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A. Volume and Liouville’s Formula
Let g : Rd → Rd be a function. Given an ODE system ż = g(z) but with a flexibility to choose the starting point, let

Φ(z0, t) be the solution of the ODE system at time t with starting point z0. Given any set A, let A(t) = {Φ(z0, t) | z0 ∈ A}.
WhenA is measurable, under mild conditions on the ODE system,A(t) is measurable and its volume is vol[A(t)] =

∫
A(t)

dv.
Liouville’s formula states that the time derivative of the volume A(t) is equal to the integral of the divergence of the ODE
system over A(t):

d

dt
vol[A(t)] =

∫
A(t)

trace
(
∂g

∂z

)
dv,

where ∂g
∂z is the Jacobian of the ODE system. Note that trace

(
∂g
∂z

)
=
∑d

j=1
∂gj
∂zj

, where gj is the j-th component of the
function g. This immediately implies volume preservation for divergence-free systems.

B. Missing Proofs
Proof of Proposition 4: It suffices to prove the forward (only if) direction, as the other direction is symmetric. By the
definition of passivity, we have La(q(t)) ≤ La(q(0)) +

∫ t

0
〈(x(τ)− x∗,a),p(τ)〉 dτ. This implies

La(q(t)) ≤ La(q(0)) +

∫ t

0

〈
(x(τ)− x∗,b),p(τ)

〉
dτ +

∫ t

0

〈
(x∗,b − x∗,a),p(τ)

〉
dτ

= La(q(0)) +

∫ t

0

〈
(x(τ)− x∗,b),p(τ)

〉
dτ +

〈
(x∗,b − x∗,a), (q(t)− q(0))

〉
.

Thus, by setting Lb(q) := La(q)−
〈
(x∗,b − x∗,a),q

〉
+ c, we have Lb(q(t)) ≤ Lb(q(0)) +

∫ t

0

〈
(x(τ)− x∗,b),p(τ)

〉
dτ ,

certifying passivity of the operator Sb.

Proof of Proposition 6: Suppose that for each action j, the learning operator with shift ej is finitely lossless via storage
function Lj . Then the storage function

∑n
j=1 x

∗
j · Lj can be used to certify finitely losslessness of the learning operator

with shift of the mixed strategy x∗.

Theorem 8 states that finite passivity implies constant regret. The following proposition states that the converse (constant
regret guaranteed implies finite passivity) is also true, if we restrict to lossless learning dynamics.

Proposition 18. Suppose that a learning dynamic is lossless. Then the learning dynamic guarantees constant regret if and
only if it is finitely lossless.

Proof: (⇐) Done by Theorem 8.

(⇒) Suppose the contrary, i.e. the learning algorithm is lossless, but there exists j such that the learning operator with shift
ej is not finitely lossless. Thus, it has a storage function Lj which is not bounded from below, and

Lj(q(t)) = Lj(q(0)) +

∫ t

0

〈x(τ),p(τ)〉 dτ −
∫ t

0

〈ej ,p(τ)〉 dτ.

Following the calculation in the proof of Theorem 8, the regret w.r.t. action j at time t is exactly equal to Lj(q(0))−Lj(q(t)).
Since Lj is not bounded from below, for any r < 0, there exists q̃ such that Lj(q̃) ≤ r. It is easy to construct p such that
q(t) = q(0) +

∫ t

0
p(τ) dτ = q̃; for instance, set p(τ) = (q̃− q(0))/t for all τ ∈ [0, t]. For this choice of p, the regret at

time t is Lj(q(0)) − Lj(q̃) ≥ Lj(q(0)) − r. Since we can choose arbitrarily negative value of r, the learning dynamic
cannot guarantee constant regret, a contradiction.

Proof of Proposition 10: Due to NC2, 〈∇E(q),1〉 = 1, thus
∑n

j=1∇jE(q) = 1. This equality and NC1(i) implies
∇E(q) ∈ ∆n. Now, consider a learning dynamic with conversion function f = ∇E. Then for any function-of-time p and
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any t > 0, we have dE(q(t))
dt = 〈∇E(q(t)), q̇〉 = 〈f(q(t)),p(t)〉 = 〈x(t),p(t)〉. Integrating both sides w.r.t. t shows that

the learning dynamic is lossless via E.

Proof of Proposition 15: To show that the game operator is passive, according to Definition 1 and the input-output choice
of S2 (see Figure 3), it suffices to show that∫ t

0

〈(x̂(τ)− x̂∗), (−p̂(τ))〉 dτ = −
∫ t

0

〈x̂(τ), p̂(τ)〉︸ ︷︷ ︸
V1

dτ +

∫ t

0

〈x̂∗, p̂(τ)〉︸ ︷︷ ︸
V2

dτ ≥ 0.

Recall the definition of c{i,k} in a graphical constant-sum game. Since V1 is simply the total payoffs to all agents, V1 is the
sum of the constants c{i,k} of all edge-games, i.e. V1 =

∑m−1
i=1

∑m
k=i+1 c

{i,k}. We denote this double summation by V . It
remains to show that V2 ≥ V always if we want to show the game operator is passive, and to show that V2 = V always if
we want to show the game operator is lossless.

Let the action set of agent i be Si. We expand V2 = 〈x̂∗, p̂〉 as follows:

〈x̂∗, p̂〉 =

m∑
i=1

∑
j∈Si

x∗ij

m∑
k=1
k 6=i

[Aikxk]j

=

m∑
i=1

m∑
k=1
k 6=i

(x∗i )TAikxk

=

m∑
i=1

m∑
k=1
k 6=i

(xk)T(Aik)Tx∗i (just taking transpose)

=

m∑
i=1

m∑
k=1
k 6=i

[
c{i,k} − (xk)TAkix∗i

]
(definition of constant-sum edge-game)

=

m∑
i=1

m∑
k=1
k 6=i

c{i,k} −
m∑

k=1

m∑
i=1
i6=k

(xk)TAkix∗i

= 2V −
m∑

k=1

m∑
i=1
i 6=k

(xk)TAkix∗i

︸ ︷︷ ︸
Uk︸ ︷︷ ︸

W

.

It remains to bound W2. Observe that for each agent k, Uk is the payoff to agent k when she chooses the mixed
strategy xk, while every other agent i chooses the mixed strategy x∗i . Since the mixed strategies x∗i are coming from a Nash
equilibrium (NE), by the definition of NE, Uk ≤ v∗k, where v∗k is the payoff to agent k at the NE. Thus, W ≤

∑m
k=1 v

∗
k,

where the RHS is the total payoffs to all agents at the NE. Since the game is constant-sum, we have
∑m

k=1 v
∗
k = V . Hence,

V2 = 〈x̂∗, p̂〉 ≥ 2V − V = V .

When the NE is fully-mixed, we have the following extra property: at the NE, for the agent k, her payoff from each of
her actions is the same, and equals to v∗k. Thus, Uk exactly equals to v∗k, hence W =

∑m
k=1 v

∗
k and V2 = V .

C. Poincaré Recurrence
We first formally state the following corollary of Proposition 15 and Theorem 2.

Corollary 19. The FIC system which corresponds to a dynamical game system, in which S1 is any finitely lossless MLO
and S2 is any game operator which corresponds to a graphical constant-sum game with a fully-mixed Nash equilibrium, is
finitely lossless. The storage function that demonstrates finitely losslessness of the FIC system is the same as the storage
function of S1. When the external input r is the zero function, the storage function becomes a constant-of-motion.
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To complete the proof of Theorem 17, we need to show the second property required by the principled approach of
(Mertikopoulos et al., 2018). It relies crucially on the following lemma. Recall that we have defined the following in the
main paper, which converts the storage function for the original learning operator to the storage function of the new learning
operator of (10).

L(q′1, q
′
2, · · · , q′n−1) = L(q′1, q

′
2, · · · , q′n−1, 0), (11)

Lemma 20 (Adapted from (Mertikopoulos et al., 2018), Appendix D). For any continuous FTRL dynamic and for any
x∗ ∈ ∆n, let L be its finitely lossless storage function defined in (8), and let L be the function defined on Rn−1 as in (11).
Then any level set of L is bounded in Rn−1, i.e. for any real number c̄, the set below is bounded:

{ (q′1, · · · , q′n−1)
∣∣ L(q′1, · · · , q′n−1) ≤ c̄ }.

Recall the definition of FTRL and Theorem 7. For each agent i, suppose she uses a convex combination of `i FTRL
dynamics indexed by i1, i2, · · · , i`i. Let the storage functions of these FTRL dynamics be Li1, Li2, · · · , Li`i . Also, let q′,i

denote a vector in Rni−1 for agent i. Then the storage function of the whole dynamical game system is

m∑
i=1

`i∑
j=1

αij · L
ij

(q′,i), where αij > 0, and ∀i,
`i∑

j=1

αij = 1.

Due to Corollary 19, this storage function is a constant-of-motion when r ≡ 0, and thus is bounded by certain constant c̄
when the starting point is already given. Since every Lij and hence L

ij
has infimum zero, we must have: for each agent i,

αi1 · L
i1

(q′,i) ≤ c̄, and hence L
i1

(q′,i) ≤ c̄/αi1. Then by Lemma 20, for each agent i, q′,i(t) remains bounded for all t,
and thus the overall vector q̂′(t) = (q′,1(t),q′,2(t), · · · ,q′,m(t)) also remains bounded for all t.

D. Escort Learning Dynamics
An escort learning dynamic (Harper, 2011) is a system of differential equations on variable x ∈ ∆n: for each 1 ≤ j ≤ n,

ẋj = φj(xj) ·
[
pj −

∑n
`=1 φ`(x`) · p`∑n

`=1 φ`(x`)

]
,

where each φj is a positive function on domain (0, 1). Note that when φj(xj) = xj , this is Replicator Dynamic.

Proposition 21. Suppose a learning dynamic has the following property: if it starts at a point in the interior of ∆n, then it
stays in the interior forever. We have: the learning dynamic is FTRL via a separable strictly convex regularizer function
h(x) =

∑n
i=1 hi(xi) if and only if it is an escort replicator dynamic.

Proof: If the specified learning dynamic is FTRL, recall that the conversion function is
f(q) = arg maxx∈∆n {〈q,x〉 − h(x)}. Let x̄j = 1/h′′j (xj) and H :=

∑
j x̄j . When x is in the interior of

∆n, from Appendix D of (Cheung & Piliouras, 2019), we have

∂xj
∂qj

= x̄j −
[x̄j ]

2

H
and ∀` 6= j,

∂xj
∂q`

= − x̄j x̄`
H

.

By the chain rule,

ẋj =

[
x̄j −

[x̄j ]
2

H

]
· pj +

∑
` 6=j

[
− x̄j x̄`

H

]
p` = x̄j

(
pj −

∑n
`=1 x̄`p`∑n
`=1 x̄`

)
.

By recognizing φ(xj) as x̄j , the FTRL dynamic is an escort replicator dynamic. Precisely, we set φj(x) = 1/h′′j (xj). Since
h is strictly convex, h′′ is a positive function, hence φ is a positive function too.

Conversely, if the specified algorithm is an escort learning dynamic with escort function φj for each j, to show that it is
a FTRL dynamic with some strictly convex regularizer h, we want h to be separable, and for each j, h′′j (xj) = 1/φj(xj).
Thus, it suffice to set hj to be any double anti-derivative of 1/φj . Since h′′j (xj) = 1/φj(xj) is positive, each hi is strictly
convex, and hence h is strictly convex.

E. Some Plots Illuminating Poincaré Recurrences
We present more plots that illuminate Poincaré recurrences of learning in games.
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Figure 6. Poincaré recurrences of Replicator Dynamic (RD) and Online Gradient Descent (OGD; bottom) in the classical two-player
Rock-Paper-Scissors game. Player 1 starts with mixed strategy x1(0) = (0.5, 0.25, 0.25), while Player 2 starts with mixed strategy
x2(0) = (0.6, 0.3, 0.1). The two graphs plot the logarithm of the Euclidean distance between (x1(t),x2(t)) and (x1(0),x2(0)), from
t = 0.1 to t = 500. Every downward spike corresponds to a moment where the flow gets back close to the starting point. In both cases,
the distances drops below 10−3 for multiple times.
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Figure 7. Poincaré recurrence of α ·RD+(1−α) ·OGD in the classical Rock-Paper-Scissors game, for α = 1/4 (top), α = 1/2 (middle)
and α = 3/4 (bottom). The starting point is (x1(0),x2(0)) = ((0.5, 0.25, 0.25), (0.6, 0.3, 0.1)). The graphs plot the logarithm of the
Euclidean distance between (x1(t),x2(t)) and (x1(0),x2(0)), from t = 0.1 to t = 500.


