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Abstract
We investigate the problem dependent regime
in the stochastic Thresholding Bandit problem
(TBP) under several shape constraints. In the
TBP the objective of the learner is to output, at
the end of a sequential game, the set of arms
whose means are above a given threshold. The
vanilla, unstructured, case is already well studied
in the literature. TakingK as the number of arms,
we consider the case where (i) the sequence of
arm’s means (µk)Kk=1 is monotonically increas-
ing (MTBP) and (ii) the case where (µk)Kk=1 is
concave (CTBP). We consider both cases in the
problem dependent regime and study the proba-
bility of error - i.e. the probability to mis-classify
at least one arm. In the fixed budget setting, we
provide upper and lower bounds for the proba-
bility of error in both the concave and monotone
settings, as well as associated algorithms. In both
settings the bounds match in the problem depen-
dent regime up to universal constants in the ex-
ponential.

1. Introduction
Stochastic multi-armed bandit problems model situations
in which a learner faces multiple unknown probability dis-
tributions, or “arms”, and has to sequentially sample these
arms.

In this paper, we focus on the Thresholding Bandit Prob-
lem (TBP), a Combinatorial Pure Exploration (CPE) ban-
dit setting introduced by Chen et al. (2014). The learner
is presented with [K] = {1, . . . ,K} arms, each following
an unknown distribution νk with unknown mean µk. We
focus on the fixed budget variant of this problem. Given a
budget T > 0, the learner samples the arms sequentially
for a total of T times and then aims at predicting the set of
arms whose mean is above a known threshold τ ∈ R. We
will measure the learner’s performance by the probability
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of error - i.e. the probability that the learner mis-classifies
at least one arm - and consider therefore the problem de-
pendent regime.

The focus of this paper is on structured, shape constrained
TBP. More precisely, we study the influence of some clas-
sical structures, in the form of a shape constraint on the
sequence of means of the arms, on the TBP problem. That
is, we study how classical shape constraints influence the
probability of error. A related study was performed by
Cheshire et al. (2020) for the problem independent (over-
all worst-case) regime, and we aim at extending this study
to the problem dependent regime. We will aim at finding
the problem dependent quantities that have an impact on
the optimal probability of error, and at providing matching
upper and lower bounds.

We will discuss three structured TBPs in this paper; among
those, we recall existing results of one, and provide results
for two. Here is a short overview.

Vanilla, unstructured case TBP The vanilla, unstruc-
tured case is the simplest TBP where we only assume that
the distributions of the arms are sub-Gaussian - also re-
lated to the TOP-M1 setting. The TBP is already well stud-
ied in the literature - both in a fixed budget and in a fixed
confidence context - and we only introduce it here to pro-
vide a benchmark for later structured problems. We recall
here results in the problem dependent, fixed budget, set-
ting, which is most relevant for this paper. Locatelli et al.
(2016) prove that up to multiplicative constants, and addi-
tives log(TK) terms, in the exponential, the optimal prob-
ability of regret in this problem is exp(− T∑

i:∆i>0 ∆−2
i

),

where ∆i = |τ − µi|. We present their results for com-
pleteness and comparison to the bounds under additional
shape constraints in Table 5.3 - see also Subsection 3.1.
The TBP in the problem dependent regime is also studied
by Mukherjee et al. (2017) and Zhong et al. (2017), how-
ever they consider a problem complexity based also upon
variance making their results not so relevant to our setting.
The problem independent regime for the TBP is studied by
Cheshire et al. (2020), we also present their results in Ta-

1In the TOP-M setting, the objective of the learner is to output
the M arms with highest means. A popular version of it it is the
TOP-1 or ”best arm identification” problem where the aim is to
find the arm that realises the maximum.
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ble 5.3 for comparison across the different regimes.

Monotone constraint, MTBP. We then consider the
problem where on top of assuming that the distributions
are sub-Gaussian, we assume that the sequence of means
(µk)k∈[K] is monotone - this is problem MTBP. This spe-
cific instance of the TBP is introduced within the context
of drug dosing by Garivier et al. (2017). In this paper,
the authors provide an algorithm for the fixed confidence
setting that is optimal asymptotically, in the fixed confi-
dence regime. However the definition of the algorithms,
as well as the provided optimal error bound, are defined
in an implicit way and not so easy to relate in a simple
way to the gaps ∆i moreover it is not clear how to trans-
late a result from the fixed confidence setting to the fixed
budget one. On the other hand, the shape constraint on
the means of the arms implies that the MTBP is related to
noisy binary search, i.e. inserting an element into its cor-
rect place within an ordered list when only noisy labels of
the elements are observed, see Feige et al. (1994). They
describe an algorithm structurally similar to ours, using a
binary tree with infinite extension however they consider
a simpler setting where the probability of correct labeling
is fixed as some δ > 1

2 and go on to show that there ex-
ists an algorithm that will correctly insert an element with
probability at least 1 − δ in O

(
log
(
K
δ

))
steps. For fur-

ther literature on the related yet different problem of noisy
binary search, see Feige et al. (1994), Ben-Or & Hassidim
(2008), Emamjomeh-Zadeh et al. (2016), Nowak (2011).
Again, these papers consider settings with more structural
assumptions than our own and are focused on the problem
independent, fixed confidence regime. The problem inde-
pendent regime for the MTBP is studied by Cheshire et al.
(2020), we also present their results in Table 5.3 for com-
parison across the different regimes.

In this work, we prove that, up to universal multiplicative
constants and additive log(K) terms in the exponential,
the optimal error probability is exp(−T mink ∆2

k), which
highlights the somewhat surprising fact that this structured
monotone TBP problem is akin to a one armed TBP- see
Subsection 3.2. We provide the Problem Dependent Mono-
tone TBP (PD-MTB) algorithm that matches this bound, see
Section 4.

Concave constraint, CTBP. We next consider the prob-
lem where on top of assuming that the distributions are sub-
Gaussian, we assume that the sequence of means (µk)k∈[K]

is concave - this is problem CTBP. Again, in the prob-
lem independent regime the CTBP has been studied by
Cheshire et al. (2020). In the problem dependent regime
however, to the best of our knowledge, the CTBP has not
been studied in the literature. However the related prob-
lems of estimating a concave function and optimising a
concave function are well studied in the literature. Both
problems are considered primarily in the continuous regime

which makes comparison to the K-armed bandit setting
difficult. The problem of estimating a concave function has
been thoroughly studied in the noiseless setting, and also in
the noisy setting, see e.g. Simchowitz et al. (2018), where a
continuous set of arms is considered, under Hölder smooth-
ness assumptions. The problem of optimising a convex
function in noise without access to its derivative - namely
zeroth order noisy optimisation - has also been extensively
studied. See e.g. Nemirovski & Yudin. (1983)[Chapter 9],
and Wang et al. (2018); Agarwal et al. (2011); Liang et al.
(2014) to name a few, all of them in a continuous setting
with dimension d. The focus of this literature is however
very different to ours and Cheshire et al. (2020), as the main
difficulty under their assumption is to obtain a good depen-
dence in the dimension d, and with this in mind logarithmic
factors are not very relevant.

In this work, we prove that, up to universal multiplicative
constants and additive log(K) terms in the exponential,
the optimal error probability is exp(−T mink ∆2

k), which
highlights the somewhat surprising fact that this structured
concave TBP problem is also akin to a one armed TBP- see
Subsection 3.3. We provide the Problem Dependent Con-
cave TBP (PD-CTB) algorithm that matches this bound,
see Section 4.

Organisation of the paper This paper is structured as
follows. In Section 2 we formally introduce the TBP setting
along with the monotone and concave shape constraints.
We also describe the performance criterion - probability of
error, we will be primarily using for the duration of the
paper. Following this, upper and lower bounds on prob-
ability of error for all shape constraints are presented in
Section 3. Descriptions of algorithms achieving said upper
bounds can be found in Section 4. The results are discussed
and compared to related work in Section 5. In Appendix ??
we conduct some preliminary experiments to explore how
our theoretical results translate in practice. All proofs are
found in the Appendix.

2. Setting
Problem formulation The learner is presented with aK-
armed bandit problem ν

¯
= {ν1, . . . , νK}, with K ≥ 3,

where νk is the unknown distribution of arm k.

Let σ2 ≥ 0. We remind the learner that distribution ν of
mean µ is said to be σ2-sub-Gaussian if for all t ∈ R we
have,

EX∼ν
[
et(X−µ)

]
≤ exp

(
σ2t2

2

)
.

In particular the Gaussian distributions with variance
smaller than σ2 and the distributions with absolute values
bounded by σ are σ2-sub-Gaussian.

Let B := B(K,σ2) be the set of all bandit problems as
presented above, i.e. where the distributions νk of the arms



Problem Dependent Thresholding Bandit Problems

are all σ2 sub-Gaussian.

In what follows, we assume that all ν
¯
∈ B, and we write

µk for the mean of arm k. Let τ ∈ R be a fixed thresh-
old known to the learner. We aim to devise an algorithm
which classifies arms as above or below threshold τ based
on their means. That is, the learner aims at finding the vec-
tor Q ∈ {−1, 1}K that encodes the true classification, i.e.
Qk = 21{µk≥τ} − 1 with the convention Qk = 1 if arm k
is above the threshold and Qk = −1 otherwise. The fixed
budget bandit sequential learning setting goes as follows:
the learner has a budget T > 0 and at each round t ≤ T ,
the learner pulls an arm kt ∈ [K] and observes a sample
Yt ∼ νkt , conditionally independent from the past. Af-
ter interacting with the bandit problem and expending their
budget, the learner outputs a vector Q̂ ∈ {−1, 1}K and
the aim is that it matches the unknown vector Q as well as
possible.
Unstructured case TBP In the problem dependent
regime, for ∆̄ ∈ RK+ , we consider the following class of
problems

B∆̄ = {ν ∈ B : ∀k ∈ [K], |µk − τ | = ∆̄k} .

Monotone case MTBP We denote by Bm the set of ban-
dit problems,

Bm := {ν ∈ B : µ1 ≤ µ2 ≤ . . . ≤ µK} ,

where the learner is given the additional information that
the sequence of means (µk)k∈[K] is a monotonically in-
creasing sequence. We denote by ∆Bm = {∆̄ ∈ RK+ :
∃ν ∈ Bm,∀k ∈ [K], |µk − τ | = ∆̄k} the set of possi-
ble vectors of gaps in Bm - i.e. the set of sequences ∆̄ that
would correspond to at least one problem in Bm. In the
problem dependent regime, for ∆̄ ∈ ∆Bm, we consider the
following class of problems

B∆̄
m = {ν ∈ Bm : ∀k ∈ [K], |µk − τ | = ∆̄k} .

Concave case CTBP We will denote by Bc the set of
bandit problems,

Bc :=

{
ν ∈ B : ∀1 < k < K − 1,

1

2
µk−1 +

1

2
µk+1 ≤ µk

}
,

where the learner is given the additional information that
the sequence of means (µk)k∈[K] is concave. We denote
by ∆Bc = {∆̄ ∈ RK+ : ∃ν ∈ Bc,∀k ∈ [K], |µk − τ | =
∆̄k, ∃l : µl ≥ τ} the set of possible vectors of gaps in Bc
where at least one arm is above threshold - i.e. the set of
sequences ∆̄ that would correspond to at least one problem
in Bc where at least one arm is above threshold. In the
problem independent regime, for ∆̄ ∈ ∆Bc, we consider
the following class of problems

B∆̄
c :=

{
ν ∈ Bc : ∀k < K, |µk − τ | ∈

[
∆̄k

2
, 3

∆̄k

2

]}
.

Remark 1. The classes of problems B∆̄,B∆̄
m,B∆̄

c contain
bandit problems in resp. B,Bm,Bc that are ‘local’ around
∆̄ in the sense that while the sign of µk − τ is arbitrary -
although severely restricted by the shape constraint when
it comes to B∆̄

m,B∆̄
c - the gap of arm k is fixed to being -

approximately, for the concave case set B∆̄
c - ∆̄k. This im-

plies that in each case and on top of the respective shape
constraint, we restrict ourselves to a small class of prob-
lems whose complexity is entirely characterised by ∆̄, in a
problem dependent sense.

Strategy A strategy is a sequence of functions that maps
the information gathered in the past to an arm and fi-
nally to a classification. Precisely, if we denote by It
the information available to the player at time t, that is
It = {Y1, Y2, . . . , Yt}, with the convention I0 = ∅. Then
a strategy π =

(
(πt)t∈[T ], Q̂

π
)

is given by a sampling rule
πt(It−t) = kt ∈ [K] and a classification rule Q̂π(IT ) =
Q̂ ∈ {−1, 1}K .

Minimax expected regret The problem independent,
fixed budget objective of the learner following the strategy
π is then to minimize the expected simple regret of this
classification for Q̂ := Q̂π:

rν¯ ,πT = Eν
¯

[
max

{k∈[K]: Q̂πk 6=Qk}
∆k

]
,

where ∆k := |τ −µk| is the gap of arm k, and where Eν
¯

is
defined as the expectation on problem ν

¯
and Pν

¯
the prob-

ability. However, the focus of this paper is on the problem
dependent regime where, as usual, we consider as a perfor-
mance criterion rather the related probability of error

eν¯ ,πT = Pν
¯

(
∃k ∈ [K] : Q̂πk 6= Qk

)
.

When it is clear from the context we will remove the depen-
dence on the bandit problem ν

¯
and/or the strategy π. Note

that if we denote by ∆̄min = mink∈[K] ∆̄k the minimum
of the gaps then

rν¯ ,πT ≥ ∆̄mine
ν
¯
,π
T .

Consider a set of bandit problems B̃ ⊂ B. The minimax
optimal probability of error on B̃ is then

e∗T (B̃) := inf
π strategy

sup
ν
¯
∈B̃
eν¯ ,πT .

We will study this quantity over the local classes
B∆̄,B∆̄

m,B∆̄
c .

Remark 2. As argued above, the classes B∆̄,B∆̄
m,B∆̄

c con-
tain only bandit problems that satisfy their respective shape
constraint and whose complexity is entirely characterised
by ∆̄, in a problem dependent sense. Studying the mini-
max probability of error over these very restricted classes
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is therefore a very meaningful way of studying the problem
dependent regime of structured TBP problems - and we ex-
pect this probability of error to heavily depend on ∆̄. The
focus of this paper is to characterise this dependence in a
tight manner.

3. Minimax rates
In this section we present upper and lower bounds on prob-
ability of error for all three shape constraints. Given a vec-
tor ∆̄ ∈ RK+ we denote ∆̄min = mink∈[K] ∆̄k.

3.1. Problem dependent unstructured setting TBP

The unstructured thresholding bandit in the problem depen-
dent regime has already been considered in the literature.
We remind results from Locatelli et al. (2016), where they
provide tight upper and lower bounds over e∗T (B∆̄), for any
∆̄ ∈ RK+ . In our context they prove that

exp

(
− 3

σ2

T

H
− 4σ−2 log (12(log T + 1)K)

)
≤ e∗T (B∆̄)

≤ exp
(
− 1

64σ2

T

H
+ 2 log ((log T + 1)K)

)
,

whereH =
∑
i:∆̄i>0 1/∆̄2

i - see Theorems 1 and 2 by Lo-
catelli et al. (2016). This implies that up to multiplicative
universal constants and whenever T ≥ Hσ2 log(log(T ) +
K), it holds that

− log
(
e∗T (B∆̄)

)
� 1

σ2

T

H
,

and upper and lower bound match up to universal multi-
plicative constants in the exponential of the error proba-
bility. The quantity H is therefore the problem dependent
quantity that characterises the difficulty of the problem.
Note that of course, the APT algorithm by Locatelli et al.
(2016) does not take any information on the class - ∆̄, but
also σ2 - as parameters, and is essentially parameter free.

In this paper, we won’t therefore discuss further this un-
structured setting - the reminder provided here is only to be
taken as a benchmark for the rest of the paper. We will on
the other hand focus on the structured problems - monotone
and concave and study how the minimax error probability
evolves, in particular depending on the problem-dependent
quantities ∆̄.

3.2. Problem dependent monotone setting

Given a class of problems B∆̄
m for some ∆̄ ∈ ∆Bm, the fol-

lowing theorem provides a lower bound on the probability
of error for any strategy π. The proof of Theorem 3 can be
found in Appendix ??.

Theorem 3. Let ∆̄ ∈ ∆Bm. For any strategy π there exists
a monotone bandit problem ν

¯
∈ B∆̄

m such that

eν¯ ,πT ≥ 1

4
exp

(
−T ∆̄2

min

σ2

)
.

Now the following theorem gives an upper bound on the
probability of error for the PD-MTB algorithm. The proof
of Theorem 4 can be found in Appendix ??.
Theorem 4. Let ν ∈ Bm associated with arm gaps ∆,
and assume that T > 36 log(K). The algorithm PD-MTB
satisfies the following bound on error probability:

eν¯ ,PD-MTBT ≤ exp

(
−cmon

T∆2
min

σ2
+ c′mon log(K)

)
where cmon = 1/48 and c′mon = 12.

The parameter free algorithm PD-MTB is described in Sec-
tions 4 - see also Appendix ??.

The assumption on T is reasonable as in the monotone
setting it is clear no algorithm can gain enough informa-
tion in less than log(K) pulls, see Cheshire et al. (2020).
Note that combining both bounds yields that whenever
T > 36 log(K)/∆̄2

min:

− log
(
e∗T (B∆̄

m)
)
� 1

σ2
T ∆̄2

min,

and upper and lower bound match up to universal mul-
tiplicative constants in the exponential of the error prob-
ability. Perhaps surprisingly, the number of arms plays
no role in this rate - as long as we assume that T >
36 log(K)/∆̄2

min. Only the minimal arm gap appears, and
this amounts to saying that when T > 36 log(K)/∆̄2

min,
this problem is not more difficult - in order, up to univer-
sal multiplicative constants in the exponential - than a one-
armed TBP with gap mink ∆k! And that in a sense, even
if we knew in our monotone problem the position of all
means but one - the arm with minimal gap - with respect to
the threshold, the problem would not be significantly eas-
ier.

3.3. Problem dependent concave setting

Given a class of problems B∆̄
c for some ∆̄ ∈ ∆Bc the fol-

lowing theorem provides a lower bound on the probability
of error for any strategy π. The proof of Theorem 5 can be
found in Appendix ??.
Theorem 5. Let ∆̄ ∈ ∆Bc. For any strategy π there exists
a problem ν ∈ B∆̄

c such that

eν¯ ,πT ≥ 1

4
exp

(
−9

T ∆̄2
min

σ2

)
.

Now the following theorem gives an upper bound on the
probability of error for the PD-CTB algorithm. The proof
of Theorem 6 can be found in Appendix ??.
Theorem 6. Let ν ∈ Bc with associated gaps ∆ and as-
sume T > 108 log(K). The algorithm PD-CTB has the
following bound on error,

eν¯ ,PD-CTBT ≤ 3 exp

(
−ccon

T∆2
min

σ2
+ c′con log(K)

)
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where ccon = 1/576 and c′con = 12.

The parameter free algorithm PD-CTB is described in Sec-
tions 4 - see also Appendix ??.

The assumption on T is reasonable as in the monotone
setting it is clear no algorithm can gain enough informa-
tion in less than log(K) pulls, see Cheshire et al. (2020).
Note that combining both bounds yields that whenever
T > 108 log(K)

∆̄2
min

:

− log
(
e∗T (B∆̄

m)
)
� 1

σ2
T ∆̄2

min,

and upper and lower bound match up to universal multi-
plicative constants in the exponential of the error probabil-
ity. Similar comments can be made here as in the case of
the monotone TBP in Section 3.2: the convex TBP is also
as difficult as a one-armed TBP with gap mink ∆k.

4. Optimal algorithms in the problem
dependent regime

4.1. Monotone case MTBP

We assume in this section, without loss of generality, in-
stead of consideringK arms, we consider for technical rea-
sonsK+2 arms adding two deterministic arms 0 andK+1
with respective means µ0 = −∞ and µK+1 = +∞.While
we assume that the distributions of the original K arms are
σ2-sub-Gaussian the addition of two such arms will not in-
validate our proofs, see Appendix ??. We do this to ensure
that, after re-indexing of the arms and adapting the number
of arms, τ ∈ [µ1, µK ].

To match a minimax rate as described in Section 3 we will
utilise a modified version of the MTB algorithm described
by Cheshire et al. (2020). The algorithm PD-MTB performs
a random walk on the set of arms [K] as a binary tree. We
consider the binary tree as Cheshire et al. (2020) with an
specific extension akin to that by Feige et al. (1994).

Binary Tree We associate to each problem ν
¯
∈ Bm

a binary tree. Precisely we consider a binary tree with
nodes of the form v = {L,M,R} where {L,M,R} are
indexes of arms and we note respectively v(l) = L, v(r) =
R, v(m) = M . The tree is built recursively as follows:
the root is root = {1, b(1 +K)/2c,K}, and for a node
v = {L,M,R} with L,M,R ∈ {1, . . . ,K} the left
child of v is L(v) = {L,Ml,M} and the right child is
R(v) = {M,Mr, R} with Ml = b(L+M)/2c and Mr =
b(M +R)/2c as the middle index between. The leaves of
the tree will be the nodes {v = {L,M,R} : R = L+1}. If
a node v is a leaf we setR(v) = L(v) = ∅. We consider the
tree up to maximum depth H = blog2(K)c + 1. We note
P
(
l(v)

)
= P

(
r(v)

)
the parent of the two children and let

|v| denote the depth of node v in the tree, with |root| = 0.
We adopt the convention P (root) = root.

Extended Binary Tree We extend the above Binary tree
in the following manner. For a leaf v we replace the con-
dition R(v) = L(v) = ∅ with the following: for any leaf
v = {L,M,R} we set R(v) = ṽ where ṽ = {L,M,R}
and set L(v) = ∅. Note that ṽ is also a leaf therefore iter-
ative application this relation will lead to an infinite exten-
sion. The result being that each leaf in our original binary
tree is now the root of an infinite chain of identical nodes,
see Figure 1. For practical purposes we need only consider
such an extension up to depth T and can simply cut the tree
at this depth.

Remark 7. We set L(v) = ∅ for some leaf v during the
extension of the binary tree as by construction all leaves of
the original binary tree are of the form {v = {L,M,R} :
R = L+ 1 and M = L}.
In order to predict the right classification we want to find
the arm whose mean is the one just above the threshold τ .
Finding this arm is equivalent to inserting the threshold into
the (sorted) list of means, which can be done with a binary
search in the aforementioned binary tree. But in our set-
ting we only have access to estimates of the means which
can be very unreliable if the mean is close to the threshold.
Because of this there is a high chance we will make a mis-
take on some step of the binary search. For this reason we
must allow PD-MTB to backtrack and this is why PD-MTB
performs a binary search with corrections.

PD-MTB algorithm First, define the following integers

T1 := d6 log(K)e T2 :=

⌊
T

3T1

⌋
. (1)

The algorithm PD-MTB is then essentially a random walk
on said binary tree moving one step per iteration for a to-
tal of T1 steps. Let v1 = root and for t < T1 let
vt denote the current node, the algorithm samples arms
{vt(j) : j ∈ {l,m, r}} each T2 times. Let the sample
mean of arm vt(j) be denoted µ̂j,t. PD-MTB will use these
estimates to decide which node to explore next. If an er-
ror is detected - i.e. the interval between left and right-
most sample mean does not contain the threshold, then
the algorithm backtracks to the parent of the current node,
otherwise PD-MTB acts as the deterministic binary search
for inserting the threshold τ in the sorted list of means.
More specifically, if there is an anomaly, τ 6∈ [µ̂l,t, µ̂r,t],
then the next node is the parent vt+1 = P (vt), other-
wise if τ ∈ [µ̂l,t, µ̂m,t] the the next node is the left child
vt+1 = L(vt) and if τ ∈ [µ̂m,t, µ̂r,t] the next node is the
right child vt+1 = R(vt). If at time t, τ ∈ [µ̂l,t, µ̂r,t] and
the node vt is a leaf, that is v(r) = v(l) + 1, then due to the
extension of our binary treeR(vt) = L(vt) = ṽt where ṽ is
a duplicate of vt. Hence vt+1 = ṽt. Via this mechanism the
PD-MTB algorithm essentially gives additional preference
the the node vt. See PD-MTB for details. We now formally
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state the parameter free PD-MTB algorithm (Problem De-
pendent Monotone Thresholding Bandit Algorithm). We
rely on the assumption T > 36 log(K), see Theorem 4 to
ensure T2 ≥ 1.

Algorithm 1 PD-MTB
Initialization: v1 = root
for t = 1 : T1 do

sample T2 times each arm in vt
if τ 6∈ [µ̂l,t, µ̂r,t] then
vt+1 = P (vt)

else if µ̂m,t ≤ τ ≤ µ̂r,t then
vt+1 = R(vt)

else if µ̂l,t ≤ τ ≤ µ̂m,t then
vt+1 = L(vt)

end if
end for
Set k̂ = vT1+1(r)

return (k̂, Q̂) : Q̂k = 21{k≥k̂} − 1

Figure 1. Extended binary tree for K = 5

Remark 8 (Adaptation of PD-MTB to a non-increasing se-
quence, PD-DEC-MTB). PD-MTB is applied for a mono-
tone non-decreasing sequence (µk)k∈[K], and it is easy to
adapt it to a monotone non-increasing sequence (µk)k∈[K].
In this case, we transform the label of arm k into K − k,
and apply PD-MTB to the newly labeled problem - where
the mean sequence in now non-decreasing. We refer to this
modification as PD-DEC-MTB.

Remark 9 (Relaxing the monotone assumption). By in-
specting the proof of Theorem 4 in Appendix ?? we can ob-
tain the same guarantee for a larger class of problem than
one with increasing means. Indeed we only need that there
exists an arm for which all the arms before it have a mean
below the threshold and all arm after have a mean above
the threshold. Precisely the bound of Theorem 4 holds also

for problems that belongs to

Brm :={ν ∈ B : ∃k ∈ [1,K], ∀j ≤ k µj ≤ τ,
∀j ≥ k + 1 µj ≥ τ} .

Note the same remark also applies for problems with mono-
tone non-increasing sequence.

4.2. Concave case CTBP

We assume in this section, without loss of generality, in-
stead of considering K arms, we consider for technical
reasons K + 2 arms adding two deterministic arms 0 and
K + 1 with respective means µ0 = µK+1 = −∞. While
we assume that the distributions of the original K arms are
σ2-sub-Gaussian the addition of two such arms will not in-
validate our proofs, see Appendix ??. We do this to ensure
that after re-indexing τ > µ1, µK .

As in the monotone case we construct a binary tree to span
the arms of the bandit problem. The construction of this
tree is identical to that described in Section 4.1 but without
the infinite extension. We will use a variant off the PD-MTB
Algorithm, Grad-Explore to move around the tree. The
difference is that Grad-Explore bases its movement off
the estimated gradients of the arms as opposed to their sam-
ple means. The objective of Grad-Explore is to find an
arm with corresponding mean above threshold. Once such
an arm has been identified we split our problem into two
“relaxed monotone” bandit problems - see Remark 9, one
increasing and one decreasing. We then run PD-MTB and
PD-DEC-MTB respectively. We split our budget evenly
across the three algorithms: Grad-Explore, PD-MTB
and PD-DEC-MTB.

Grad-Explore algorithm As with PD-MTB the
algorithm Grad-Explore is essentially a random walk
on the said binary tree moving one step per iteration for
a total of T1 steps. Let v1 = root and for t < T1 let
vt denote the current node, the algorithm samples arms
{vt(l), vt(l) + 1, vt(m), vt(m) + 1, vt(r), vt(r) + 1}}
each T2 times. As in Section 4.1, we adopt the convention
that the arm K + 1 is a Dirac distribution at −∞. Let the
sample mean of arm vt(j) be denoted µ̂j,t and the sample
mean of arm vt(j)+1 be denoted µ̂j+1,t. Let the estimated
local gradient at arm j, that is µ̂j,t − µ̂j+1,t denote ∇̂j,t.
Grad-Explore will use these estimates to decide which
node to explore next. If an error is detected - i.e. the
left most or right most gradient is negative or positive
respectively, then the algorithm backtracks to the parent
of the current node, otherwise Grad-Explore acts as
the deterministic binary search for the maximum mean,
maxi∈[K] µi. More specifically, if there is an anomaly,(
∇̂l,t, ∇̂r,t

)
/∈ (R+,R−), then the next node is the parent

vt+1 = P (vt), otherwise if ∇̂m,t < 0 the next node is the
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left child vt+1 = L(vt) and if ∇̂m,t ≥ 0 the next node is
the right child vt+1 = R(vt). See Algorithm 2 for details.

Algorithm 2 Grad-Explore
Initialization: v1 = root
for t = 1 : T1 do
St+1 = St
for each k ∈ vt sample T2

12 times the arms k, k + 1
if ∃k ∈ {l,m, r} : µ̂k > τ then

Append arm k to the list St+1

vt+1 = vt

else if
(
∇̂l,t, ∇̂r,t

)
/∈ (R+,R−) then

vt+1 = P (vt)
else if ∇̂m,t ≥ 0 then
vt+1 = R(vt)

else if ∇̂m,t < 0 then
vt+1 = L(vt)

end if
end for

Algorithm 3 PD-CTB
run Grad-Explore
output list ST1

if |ST1
| ≤ T1

4 then
return Q̂ = {−1}K

else
k̂ = Median(ST1)

l = output of PD-DEC-MTB on set of arms [1, k̂] bud-
get: T3
r = output of PD-MTB on set of arms [k̂,K] budget: T3
return Q̂ : Q̂k = 1− 21k<l − 21k>r

end if

For the arms whose means are below threshold, due
to the concave property gradients are essentially greater
than ∆̄min and can easily be estimated. Above thresh-
old however gradients are less than ∆̄min and are rela-
tively hard to estimate. Therefore, although on the face
Grad-Explore is in part a binary search for the arm with
maximum mean, in reality this is not feasible. The true util-
ity of Grad-Explore to the learner is to act as a binary
search for the ”set” of arms above threshold. If we refer
to nodes containing an arm k : µk > τ as ”good nodes”
the idea behind Grad-Explore is to spend a sufficient
amount of time in exploring this set of nodes and adding
”good arms” - i.e ones with a corresponding mean above
threshold, to the list S. We can then output such an arm
with high probability when outputting the median of ST1

.

Once we have identified our arm above threshold we split
our problem into two bandit problems where the classifi-
cation can be done by binary search, see Remark 9 and 8.
We can thus then apply PD-MTB and PD-DEC-MTB. Pre-
cisely, the complete procedure, namely PD-CTB (Problem

Dependent- Concave Threshold Bandits), is detailed in Al-
gorithm 3.
5. Discussion
5.1. Algorithms PD-MTB and PD-CTB

Both the PD-MTB and PD-CTB are based upon a binary
search with corrections, this allows them to exploit the
structure of the shape constraints reducing the problems to
sets of arms with cardinally of order log(K), something
in sharp contrast to existing algorithms for the vanilla set-
ting. The difference between PD-MTB and PD-CTB is that
while PD-MTB works exclusively on a binary tree based
upon the classification of an arms mean above or below
threshold, the sub algorithm Grad-Explore of PD-CTB
bases a binary tree on positive or negative gradient. There-
fore PD-MTB acts as a search for the point the arms cross
threshold while Grad-Explore acts as a search for the
arm k∗ = arg maxk(∆̄k). Another more subtle difference
is that on a ”good decision” at time t - i.e when the sam-
ple means are well concentrated up to ∆̄min, PD-MTB will
make a step in the right direction. The same cannot be said
for Grad-Explore as we can only guarantee that the in-
crements between arms are greater than ∆̄min for arms be-
low threshold, this is a direct result of the concave property.
Therefore the true utility of Grad-Explore is not to find
k∗ but to find any arm k : µk > τ .

It is worth noting that both algorithms described in this pa-
per are parameter free, being adaptive not only to the hard-
ness of the problem characterised by the gaps ∆̄, but also
to the underlying sub-Gaussian assumption parameter σ2.

5.2. Problem classes and optimality

In the monotone and concave settings we consider a very
narrow class of problems and argue our classes are relevant
for characterising the problem dependent regime - i.e. are
narrow enough.

• In the monotone setting this is obvious as the class of
problems is defined by a specific vector ∆̄ ∈ RK+ , so
that all problems in this class have a similar complex-
ity, bear in mind that our algorithms do not need to
know ∆̄min or any aspect of ∆̄. In fact, when con-
structing our lower bound, we just need a class with
two problems where, given a first problem, we simply
switch the arm with minimal gap ∆̄min from below to
above threshold in order to obtain the second problem
- see the proof of Theorem 3.

• In the concave setting this approach is unfeasible as
under the concave constraints the class of problems
defined by a specific vector of gaps ∆̄ ∈ RK+ has very
often cardinality 1 which is nonsensical for a lower
bound. Instead, given a specific vector ∆̄ ∈ RK+ we
consider a class of problems with gaps within a pro-
portional tolerance of ∆̄. This class is designed to be
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as narrow as possible while still containing multiple
problems which disagree on the placement of certain
arms above or below threshold. In fact, when con-
structing our lower bound, we just need a class with
two problems where, starting from a first problem,
we simply flip the arm with minimal gap and trans-
late other means vertically in such a way to preserve
concavity - see the proof of Theorem 3.

In both cases, we prove that for T large enough, the prob-
lem dependent optimal probability of error is of order

exp(−T ∆̄2
min/σ

2),

up to universal multiplicative constants inside and outside
the exponential. This implies that from a problem de-
pendent perspective, both problems are as difficult as a
one armed bandit problem where we just want to decide
whether the arm with minimal gap ∆̄min is up or down the
threshold, which is quite surprising - as the number of arms
plays therefore no role asymptotically. While the lower
bounds are relatively simple, the upper bounds are more
interesting and challenging.

5.3. Comparison of rates between settings

Table 5.3 presents a comparison of results across the prob-
lem independent and dependent regimes. Although the re-
sults are not immediately comparable between the regimes,
of particular interest is the difference in rates across the
monotone and concave settings in the problem indepen-
dent regime compared to the lack of difference between
said rates in the problem dependent regime.

problem: independent dependent

Unconstrained
√

K logK
T exp

(
− T
H

)
Monotone

√
logK∨1

T exp
(
−T ∆̄2

min

)
Concave

√
log logK∨1

T exp
(
−T ∆̄2

min

)
Table 1. Order of the optimal problem dependent probability of
error, and of the problem independent expected simple regret for
the three structured TBP, in the case of all four structural assump-
tions on the means of the arms considered in this paper. All re-
sults are given up to universal multiplicative constants both in and
outside the exponential. The first line concerns the problem inde-
pendent setting and the simple regret, see Cheshire et al. (2020).
The second line concerns the problem dependent setting and the
probability of error, the main focus of this paper. The results for
the monotone and concave are novel and can be found in this pa-
per, see Section 3. The results for the unstructured setting are by
Locatelli et al. (2016), where they take H =

∑K
i=1 ∆̄−2

i

In both the monotone and concave setting an initial lower
bound is one which does not depend upon K - imagine
the setting in which a learner places their entire budget on

the two arms either side of the threshold. We show that
in the problem dependent regime a binary search with cor-
rections can match this bound, up to a log(K) term which
disappears for large T . The intuition behind this is that as
the depth of the tree is only log(K) the binary search can
quickly find the point of interest and spend the majority of
its time there. As both the concave and monotone problems
can be solved with a binary search they therefore have the
same rate.

In the problem independent regime the situation is slightly
more nuanced. In terms of lower bounds one is no longer
restricted to a narrow class of problems and can consider a
number of different problems, all close in terms of distri-
butional distance but nevertheless disagreeing on the clas-
sification of certain arms above or below threshold. The
cardinality of these sets differs between the monotone and
concave setting - being log(K) and loglog(K) respectively.
This then leads to a difference in the lower bound. Upper
bounds naturally must follow suit, while an adaptation of
the standard binary search is still optimal in the monotone
case in the concave case an algorithm using a binary search
on a log scale is required. The above is by no means a rig-
orous explanation but hopefully gives the reader some in-
tuition behind the differences in rates between the problem
dependent and independent regimes, for more detail refer
to Cheshire et al. (2020).
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