A. Supplementary Materials
A.1. Proof for Theorem 1

Proof. We first compute effective-resistance distance be-
tween nodes p and ¢ on Gy and Gx by dy(p,q) =
e;qL}tenq and dx (p,q) = e;qL§eP7q, respectively. Con-
sequently, v1' satisfies the following inequality:
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where 1 € RY denotes the all-one vector. According to the
generalized Courant-Fischer theorem, we have:
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By combining Equations (1) and (2), we have:
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which completes the proof of the theorem. O
A.2. Proof for Theorem 2

Proof. Before proving our theorem, we first introduce the
formal definition of node subset and its boundary in a graph:

Definition 1. Given a node coloring vector z € RY in-
cluding only Os and 1s, a node subset S, C V and its
complement S, C V are defined as follows, respectively:

S. Y pev:zp) =1},

S, Y pevizp) =0}.
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Definition 2. The boundaries O¢ , (S.) and O, (S.) of S
in graphs G x and Gy are defined as follows, respectively:

9ax(S:) € {(pg) €Ex:p¢ S.,q€ 8.},

0y (S2) < {(pq) € By :pg S..qe S.}.

S

Consequently, the cut (the size of the boundary) of S, in
each of Gx and Gy can be computed as follows, respec-
tively:

CutX(Szagz) = ZTLXZ = |0 (S:)|,
e (6)

cuty (S ) =2"Lyz =|0g,(S.)|.

According to the generalized Courant-Fischer theorem, we

have the following inequality:
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which completes the proof of the theorem. [

A.3. Proof for Theorem 3

Proof. Let ui,us,...,uy and v, vs, ..., vy denote the N
eigenvectors of Lx Ly and Ly Ly, respectively, while
their corresponding shared eigenvalues are denoted by
A1, A2, ..., Any. In addition, eigenvectors u; can be con-
structed to satisfy:
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Therefore, the following equations hold:
Lxv; = \;Lyv; < L;;Lx’ui = \;v;
which leads to the following equation
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where (3; denotes a scaling coefficient. Without loss of
generality, e, , can be expressed as a linear combination of
u; fori =1, ..., N as follows:
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Then v (p, q) can be rewritten as follows:
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If the edge (p, ¢) is dominantly aligned with a single domi-
nant generalized eigenvector u; where 1 < k < r, it implies
Vi # k,a; ~ 0 and thus e, , ~ aguy. Then v (p, q) can
be approximated by:
7 (p.a) = A (13)

On the other hand, (10) allows the edge SPADE score of
(p, q) to be expressed as
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which completes the proof of the theorem. O

A.4. A Spectral Perspective of Adversarial Training

The Riemannian distance between positive definite (PSD)
matrices has been considered as the most natural and
useful distance defined on the positive definite cone
S? ., (Bonnabel & Sepulchre, 2010).

Definition 3. The Riemannian distance §(Lx, Ly ) be-
tween Lx and Ly is given by (Lim et al., 2019):
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The Riemannian distance 6(L x, Ly ) requires all eigenval-
ues of L; Lx to be evaluated, and therefore encapsulates
all possible cut mapping distortions.

While \,, 0 (L;;L x ) tells if function F’ can map two nearby
data points (nodes) to distant ones at output, )\mam(L}Ly)
tells if there exist two neighboring output data points (nodes)
that are mapped from two distant ones at input. Since
Amaz (L3 Lx) > Amax(L% Ly) holds for most machine
learning applications, A,,qz (L;tL x ) will be more interest-
ing and relevant to adversarial robustness.

Remark 1. The Riemannian distance 5( Ly, Lx) for a typ-
ical ML model will be upper bounded by:

0(Ly,Lx) < Nlog)\mam(L;CLX). (16)

Definition 4. Given two metric spaces (X, distx) and
(Y, disty ), where distx and disty denote the metrics on
the sets X and 'Y respectively, if there exists a k > 1 with:

1
—distx(p,q) < disty (p,q) < kdistx(p,q),  (17)
K

then Y = F(X) is called a k-bi-Lipschitz mapping, which
is injective, and is a homeomorphism onto its image.

Choosing xk = )\maz(L;LX) = SPADE” will make Y =
F(X) a k-bi-Lipschitz mapping under the manifold setting.
Remark 2. Adversarial training can effectively decrease

the Riemannian distances between the input and output man-
ifolds, which is similar to decreasing the Lipschitz constant.
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Figure 1. Riemannian distances of adversarially-trained models. A
greater e value indicates a more adversarially robust NN model.

An example. We demonstrate the Riemannian distances
of the PGD trained neural networks in Figure 1. Our re-
sults are obtained using the CIFAR-10 data set, which in-
cludes 10, 000 images (data points). We construct k-nearest-
neighbor (kNN) graphs for approximating the input/output
data manifolds with varying k values. The Riemannian
distances have been calculated only using the 10 largest
eigenvalues of L;CL x. As shown in Figure 1, the more
adversarially robust neural networks always exhibit lower
Riemannian distances.



A.5. Eigensolver for computing SPADE score

To efficiently find the SPADE score, power iteration method
can be leveraged to compute the dominant eigenvalues of
L;S Lx. To further reduce the complexity, graph-theoretic
algebraic multigrid solvers (Koutis et al., 2011; Livne &
Brandt, 2012) can be applied to solve the corresponding
graph Laplacians. To evaluate the performance of the power
iteration method, we calculated the largest eigenvalue of
LY Lx using built-in MATLAB eigs function and the
power iteration method, where L x and Ly represent the
kNN graph Laplacians constructed based on MNIST and
CIFAR-10 dataset with K being 10 and 20. As shown in
Table 1, )\mam(L;CL x ) and the corresponding run time are
reported in the table under different settings; ERR represents
the relative error of Ap,q (Ly> Lx) comparing with eigs.
From the table we observe that power iteration method al-
lows efficiently computing A,,q. (Ly Lx ) with satisfactory
accuracy levels.

A.6. Spectral Embedding and SPADE Scores

Figure 2 shows the 2D spectral node embeddings be-
fore/after adversarial training with the first two eigenvectors
of Lx, Ly and L;L,L x, respectively, for the MNIST test set
that includes 10,000 handwritten digits from 0 to 9. The
edges are not shown for the sake of clarity. The following
has been observed: (1) Before adversarial training, the hand-
written digits of 4 and 9 are very close at input but much
more separated at output as shown in Figures (a) and (b),
which implies a rather poor adversarial robustness level; a
similar conclusion can be made by checking the node em-
bedding with generalized eigenvectors in Figure (c), where
4 and 9 clusters are most separated from each other. (2)
After adversarial training, the 4 and 9 clusters are much
closer at output as shown in Figure (e), which is due to
the substantially improved robustness, while digits 1 and 7
become the most non-robust ones as shown in Figure (f).

Figures 3 and 4 show the SPADE scores of each label !
under four different adversarial robustness levels for the
MNIST and CIFAR-10 test sets, where the corresponding
2D spectral embeddings using dominant generalized eigen-
vectors are also demonstrated. It is observed that for the
clean models (e = 0), labels 4 and 9 (1 and 6) are the most
vulnerable labels for MNIST (CIFAR-10). After adversarial
training with different adversarial robustness levels, labels 1
and 7 remain the most vulnerable ones for MNIST, while
labels 1 (automobile) and 9 (truck) remain the most vulner-
able ones for CIFAR-10. It is also observed in both test
cases that the spectral embeddings become less scattered for
more adversarial robust models. As shown in Figure 4, the
spectral embedding of the most robust model trained with

"The SPADE score of each label (class) equals the mean
SPADE score of the data samples with the same label.

€ = 2 only forms a single cluster, implying indistinguishable
vulnerabilities across different labels.

A.7. SPADE for Topology Analysis of Neural Networks

Figure 5 shows the SPADE scores computed using the out-
put data associated with different layers of a neural net-
work model trained on the point cloud datasets D-I and
D-II (Naitzat et al., 2020), which implies that deeper archi-
tectures will result in greater Lipschitz constant and thus
SPADE scores. Such results also allows analyzing the topol-
ogy changes across different neural network layers. For
instance, it is observed that the sharply decreasing Betti
numbers for the neural network layers 4 to 7 of the D-II data
set correspond to dramatically increasing SPADE scores.

A.8. Model SPADE Score for the CINIC-10 dataset

Apart from MNIST and CIFAR-10 data sets, we further
compute the SPADE scores on the CINIC-10 dataset (Dar-
low et al., 2018), which is larger version of CIFAR-10 and
its test set contains 90, 000 images (data points). The result
is demonstrated in Table 2. Similar to the results of MNIST
and CIFAR-10 data sets, the more robust neural networks
always reveal lower SPADE scores.

A.9. Model SPADE Score for Natural Robustness

(Hendrycks et al., 2019) proposes a data processing tech-
nique called AugMix, which enhances the natural robustness
of various CNN architectures to data shift. In this experi-
ment, we compute SPADE scores for both standard models
and AugMix trained models. As demonstrated in Table3, the
more robust (AugMix-trained) models always have lower
SPADE scores on the clean test set, but greater SPADE
scores for the corrupted data set generated via adding vari-
ous noises (Hendrycks & Dietterich, 2019).

A.10. Comparison of Graph Construction Methods

This set of experiments examine how graph construction
methods would impact the computation of SPADE scores.
To this end, we have tested the following four methods for
constructing the graph-based manifolds: 1. GRASS: The
vanilla kNN graph with spectral sparsification (Feng, 2020);
2. PCA: The vanilla kNN graph constructed after mapping
the original data samples to lower dimensional space via
principal component analysis (PCA) (Jolliffe & Cadima,
2016); 3. CKNN: The kNN graph constructed using contin-
uous k-nearest neighbors (CKNN) (Berry & Sauer, 2016);
4. KNN: The vanilla k-nearest neighbor graph.

We apply the above graph construction methods and com-
pute the sample SPADE scores accordingly. Then 10 most
non-robust (top) and robust (bottom) samples are used for
computing the CLEVER scores. Since the CLEVER score



Table 1. Eigensolver performance when using eigs and power iteration method for MNIST and CIFAR-10 data sets with € = 0.

MNIST CIFAR-10
EIGS POWER_ITERATION EIGS POWER_ITERATION
K =10, )\maz(L;;LX) 98.64 98.38 (ERR = 0.26%) 398.16 396.48 (ERR = 0.42%)
K = 10, RUNTIME 9.22s 5.88s 11.96s 2.65s
K =20, )\maz(LJ;Lx) 81.14 80.83 (ERR=0.38%) 311.49 310.21 (ERR=0.41%)
K = 20, RUNTIME 16.19s 7.62s 19.40s  7.29s
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Figure 2. Revealing non-robust node pairs via spectral embedding w/ the first two Laplacian and generalized eigenvectors before (top row)
and after (bottom row) adversarial training. The labels of the most non-robust node pairs are indicated by red arrows for both settings.

Table 2. Model SPADE scores for the CINIC-10 dataset (Darlow et al., 2018)

CINIC SPADE(10NN) SPADE(20NN) SPADE(50NN) SPADE(100NN)
e=0 648.64 1393.71 263.69 214.01
€e=0.25 348.45 267.77 201.33 164.30
e=0.5 285.68 219.91 166.53 135.66
e=1.0 274.17 210.18 156.00 124.55

Table 3. Model SPADE scores for four networks trained with standard CIFAR-10 data and AugMix processed CIFAR-10 data. We
evaluate SPADE scores on both clean test set and corrupted test set via data shift.

NETWORKS AUGMIX (CLEAN) STANDARD (CLEAN) AUGMIX (CORRUPTED) STANDARD (CORRUPTED)
ALLCONV 149.63 213.03 60.68 39.99
DENSENET 129.49 152.07 53.32 33.63
RESNEXT 571.15 614.63 293.94 51.57
WRN 738.35 784.03 100.17 72.96

is the lower bound on the minimal distortion to obtaining
adversarial samples (Weng et al., 2018), we expect that

the CLEVER score computed by robust samples should
be greater than that computed by non-robust samples. As
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Figure 3. The label SPADE scores and spectral embeddings with top two dominant generalized eigenvectors (MNIST test set).

Table 4. Comparison of model CLEVER scores on MNIST/CIFAR-10 test sets (Weng et al., 2018). CNN, DD, and 2CL represent the
7-layer AlexNet-like, Defensive Distillation, and 2-convolutional-layer CNNs. GRASS (Feng, 2020), PCA, CKNN, and KNN stand for
different graph-based manifold constructions. “T10” (“B10”) denote the SPADE-guided CLEVER scores computed via sampling the top
(bottom) 10 most non-robust samples, respectively, based on node SPADE score.

NETWORKS GRASS (10NN, T10) GRASS (10NN, B10) PCA (10NN, T10) PCA (10NN, B10)
MNIST-2CL(e = 0) 0.964/0.0465 21.136,/0.985 0.195/0.011 21.742/1.078
MNIST-2CL(e = 0.3) 0.045,/0.006 5.574/0.623 0.034/0.005 7.750/0.971
MNIST-MLP 0.432/0.020 1.729/0.089 0.460,0.022 1.564,/0.079
MNIST-CNN 0.570,/0.044 0.983/0.083 0.525/0.040 1.099/0.099
MNIST-DD 0.448/0.028 1.306,/0.094 0.377/0.027 1.487/0.101
CIFAR-MLP 0.113/0.002 0.253/0.005 0.535/0.012 0.214/0.004
CIFAR-CNN 0.230/0.007 0.167/0.004 0.214,/0.006 0.114/0.003
CIFAR-DD 0.287/0.009 0.111/0.003 0.245/0.008 0.167/0.005
NETWORKS CKNN (10NN, T10) CKNN (10NN, B10) KNN (10NN, T10) KNN (10NN, B10)
MNIST-2CL(e = 0) 0.784/0.039 0.801/0.040 0.049/0.002 20.499/0.950
MNIST-2CL(e = 0.3) 0.541/0.049 0.712/0.072 0.112/0.008 4.888/0.620
MNIST-MLP 0.555,/0.039 0.850/0.058 1.317/0.067 1.715/0.089
MNIST-CNN 0.070/0.001 0.204,/0.004 0.379/0.030 0.894/0.079
MNIST-DD 0.045/0.001 0.100/0.002 0.408/0.026 1.399/0.097
CIFAR-MLP 0.078/0.002 0.129/0.004 0.213/0.004 0.253/0.005
CIFAR-CNN 0.185,/0.009 8.938,/0.423 0.141/0.004 0.215/0.006
CIFAR-DD 0.434/0.048 0.075/0.003 0.318/0.036 0.111/0.003

shown in Table 4, all four graph construction methods obtain
a larger CLEVER score for B10 than T10 for most models.
However, the gap between CLEVER scores of T10 and B10
varies from different graphs and models. For instance, the
CKNN-based CLEVER score has a relatively smaller gap
between T10 and B10 than other methods for the MNIST-
2CL model, while it has a larger gap than other methods for
the CIFAR-CNN model.

A.11. Correlation between SPADE and GAIRAT

(Zhang et al., 2021) introduces a white-box measurement
of data robustness called GAIRAT, which adopts the idea
that a data sample closer to the decision boundary is less
robust. Consequently, GAIRAT assigns smaller weights
on training losses to data samples that are farther from the
decision boundary. To verify that our node SPADE score
indeed captures the robustness of data samples, we compare
the node SPADE score per sample with the corresponding
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Figure 5. The layer-wise SPADE scores of neural network models

weight generated by GAIRAT. Specifically, we select the
top 50 most robust samples (with the lowest SPADE scores)
and 50 random samples. The result shows the corresponding
GAIRAT weight distributions in Figure 6. SPADE-guided
samples result in a much smaller mean value while over
35 out of 50 samples have the weight of 0.0 assigned by
GAIRAT; On the other hand, the randomly selected samples
only have 24 nodes with a weight of 0.0. This implies
the node SPADE scores can be leveraged for effectively
identifying the most robust samples.
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