=1

[∇fi(x(k−1)
i )−∇fi(x?)] ‖2︸ ︷︷ ︸
(B)

(31)

We now bound the term (A):

2γ

n

n∑
i=1

〈x̄(k−1) − x?,∇fi(x(k−1)
i )−∇fi(x?)〉

=
2γ

n

n∑
i=1

〈x̄(k−1) − x?,∇fi(x(k−1)
i )〉

=
2γ

n

n∑
i=1

〈x̄(k−1) − x(k−1)
i ,∇fi(x(k−1)

i )〉+
2γ

n

n∑
i=1

〈x(k−1)
i − x?,∇fi(x(k−1)

i )〉

(a)

≥ 2γ

n

n∑
i=1

(
fi(x̄

(k−1))− fi(x(k−1)
i )− L

2
‖x̄(k−1) − x(k−1)

i ‖2
)

+
2γ

n

n∑
i=1

(
fi(x

(k−1)
i )− fi(x?)

)
=

2γ

n

n∑
i=1

(
fi(x̄

(k−1))− fi(x?)
)
− γL

n
‖x̄(k−1) − x(k−1)‖2F

= 2γ
(
f(x̄(k−1))− f(x?)

)
− γL

n
‖x̄(k−1) − x(k−1)‖2F (32)

where (a) holds because of the inequality (15) and (17). We next bound term (B) in (31):

γ2‖ 1

n

n∑
i=1

[∇fi(x(k−1)
i )−∇fi(x?)] ‖2
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= γ2‖ 1

n

n∑
i=1

[∇fi(x(k−1)
i )−∇fi(x̄(k−1)) +∇fi(x̄(k−1))−∇fi(x?)] ‖2

(3)
≤ 2γ2L2

n
‖x(k−1) − x̄(k−1)‖2F + 2γ2‖∇f(x̄(k−1))−∇f(x?)‖2

(16)
≤ 2γ2L2

n
‖x(k−1) − x̄(k−1)‖2F + 4Lγ2

(
f(x̄(k−1))− f(x?)

)
. (33)

Substituting (33) and (32) into (31), we have

‖x̄(k−1) − x? − γ

n

n∑
i=1

∇fi(x(k−1)
i )‖2

≤ ‖x̄(k−1) − x?‖2 − 2γ(1− 2Lγ)
(
f(x̄(k−1))− f(x?)

)
+
(γL
n

+
2γ2L2

n

)
‖x̄(k−1) − x(k−1)‖2F

≤ ‖x̄(k−1) − x?‖2 − γ
(
f(x̄(k−1))− f(x?)

)
+

3γL

2n
‖x̄(k−1) − x(k−1)‖2F (34)

where the last inequality holds when γ < 1
4L . Substituting the above inequality into (30) and taking expectation over the

filtration, we reach the result in (20).

B.3. Proofs of Lemma 2 and 3.

Note the gossip averaging is conducted when k = τ(k), τ(k) + 1, · · · , τ(k) +H − 1, i.e.,

x(k+1) = W (x(k) − γ∇F (x(k); ξ(k+1))). (35)

Since x̄(k+1) = 1
n11

Tx(k+1), it holds that

x̄(k+1) =
1

n
11T (x(k) − γ∇F (x(k); ξ(k+1))). (36)

With the above two recursions, we have

x(k+1) − x̄(k+1) = (W − 1

n
11T )(x(k) − γ∇F (x(k); ξ(k+1))) (37)

In the following we will derive two upper bounds for E‖x(k+1) − x̄(k+1)‖2.

Bound in Lemma 2. With (37), we have

x(k+1) − x̄(k+1) = (W − 1

n
11T )(x(k) − γ∇F (x(k); ξ(k+1)))

= (W − 1

n
11T )(x(k) − x̄(k) − γ∇F (x(k); ξ(k+1)))

= (W − 1

n
11T )k+1−τ(k)(x(τ(k)) − x̄(τ(k)))− γ

k∑
`=τ(k)

(W − 1

n
11T )k+1−`∇F (x(`); ξ(`+1))

= −γ
k∑

`=τ(k)

(W − 1

n
11T )k+1−`∇F (x(`); ξ(`+1)) (38)

where the last equality holds because x(τ(k)) = x̄(τ(k)) after the global averaging at iteration τ(k). With the above inequality,
we have

E[‖x(k+1) − x̄(k+1)‖2F |F (τ(k))]

= γ2E[‖
k∑

`=τ(k)

(W − 1

n
11T )k+1−`∇F (x(`); ξ(`+1))‖2F |F (τ(k))]
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≤ 2γ2E[‖
k∑

`=τ(k)

(W − 1

n
11T )k+1−`∇f(x(`))‖2F |F (τ(k))]

+2γ2E
[
‖

k∑
`=τ(k)

(W− 1

n
11T )k+1−`[∇F (x(`); ξ(`+1))−∇f(x`)]‖2F |F (τ(k))

]
(13)
= 2γ2E[‖

k∑
`=τ(k)

(W − 1

n
11T )k+1−`∇f(x(`))‖2F |F (τ(k))]

+2γ2
k∑

`=τ(k)

E
[
‖(W− 1

n
11T )k+1−`[∇F (x(`); ξ(`+1))−∇f(x`)]‖2F |F (τ(k))

]
(a)

≤ 2γ2(k + 1− τ(k))

k∑
`=τ(k)

β2(k+1−`)E[‖∇f(x(`))‖2F |F (τ(k))] + 2nγ2σ2
k∑

`=τ(k)

β2(k+1−`)

≤ 2γ2H

k∑
`=τ(k)

β2(k+1−`)E[‖∇f(x(`))‖2F |F (τ(k))] + 2nγ2β2σ2Cβ (39)

where inequality (a) holds because of (14), (18) and (19), and the last inequality holds because
∑k
`=τ(k) β

2(k+1−`) ≤∑H
`=1 β

2` = β2(1−β2H)/(1−β2) ≤ β2(1−βH)/(1−β) = β2Cβ where we defineCβ =
∑H−1
`=0 β` = (1−βH)/(1−β).

Note that

‖∇f(x(`))‖2F = ‖∇f(x(`))−∇f(x̄(`)) +∇f(x̄(`))−∇f(x?) +∇f(x?)‖2F
≤ 3‖∇f(x(`))−∇f(x̄(`))‖2F + 3‖∇f(x̄(`))−∇f(x?)‖2F + 3‖∇f(x?)‖2F
≤ 3L2‖x(`) − x̄(`)‖2F + 6nL(f(x̄(`))− f(x?)) + 3nb2 (40)

where the last inequality holds because of (3) and (16). Notation b2 is defined as b2 = 1
n

∑n
i=1 ‖∇fi(x?)‖2. Substituting

(40) into (39), it holds for k = τ(k), τ(k) + 1, · · · , τ(k) +H − 1 that

E[‖x(k+1) − x̄(k+1)‖2F |F (τ(k))]

≤ 6Hγ2L2
k∑

`=τ(k)

β2(k+1−`)E[‖x(`) − x̄(`)‖2F |F (τ(k))]

+ 12nHγ2L

k∑
`=τ(k)

β2(k+1−`)E[f(x̄(`))− f(x?)|F (τ(k))]+2nγ2β2Cβ(3Hb2 + σ2) (41)

By taking expectations over the filtration F (τ(k)), we have

E‖x(k+1) − x̄(k+1)‖2F

≤ 6Hβ2γ2L2
k∑

`=τ(k)

β2(k−`)E‖x(`) − x̄(`)‖2F + 12nHβ2γ2L

k∑
`=τ(k)

β2(k−`)E(f(x̄(`))− f(x?))

+ 2nγ2β2Cβ(3Hb2 + σ2)

≤ 6Hβ2γ2L2
k∑

`=τ(k)

βk−` E‖x(`) − x̄(`)‖2F + 12nHβ2γ2L

k∑
`=τ(k)

βk−` E(f(x̄(`))− f(x?))

+ 2nγ2β2Cβ(3Hb2 + σ2) (42)

Bound in Lemma 3. With (37), it holds for k = τ(k), τ(k) + 1, · · · , τ(k) +H − 1 that

E[‖x(k+1) − x̄(k+1)‖2F |F (k)]
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= E[‖(W − 1

n
11T )

(
x(k) − x̄(k) − γ∇F (x(k); ξ(k+1))

)
‖2F |F (k)]

(4)
= ‖(W − 1

n
11T )

(
x(k) − x̄(k) − γ∇f(x(k))

)
‖2F + γ2E[‖(W − 1

n
11T )

(
∇F (x(k); ξ(k+1))−∇f(x(k))

)
‖2F |F (k)]

≤ ‖(W − 1

n
11T )

(
x(k) − x̄(k) − γ∇f(x(k))

)
‖2F + nγ2β2σ2 (43)

where the last inequality holds because of (5) and (18). We now bound the first term:

‖(W − 1

n
11T )

(
x(k) − x̄(k) − γ∇f(x(k))

)
‖2F

(a)

≤ 1

t
‖(W − 1

n
11T )

(
x(k) − x̄(k)

)
‖2F +

γ2

1− t
‖(W − 1

n
11T )∇f(x(k))‖2F

(b)
= β‖x(k) − x̄(k)‖2F +

β2γ2

1− β
‖∇f(x(k))‖2F

= β‖x(k) − x̄(k)‖2F +
β2γ2

1− β
‖∇f(x(k))−∇f(x̄(k)) +∇f(x̄(k))−∇f(x?) +∇f(x?)‖2F

(c)

≤ β‖x(k) − x̄(k)‖2F +
3β2γ2L2

1− β
‖x(k) − x̄(k)‖2F +

6nβ2γ2L

1− β
(
f(x̄(k))− f(x?)

)
+

3nβ2γ2b2

1− β
(44)

where (a) holds because of the Jensen’s inequality for any t ∈ (0, 1), (b) holds by setting t = β, and (c) holds because of (3)
and (16). Quantity b2 = 1

n

∑n
i=1 ‖∇fi(x?)‖2 in the last inequality. Substituting (44) into (43), we have

E[‖x(k+1) − x̄(k+1)‖2F |F (k)]

≤ β‖x(k) − x̄(k)‖2F +
3β2γ2L2

1− β
‖x(k) − x̄(k)‖2F +

6nβ2γ2L

1− β
(
f(x̄(k))− f(x?)

)
+ nγ2β2σ2 +

3nβ2γ2b2

1− β

= βk+1−τ(k)‖x(τ(k)) − x̄(τ(k))‖2F +
3β2γ2L2

1− β

k∑
`=τ(k)

βk−` ‖x(`) − x̄(`)‖2F +
6nβ2γ2L

1− β

k∑
`=τ(k)

βk−` (f(x̄(`))− f(x?))

+ nγ2β2Cβ(
3b2

1− β
+ σ2)

=
3β2γ2L2

1− β

k∑
`=τ(k)

βk−` ‖x(`) − x̄(`)‖2F +
6nβ2γ2L

1− β

k∑
`=τ(k)

βk−` (f(x̄(`))− f(x?)) + nγ2β2Cβ(
3b2

1− β
+ σ2) (45)

By taking expectation over the filtration F (k), we have

E‖x(k+1) − x̄(k+1)‖2F

≤ 3β2γ2L2

1− β

k∑
`=τ(k)

βk−` E‖x(`) − x̄(`)‖2F +
6nβ2γ2L

1− β

k∑
`=τ(k)

βk−` E(f(x̄(`))− f(x?)) + nγ2β2Cβ(
3b2

1− β
+ σ2)

<
6β2γ2L2

1− β

k∑
`=τ(k)

βk−` E‖x(`) − x̄(`)‖2F +
12nβ2γ2L

1− β

k∑
`=τ(k)

βk−` E(f(x̄(`))− f(x?)) + 2nγ2β2Cβ(
3b2

1− β
+ σ2)

(46)

B.4. Proof of Lemma 5.

To simplify the notation, we define

A(k) = E‖x(k) − x̄(k)‖2F , B(k) = Ef(x̄(k))− f(x?),

c1 = 6Dββ
2γ2L2, c2 = 12nDββ

2γ2L, c3 = 2nβ2γ2Cβ(3Dβb
2 + σ2). (47)
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Using these notations, we rewrite (22) for any k = 0, 1, 2, · · · that{
A(k) ≤ c1

∑k−1
`=τ(k) β

k−1−`A(`) + c2
∑k−1
`=τ(k) β

k−1−`B(`) + c3 if k > τ(k)

A(k) = 0 if k = τ(k)
(48)

We next define

ΓT := {k|0 ≤ k ≤ T and mod(k,H) = 0}, ΓcT := {k|0 ≤ k ≤ T and mod(k,H) 6= 0}. (49)

By taking the running average over both sides in (48) and recalling A(τ(k)) = 0, it holds that

T∑
k=0

A(k) ≤ c1
∑
k∈ΓcT

k−1∑
`=τ(k)

βk−1−`A(`) + c2
∑
k∈ΓcT

k−1∑
`=τ(k)

βk−1−`B(`) + c3(T + 1) (50)

We further define

ΘT := {`|0 ≤ ` ≤ T − 1 and mod(`+ 1, H) = 0}, Θc
T := {`|0 ≤ ` ≤ T − 1 and mod(`+ 1, H) 6= 0}. (51)

With these notations, we have

T∑
k=0

A(k) ≤ c1
∑
k∈ΓcT

k−1∑
`=τ(k)

βk−1−`A(`) + c2
∑
k∈ΓcT

k−1∑
`=τ(k)

βk−1−`B(`) + c3(T + 1)

= c1
∑
`∈ΘcT

A(`)
( τ(`)+H−1∑

k=`+1

βk−1−`)+ c2
∑
`∈ΘcT

B(`)
( τ(`)+H−1∑

k=`+1

βk−1−`)+ c3(T + 1)

(a)

≤ c1Cβ
∑
`∈ΘcT

A(`) + c2Cβ
∑
`∈ΘcT

B(`) + c3(T + 1)

(b)

≤ c1Cβ

T∑
k=0

A(k) + c2Cβ

T∑
k=0

B(k) + c3(T + 1)

(c)

≤ c1Dβ

T∑
k=0

A(k) + c2Dβ

T∑
k=0

B(k) + c3(T + 1) (52)

where (a) holds because
∑τ(`)+H−1
k=`+1 βk−1−` ≤

∑H−1
k=0 βk = Cβ , (b) holds because A(k) ≥ 0 and B(k) ≥ 0, and (c) holds

because Cβ = (1− βH)/(1− β) ≤ min{ 1
1−β , H} = Dβ . If step-size γ is sufficiently small such that 1− c1Dβ ≥ 1

2 , it
holds that

T∑
k=0

A(k) ≤ 2c2Dβ

T∑
k=0

B(k) + 2c3(T + 1). (53)

To guarantee 1− c1Dβ ≥ 1
2 , it is enough to let γ ≤ 1/(4LβDβ).

B.5. Proof of Theorem 1

Following the notation in (47), we further define F (k) := E‖x̄(k)−x?‖2F . With these notations, the inequality (20) becomes

B(k) ≤ F (k)

γ
− F (k+1)

γ
+
γσ2

n
+

3L

2n
A(k) (54)

Taking weighted running average over the above inequality to get

1

T + 1

T∑
k=0

B(k) ≤ F (0)

(T + 1)γ
+

3L

2n(T + 1)

T∑
k=0

A(k) +
γσ2

n
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(53)
≤ F (0)

(T + 1)γ
+

6Lc2Dβ

n(T + 1)

T∑
k=0

B(k) +
3Lc3
n

+
γσ2

n

≤ F (0)

(T + 1)γ
+

1

2(T + 1)

T∑
k=0

B(k) +
3Lc3
n

+
γσ2

n
(55)

where the last inequality holds when γ ≤ 1/(12LβDβ). Substituting c3 into the above inequality, we have

1

T + 1

T∑
k=0

B(k) ≤ 2F (0)

(T + 1)γ
+

2γσ2

n
+ 12Lβ2γ2Cβσ

2 + 36Lβ2γ2CβDβb
2. (56)

The way to choose step-size γ is adapted from Lemma 15 in (Koloskova et al., 2020). For simplicity, we let

r0 = 2F (0), r1 =
2σ2

n
, r2 = 12Lβ2Cβσ

2 + 36Lβ2CβDβb
2, (57)

and inequality (56) becomes

1

T + 1

T∑
k=0

B(k) ≤ r0

(T + 1)γ
+ r1γ + r2γ

2. (58)

Now we let γ = min
{

1
12βLDβ

,
(

r0
r1(T+1)

) 1
2

,
(

r0
r2(T+1)

) 1
3 }

:

• If
(

r0
r2(T+1)

) 1
3

is the smallest, we let γ =
(

r0
r2(T+1)

) 1
3

. With
(

r0
r2(T+1)

) 1
3 ≤

(
r0

r1(T+1)

) 1
2

, (58) becomes

1

T + 1

T∑
k=0

B(k) ≤ 2r
1
3
2

( r0

T + 1

) 2
3

+ r1

( r0

r2(T + 1)

) 1
3 ≤ 2r

1
3
2

( r0

T + 1

) 2
3

+

(
r0r1

T + 1

) 1
2

. (59)

• If
(

r0
r1(T+1)

) 1
2

is the smallest, we let γ =
(

r0
r1(T+1)

) 1
2

. With
(

r0
r1(T+1)

) 1
2 ≤

(
r0

r2(T+1)

) 1
3

, (58) becomes

1

T + 1

T∑
k=0

B(k) ≤ 2
( r0r1

T + 1

) 1
2

+
r0r2

r1(T + 1)
≤ 2
( r0r1

T + 1

) 1
2

+ r
1
3
2

( r0

T + 1

) 2
3

. (60)

• If 1
12βLDβ

≤
(

r0
r1(T+1)

) 1
2

and 1
12βLDβ

≤
(

r0
r2(T+1)

) 1
3

, we let γ = 1
12βLDβ

and (58) becomes

1

T + 1

T∑
k=0

B(k) ≤ 12βLDβr0

T + 1
+
( r0r1

T + 1

) 1
2

+ r
1
3
2

( r0

T + 1

) 2
3

. (61)

Combining (59), (60) and (61), we have

1

T + 1

T∑
k=0

B(k) ≤ 12r0LDββ

T + 1
+ 2
( r0r1

T + 1

) 1
2

+ 2r
1
3
2

( r0

T + 1

) 2
3

. (62)

Substituting constants r0, r1, and r2, we have the final result:

1

T + 1

T∑
k=0

B(k) = O
( σ√

nT
+

(Cβ)
1
3 β

2
3σ

2
3

T
2
3

+
(Cβ)

1
3 (Dβ)

1
3 β

2
3 b

2
3

T
2
3

+
βDβ

T

)
. (63)
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C. Convergence analysis for non-convex scenario

C.1. Proof Outline for Theorem 2.

The proof outline for Theorem 2 is similar to that for Theorem 1. The descent lemma (Koloskova et al., 2020, Lemma 10)
was established follows.

Lemma 6 (DESCENT LEMMA (Koloskova et al., 2020)). Under Assumption 1–3 and step-size γ < 1
4L , it holds for

k = 1, 2, · · · that

Ef(x̄(k)) ≤ Ef(x̄(k−1))− γ

4
E‖∇f(x̄(k−1))‖2 +

γ2Lσ2

2n
+

3γL2

4n
E‖x(k) − x̄(k)‖2F . (64)

The consensus distance is examined in the following two lemmas. Similar to Lemma 4, we use Dβ = min{H, 1/(1− β)}.
Lemma 7 (UNIFIED CONSENSUS LEMMA). Under Assumptions 1–3 and 5, it holds for k = τ(k), τ(k) + 1, · · · , τ(k) +
H − 1 that

E‖x(k+1) − x̄(k+1)‖2F ≤6Dββ
2γ2L2

k∑
`=τ(k)

β2(k+1−`)E‖x(`) − x̄(`)‖2F

+ 6nDββ
2γ2

k∑
`=τ(k)

β2(k+1−`)E‖∇f(x̄(`))‖2 + 2nβ2γ2Cβ(3Hb̂2 + σ2) (65)

where Dβ = min{H, 1
1−β }.

Lemma 8 (RUNNING CONSENSUS LEMMA). When Assumptions 1–3 and 5 hold and step-size γ < 1
4LβDβ

, it holds for any
T > 0 that

1

T + 1

T∑
k=0

E‖x(k) − x̄(k)‖2F ≤
2c2Dβ

T + 1

T∑
k=0

E‖∇f(x̄(k))‖2 + 2c3 (66)

where c2 and c3 are constants defined as

c2 = 6nDββ
2γ2, (67)

c3 = 2nβ2γ2Cβ(3Dβ b̂
2 + σ2). (68)

With Lemmas 6 and 8, we can establish the convergence rate in Theorem 2.

C.2. Proof of Lemma 6.

This lemma was first established in (Koloskova et al., 2020, Lemma 10). We made slight improvement to tight constants
appeared in step-size ranges and upper bound (64). For readers’ convenience, we repeat arguments here. Recall that

x̄(k+1) = x̄(k) − γ

n

n∑
i=1

∇Fi(x(k)
i ; ξ

(k+1)
i ). (69)

Since f(x) is L-smooth, it holds that

E[f(x̄(k+1))|Fk]
(15)
≤ f(x̄(k))− E

[
〈∇f(x̄(k)),

γ

n

n∑
i=1

∇Fi(x(k)
i ; ξ

(k+1)
i )〉|Fk

]
+
γ2L

2
E[‖ 1

n

n∑
i=1

∇Fi(x(k)
i ; ξ

(k+1)
i )‖2|Fk]

(4)
= f(x̄(k))− 〈∇f(x̄(k)),

γ

n

n∑
i=1

∇fi(x(k)
i )〉+

γ2L

2
E[‖ 1

n

n∑
i=1

∇Fi(x(k)
i ; ξ

(k+1)
i )‖2|Fk]

(a)

≤ f(x̄(k))− 〈∇f(x̄(k)),
γ

n

n∑
i=1

∇fi(x(k)
i )〉+

γ2Lσ2

2n
+
γ2L

2
‖ 1

n

n∑
i=1

∇fi(x(k)
i )‖2 (70)
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where (a) holds because

E[‖ 1

n

n∑
i=1

∇Fi(x(k)
i ; ξ

(k+1)
i )−∇fi(x(k)

i ) +∇fi(x(k)
i )‖2|Fk]

(4)
= E[‖ 1

n

n∑
i=1

∇Fi(x(k)
i ; ξ

(k+1)
i )−∇fi(x(k)

i )‖2|Fk] + ‖ 1

n

n∑
i=1

∇fi(x(k)
i )‖2

(12)
≤ σ2

n
+ ‖ 1

n

n∑
i=1

∇fi(x(k)
i )‖2. (71)

Note that

−〈∇f(x̄(k)),
γ

n

n∑
i=1

∇fi(x(k)
i )〉 = −〈∇f(x̄(k)),

γ

n

n∑
i=1

[∇fi(x(k)
i )−∇fi(x̄(k)) +∇fi(x̄(k))]〉

≤ −γ‖∇f(x̄(k))‖2 +
γ

2
‖∇f(x̄(k))‖2 +

γ

2n

n∑
i=1

‖∇fi(x(k)
i )−∇fi(x̄(k))‖2

≤ −γ
2
‖∇f(x̄(k))‖2 +

γL2

2n
‖x(k) − x̄(k)‖2F (72)

and

‖ 1

n

n∑
i=1

∇fi(x(k)
i )‖2 ≤ 2L2

n
‖x(k) − x̄(k)‖2F + 2‖∇f(x̄(k))‖2 (73)

Substituting (72) and (73) into (70), taking expectations over F (k) and using the fact that γ < 1
4L , we reach the result in

(64).

C.3. Proof of Lemma 7.

Similar to the proof of Lemmas 2 and 3, we will derive two bounds for E‖x(k+1) − x̄(k+1)‖2F :

Bound 1. Following (35)-(39), it holds for k = τ(k), τ(k) + 1, · · · , τ(k) +H − 1 that

E[‖x(k+1) − x̄(k+1)‖2F |F (τ(k))] ≤ 2γ2H

k∑
`=τ(k)

β2(k+1−`)E[‖∇f(x(`))‖2F |F (τ(k))] + 2nγ2β2σ2Cβ (74)

Note that

‖∇f(x(k))‖2F =

n∑
i=1

‖∇fi(x(k)
i )‖2

=

n∑
i=1

‖∇fi(x(k)
i )−∇fi(x̄(k)) +∇fi(x̄(k))−∇f(x̄k) +∇f(x̄k)‖2

≤ 3L2‖x(k) − x̄(k)‖2F + 3nb̂2 + 3n‖∇f(x̄k)‖2. (75)

where the last inequality holds because of Assumption 5. Substituting (75) into (74) and taking expectation on F (τ(k)), we
get

E‖x(k+1) − x̄(k+1)‖2F

≤ 6Hβ2γ2L2
k∑

`=τ(k)

β2(k−`)E‖x(`) − x̄(`)‖2F+6nHβ2γ2
k∑

`=τ(k)

β2(k−`)‖∇f(x̄(`))‖2+2nγ2β2Cβ(3Hb̂2 + σ2)

≤ 6Hγ2L2β2
k∑

`=τ(k)

βk−` ‖x(`) − x̄(`)‖2F+6nHγ2β2
k∑

`=τ(k)

βk−`‖∇f(x̄(`))‖2+2nγ2β2Cβ(3Hb̂2 + σ2) (76)
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Bound 2. Following (43) and first two lines in (44), it holds for any k = τ(k), · · · , τ(k) +H − 1 that

E[‖x(k+1) − x̄(k+1)‖2F |F (k)] ≤ β‖x(k) − x̄(k)‖2F +
β2γ2

1− β
‖∇f(x(k))‖2F + nγ2β2σ2. (77)

Substituting (75) into (77), we get

E[‖x(k+1) − x̄(k+1)‖2F |F (k)] ≤
(
β +

3β2γ2L2

1− β
)
‖x(k) − x̄(k)‖2F +

3nβ2γ2‖∇f(x̄k)‖2

1− β
+ nγ2β2σ2 +

3nβ2γ2b̂2

1− β
.

(78)

We next follow (43)–(46) and take expectation on F (k) to get

E‖x(k+1) − x̄(k+1)‖2F

≤ 3β2γ2L2

1− β

k∑
`=τ(k)

βk−` E‖x(`) − x̄(`)‖2F +
3nβ2γ2

1− β

k∑
`=τ(k)

βk−` E‖∇f(x̄(`))‖2 + nγ2β2Cβ(
3b̂2

1− β
+ σ2)

≤ 6β2γ2L2

1− β

k∑
`=τ(k)

βk−` E‖x(`) − x̄(`)‖2F +
6nβ2γ2

1− β

k∑
`=τ(k)

βk−` E‖∇f(x̄(`))‖2 + 2nγ2β2Cβ(
3b̂2

1− β
+ σ2) (79)

With bounds (76) and (79), we reach the result (65).

C.4. Proof of Lemma 8.

We first simplify the notation as follows:

A(k) = E‖x(k) − x̄(k)‖2, B(k) = E‖∇f(x̄(k))‖2,

c1 = 6Dββ
2γ2L2, c2 = 6nDββ

2γ2, c3 = 2nβ2γ2Cβ(3Dβ b̂
2 + σ2). (80)

With these notations, we can follow the proof of Lemma 5 to get the final result.

C.5. Proof of Theorem 2.

Following the notation in (80), we further define F (k) := Ef(x̄(k)). With these notations, the inequality (64) becomes

B(k) ≤ 4F (k)

γ
− 4F (k+1)

γ
+

2γLσ2

n
+

3L2

n
A(k) (81)

Taking the weighted running average over the above inequality and divide T + 1 to get

1

T + 1

T∑
k=0

B(k) ≤ 4F (0)

(T + 1)γ
+

3L2

n(T + 1)

T∑
k=0

A(k) +
2γLσ2

n

(66)
≤ 4F (0)

(T + 1)γ
+

6β2L2Hc2
n(T + 1)

T∑
k=0

B(k) +
6L2c3
n

+
2γLσ2

n

≤ 4F (0)

(T + 1)γ
+

1

2(T + 1)

T∑
k=0

B(k) +
6L2c3
n

+
2γLσ2

n
(82)

where the last inequality holds when γ ≤ 1
9LHβ . Substituting c3 into the above inequality, we have

1

T + 1

T∑
k=0

B(k) ≤ 8F (0)

(T + 1)γ
+

4γLσ2

n
+ 24L2γ2β2Cβσ

2 + 72L2γ2β2CβDβ b̂
2. (83)

By following the arguments (57) – (63), we reach the result in (8).
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D. Transient stage and transient time
D.1. Transient stage derivation.

(i) Gossip SGD. We first consider the iid scenario where b2 = 0. To make the first term dominate the other terms (see the
first line in Table 4), T has to be sufficiently large such that (ignoring the affects of σ)

max
{ β

2
3

T
2
3 (1− β)

1
3

,
β

(1− β)T

}
≤ 1√

nT
=⇒ T ≥ max

{ n3β4

(1− β)2
,

nβ2

(1− β)2

}
. (84)

We next consider the non-iid scenario where b2 6= 0. To make the first term dominate the other terms, T has to be sufficiently
large such that (ignoring the affects of σ and b)

max
{ β

2
3

T
2
3 (1− β)

1
3

,
β

2
3

T
2
3 (1− β)

2
3

,
β

(1− β)T

}
≤ 1√

nT
=⇒ T ≥ max

{ n3β4

(1− β)2
,
n3β4

(1− β)4
,

nβ2

(1− β)2

}
. (85)

When nβ > 1 which usually holds for most commonly-used network topologies, inequalities (84) and (85) will result in the
transient stage T = Ω( n3β4

(1−β)2 ) and T = Ω( n3β4

(1−β)4 ) for iid and non-iid scenarios, respectively.

(ii) Gossip-PGA. We first consider the iid scenario where b2 = 0. To make the first term dominate the other terms (see the
first line in Table 4), T has to be sufficiently large such that (ignoring the affects of σ)

max
{C 1

3

β β
2
3

T
2
3

,
βDβ

T

}
≤ 1√

nT
=⇒ T ≥ max

{
n3β4C2

β , nβ
2D2

β

}
= Ω(n3β4C2

β). (86)

We next consider the non-iid scenario where b2 6= 0. To make the first term dominate the other terms, T has to be sufficiently
large such that (ignoring the affects of σ and b)

max
{C 1

3

β β
2
3

T
2
3

,
C

1
3

βD
1
3

β β
2
3

T
2
3

,
βDβ

T

}
≤ 1√

nT
=⇒ T ≥ max

{
n3β4C2

β , n
3β4C2

βD
2
β , nβ

2D2
β

}
= Ω(n3β4C2

βD
2
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(87)

when nβ > 1.

(iii) Local SGD. We first consider the iid scenario where b2 = 0. To make the first term dominate the other terms (see the
first line in Table 4), T has to be sufficiently large such that (ignoring the affects of σ)

max
{H 1

3

T
2
3

,
H

T

}
≤ 1√

nT
=⇒ T ≥ max

{
n3H2, nH2

}
= Ω(n3H2). (88)

We next consider the non-iid scenario where b2 6= 0. To make the first term dominate the other terms, T has to be sufficiently
large such that (ignoring the affects of σ and b)

max
{H 1

3

T
2
3

,
H

2
3

T
2
3

,
H

T

}
≤ 1√

nT
=⇒ T ≥ max

{
n3H2, n3H4, nH2

}
= Ω(n3H4) (89)

D.2. Transient time comparison

The transient time comparisons between Gossip SGD and Gossip-PGA for the iid or non-iid scenario over the grid or ring
topology are listed in Tables 12, 13 and 14.

E. Proof of Corollary 1
The proof of Corollary 1 closely follows Theorem 1. First, the descent lemma 7 still holds for time-varying period.

Second, with the facts that k + 1 − τ(k) ≤ Hmax,
∑k
`=τ(k) β

k+1−` ≤
∑Hmax

k=0 βk := Cβ , and
∑τ(`)+H(`)−1
k=`+1 βk−1−` ≤
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k=0 βk = Cβ , we follow Appendix C.3 and C.4 to reach the consensus distance inequality:

1

T + 1

T∑
k=0

E‖x(k) − x̄(k)‖2 ≤ 2c2Dβ

T + 1

T∑
k=0

E‖∇f(x̄(k))‖2 + 2c3 (90)

where c2 and c3 are constants defined as

c2 = 6nDββ
2γ2, (91)

c3 = 2nβ2γ2Cβ(3Dβ b̂
2 + σ2) (92)

and Dβ = min{1/(1− β), Hmax}, Cβ =
∑Hmax

k=0 βk. With Lemma 6 and inequality (90), we can follow Appendix B.5 to
reach the result in Corollary 1.

F. Additional Experiments

F.1. Implementation Details.

We implement all the aforementioned algorithms with PyTorch (Paszke et al., 2019) 1.5.1 using NCCL 2.5.7 (CUDA 10.1)
as the communication backend. Each server contains 8 V100 GPUs in our cluster and is treated as one node. The inter-node
network fabrics are chosen from 25 Gbps TCP (which is a common distributed training platform setting) and 4×100 Gbps
RoCE (which is a high-performance distributed training platform setting).

All deep learning experiments are trained in the mixed precision using Pytorch extension package NVIDIA apex
(https://github.com/NVIDIA/apex). For Gossip SGD related training, we use the time-varying one-peer exponential
graph following (Assran et al., 2019). Workers send and receive a copy of the model’s parameters to and from its peer, thus
keeping the load balancing among workers. All data are stored in the cloud storage service and downloaded to workers
using HTTP during training.

Image Classfication The Nesterov momentum SGD optimizer is used with a linear scaling learning rate strategy. 32 nodes
(each node is with 8 V100 GPUs) are used in all the experiments and the batch-size is set as 256 per node (8,192 in total).
The learning rate is warmed up in the first 5 epochs and is decayed by a factor of 10 at 30, 60 and 90 epochs. We train 120
epochs by default (unless specified otherwise) in every experiment and record the epoch and runtime when a 76% top-1
accuracy in the validation set has reached. 25 Gbps TCP network is used for inter-node communication in ResNet-50 training.
In 4×100 Gbps RoCE network, the communication overhead is negligible given the high computation-to-communication
ratio nature of ResNet models and Parallel SGD with computation and communication pipeline is recommended. We use a
period 6 for both Local SGD and Gossip-PGA. In Gossip-AGA, the averaging period is set to 4 in the warm-up stage and
changed adaptively afterwards, roughly 9% iterations conduct global averaging.

Language Modeling All experiments are based on NVIDIA BERT implementation with mixed precision support and
LAMB optimizer (You et al., 2019). 8 nodes are used in all the experiments with a batch-size 64 per GPU (4096 in total).
We do not use gradient accumulation as it is not vertical with Local SGD. We only do phase 1 training and indicate the
decreasing of training loss as convergence speed empirically. The learning rate is scaled to 3.75e−4 initially and decayed in
a polynomial policy with warm-up. The phase 1 training consists of 112,608 steps in all experiments. We use a period 6
for both Local SGD and Gossip-PGA. In Gossip-AGA, the averaging period is set to 4 in the warm-up phase and changed
adaptively afterwards, roughly 9.6% iterations conduct global averaging.

GOSSIP SGD GOSSIP-PGA

TRANSIENT ITER. O(n5) O(n4)
SINGLE COMM. O(θd+ α) O(θd+

√
nα)

TRANSIENT TIME O(n5θd+ n5α) O(n4θd+ n4.5α)

Table 12. Transient time comparison between Gossip SGD and Gossip-PGA for iid scenario over the specific grid (1− β = O(1/n))
topologiy. We choose H =

√
n as the period in Gossip-PGA.
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GOSSIP SGD GOSSIP-PGA

TRANSIENT ITER. O(n11) O(n5)
SINGLE COMM. O(θd+ α) O(θd+

√
nα)

TRANSIENT TIME O(n11θd+ n11α) O(n5θd+ n5.5α)

Table 13. Transient time comparison between Gossip SGD and Gossip-PGA for non-iid scenario over the specific ring (1−β = O(1/n2))
topologiy. We choose H =

√
n as the period in Gossip-PGA.

GOSSIP SGD GOSSIP-PGA

TRANSIENT ITER. O(n7) O(n4)
SINGLE COMM. O(θd+ α) O(θd+

√
nα)

TRANSIENT TIME O(n7θd+ n7α) O(n4θd+ n4.5α)

Table 14. Transient time comparison between Gossip SGD and Gossip-PGA for iid scenario over the specific ring (1− β = O(1/n2))
topologiy. We choose H =

√
n as the period in Gossip-PGA.

Transient stage (Gossip-PGA)
Transient stage (Gossip SGD) Transient stage (Gossip SGD)

Transient stage
(Gossip-PGA)

Transient stage (Gossip-PGA)
Transient stage (Gossip SGD)

Figure 4. Convergence comparison between Gossip-PGA, Gossip SGD and parallel SGD on the logistic regression problem in iid data
distributed setting over the ring topology.
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Figure 5. Convergence comparison between Gossip-PGA, Gossip SGD and parallel SGD on the logistic regression problem in non-iid
data distributed setting over the exponential graph (left), grid (middle) and ring (right) topology.

F.2. More experiments on convex logistic regression.

In this subsection we will test the performance of Gossip-PGA with iid data distribution and on different topologies. We
will also compare it with Local SGD.

Experiments on iid dataset. Figure 4 illustrates how Gossip SGD and Gossip-PGA converges under the iid data distributed
setting over the ring topology. Similar to the non-iid scenario shown in Figure 1, it is observed that Gossip-PGA always
converges faster (or has shorter transient stages) than Gossip SGD. When network size gets larger and hence β → 1, the
superiority of Gossip-PGA gets more evident. Moreover, it is also noticed that the transient stage gap between Gossip SGD
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Figure 6. Convergence comparison between Gossip-PGA, Local SGD and parallel SGD on the logistic regression problem in non-iid data
distributed setting over the exponential graph (left), grid (middle) and ring (right) topology.
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Figure 7. Convergence comparison between Gossip-PGA, Local SGD and parallel SGD on the logistic regression problem in non-iid data
distributed setting over the grid topology with period H = 16 (left), H = 32 (middle), H = 64 (right).

and Gossip-PGA is smaller than the non-iid scenario in all three plots in Figure 4. All these observations are consistent with
the transient stage comparisons in Table 2.

Experiments on different topologies. Figure 5 illustrates how Gossip SGD and Gossip-PGA converges over the exponential
graph, grid and ring topology. For all plots, it is observed that Gossip-PGA is no worse than Gossip SGD. Moreover, as the
network gets sparser and hence β → 1 from the left plot to right, it is observed that the superiority of Gossip-PGA gets
more evident, which is consistent with the transient stage comparisons between Gossip SGD and Gossip-PGA in Table 2.

Comparison with Local SGD. Figure 6 illustrates how Local SGD and Gossip-PGA converges over the exponential graph,
grid and ring topology. The period is set as H = 16. In all three plots, Gossip-PGA always converges faster than Local SGD
because of the additional gossip communications. Moreover, since the exponential graph has the smallest β, it is observed
Gossip-PGA has almost the same convergence performance as parallel SGD. Figure 7 illustrates how Local SGD and
Gossip-PGA converges over the grid topology with different periods. It is observed that Gossip-PGA can be significantly
faster when H is large. All these observations are consistent with the transient stage comparisons in Table 3.

F.3. More experiments on image classification.

Training accuracy. Figure F.3 shows the iteration-wise and time-wise training accuracy curves of aforementioned algorithms
separately. In the left figure, it is observed Gossip-PGA/AGA converges faster (in iteration) and more accurate than local
and Gossip SGD, which is consistent with our theory. In the right figure, it is observed that Gossip-PGA/AGA is the fastest
method (in time) that can reach the same training accuracy as parallel SGD.

The effect of averaging period. Table 15 compares the top-1 accuracy in the validation set with a different averaging
period setting in Gossip-PGA SGD. Compared to Gossip SGD, a relatively large global averaging period (48), roughly 2.1%
iterations with global averaging can still result in 0.32% gain in validation accuracy. With a moderate global averaging
period (6/12), the validation accuracy is comparable with the parallel SGD baseline. The communication overhead of global
averaging can be amortized since it happens every H iterations.
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PARALLEL SGD GOSSIP SGD GOSSIP-PGA

PERIOD H - - 3 6 12 24 48
VAL ACC.(%) 76.22 75.34 76.19 76.28 76.04 75.68 75.66

Table 15. Comparison of Top-1 validation accuracy with different averaging period setting in Gossip-PGA.
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Figure 8. Convergence results on the ImageNet classification task.(a) Iteration-wise convergence in terms of training accuracy. (b)
runtime-wise convergence speed in terms of training accuracy.

Experiments on SGD optimizer (without momentum). In previous Imagenet training, Nesterov momentum SGD
optimizer is used. Following common practice (Lian et al., 2017; Assran et al., 2019; Tang et al., 2018), we establish the
convergence rate of the non-accelerated method while running experiments with momentum. For the sake of clarity, we
further add a new series of experiments on Gossip-SGD without momentum, see Table 16. Gossip-PGA still outperform
Gossip-SGD utilizing the SGD optimizer.

METHOD ACC. %

PARALLEL SGD 69.5
GOSSIP SGD 68.47
GOSSIP-PGA 69.21

Table 16. Comparison of validation accuracy of Imagenet training on different algorithms with SGD optimizer.

G. Implementation of Gossip AGA
Practical consideration. The Gossip-AGA algorithm is listed in Algorithm 2. We use a counter C to record the number of
gossip iterations since last global averaging. The global averaging period H is initialized to a small value Hinit (e.g. 2∼4).
Once C equals to current H , global averaging happens. In practice, we sample loss scores for the first fewer iterations and
get a Finit estimation in a running-average fashion. We remove the exponential term in the loss score ratio for flexible
period adjustment.

H. Comparison of communication overhead between gossip and All-Reduce
Table 17 compares the overhead of different communication styles in two deep training tasks. The implementation details
follow Appendix F. For each profiling, we run a 500 iterations and take their average as the iteration time. As typically
All-Reduce implementation containing overlapping between computation and communication, we run a series of separate
experiments which do not perform communication (Column 2) to get communication overhead fairly (the figures in the
brackets). For ResNet-50 training, gossip introduces 150ms communication overhead while All-Reduce needs 278ms. For
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Algorithm 2 Gossip-AGA
Require: Initialize x0,i = x0, learning rate γ > 0, topology matrix W for all nodes i ∈ {1, 2, ..., n}, global averaging

period H = Hinit, C ← 0, Finit ← 0, warmup iterations Kw

for k = 0, 1, 2, ..., T − 1, every node i do
C ← C + 1
Sample mini-batch data ξ(k+1)

i from local dataset Compute stochastic gradient ∇Fi(x(k)
i ; ξ

(k+1)
i ) and loss

Fi(x
(k)
i ; ξ

(k+1)
i )

Conduct local udpate x(k+ 1
2 )

i = x
(k)
i − γ∇Fi(x

(k)
i ; ξ

(k+1)
i )

if C == H then
C ← 0
x

(k+1)
i ← 1

n

∑n
j=1 xk+ 1

2 ,j

F (xk; ξk) = 1
n

∑n
i=1 Fi(xk,i; ξk,i)

if k < Kw then
Finit ← 1

2 (Finit + F (xk; ξk))

else
H ←

⌈
Finit

F (xk;ξk)Hinit

⌉
else

x
(k+1)
i =

∑
j∈Ni wijx

(k+ 1
2 )

j

MODEL ITERATION TIME (MS)
NO COMMUNICATION ALL-REDUCE GOSSIP

RESNET-50 146 424 (278) 296 (150)

BERT 445 1913.8 (1468.8) 1011.5 (566.5)

Table 17. Comparison of communication overhead between gossip and All-Reduce in terms of runtime.

BERT training, gossip introduces 566.5ms communication overhead while All-Reduce needs 1468.8ms with the tremendous
model size of BERT-Large.




