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Abstract

We present a novel control-theoretic understand-
ing of online optimization and learning in games,
via the notion of passivity. Passivity is a funda-
mental concept in control theory, which abstracts
energy conservation and dissipation in physical
systems. It has become a standard tool in analy-
sis of general feedback systems, to which game
dynamics belong. Our starting point is to show
that all continuous-time Follow-the-Regularized-
Leader (FTRL) dynamics, which include the well-
known Replicator Dynamic, are lossless, i.e. it is
passive with no energy dissipation. Interestingly,
we prove that passivity implies bounded regret,
connecting two fundamental primitives of control

theory and online optimization.

The observation of energy conservation in FTRL
inspires us to present a family of lossless learning
dynamics, each of which has an underlying energy
function with a simple gradient structure. This
family is closed under convex combination; as an
immediate corollary, any convex combination of
FTRL dynamics is lossless and thus has bounded
regret. This allows us to extend the framework
of [Fox & Shamma|(2013])) to prove not just global
asymptotic stability results for game dynamics,
but Poincaré recurrence results as well. Intuitively,
when a lossless game (e.g. graphical constant-sum
game) is coupled with lossless learning dynamic,
their interconnection is also lossless, which re-

sults in a pendulum-like energy-preserving recur-
rent behavior, generalizing (Piliouras & Shamma,
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Lossless Learning Dynamic Physical System
examples Repli.cator Dynamic, . gravity
Follow-the-Regularized-Leader (FTRL) dynamics
state q = [p(t)dt = cumulative payoffs h = vertical height
energy E(q) = storage function V' (h) = (negative) potential energy
gradient of x = VE(q) = F =VV(h) =
energy mixed strategy of the agent gravitational force
convex combination (CC): linear combination (LC):
invariant any CC of storage functions produces any LC of potential energy function is
property a lossless learning dynamic that a potential energy function that yields
yields the same CC of mixed strategies the same LC of gravitational forces
another analogue p = instantaneous payoffs v = velocity
e::lf:gl;fg:a(;fle J . p) dt J(F,v) dt

Figure 1. Analogues between lossless online learning dynamic and physical system. The evolution of a system of learning dynamics can
be thought of as capturing the movements of particles, thus tools from control theory can find direct application in the study of learning
dynamics in games.
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1. Introduction

Online optimization aims at designing algorithms that
can maximize performance in unpredictable and even ad-
versarially evolving environments. The standard bench-
mark for success in these environments is minimizing re-
gret, which is defined as the difference between the accu-
mulated performance of the algorithm and that of the best
action in hindsight. One of the most important achieve-
ments of the field has been to establish that such regret min-
imizing algorithms exist (Cesa-Bianchi & Lugoisi, [2006;
Shalev-Shwartz, 2012). Amongst the most well-known such
algorithms is the class of Follow-the-Regularized-Leader
(FTRL) algorithms, which include as special cases ubiqui-
tous meta-algorithms such as Multiplicative Weights Up-
date (Freund & Schapire, 1999; |Arora et al., [2005) and
Gradient Descent (Shalev-Shwartz, 2012). It is well known
that such algorithms can achieve O(ﬁ ) regret by employ-
ing slowly decreasing step-sizes, and that this bound is
effectively optimal given arbitrary payoff sequences. When
applying such algorithms in games, as the sequence of
payoffs becomes more predictable, stronger regret guaran-
tees are possible (Rakhlin & Sridharan, [2013} |Foster et al.,
2016; [Syrgkanis et al.,|2015; |Bailey & Piliouras, 2019). In
continuous-time model, FTRL dynamics are once again op-
timal, achieving bounded regret in general settings (Kwon
& Mertikopoulos, [2017; Mertikopoulos et al., |2018; Bailey
et al.l 2020). Hence both from the perspective of optimiza-
tion as well as game theory, FTRL constitute effectively an
optimal choice.

Control theory, on the other hand, is motivated by a
seemingly unrelated set of questions. It aims to develop
methodologies for stabilizing complex processes and ma-
chines. Due to its intrinsic connections to real-world sys-
tems, control theory revolves around concepts with a strong
grounding in physical systems. A fundamental property
of numerous physical systems is passivity, which is typi-
cally defined in terms of energy dissipation, conservation
and transformation (Willems, [1972ajb; Ortega et al., [2013)).
Passivity is an “input-output” property of a system, and
expresses that a system which is supplied with bounded
energy can only output bounded energy. Passive systems
come equipped with a storage function that accumulates the
supplied energy but perhaps with some loss (cf. energy loss
due to friction in mechanical systems). Overall, passivity
encodes a useful notion of stability, since such system can-
not explode into unpredictable out-of-control motion as it
would correspond to unbounded energy output.

Although the fields of online optimization and control
theory are both well developed with long and distinct his-
tories, their interconnection is still rather nascent. Online
algorithms can be abstractly thought as input-output opera-
tors where the input is a stream of payoffs, and the output is
a stream of behavioral outcomes. Both notions of regret and

passivity are similar properties of such input-output algo-
rithms/operators, and encode a notion of predictability and
stability around a reference frame. In regret, the reference
frame is given by the cumulative payoffs of past actions, in
passivity by energy level sets. This raises our first questions:

Are there formal connections between regret and
passivity? Moreso, can we interpret the optimal
regret of FTRL dynamics from a passivity per-
spective? Are there similarly optimal learning
dynamics / input-output operators?

Any formal connection across the two fields is clearly
valuable, as it allows for a fusion of ideas and methodolo-
gies between two well-developed fields, and expedite the
progress on areas of interest that are common to both, such
as game theory (Fudenberg & Levinel |[1998;; (Cesa-Bianchi
& Lugoisi, [2006; Marden & Shamma, 2015} |2018). For
related issues on the intersection of learning, control theory
and games, see (Shammal [2020) and the references therein.

Notably, [Fox & Shammal (2013)) proposed a control-
theoretic framework for analyzing learning in games. One
of their key contributions is to identify a modular approach,
where an analysis can be performed by studying a learning
operator (which converts payoff input to strategy output)
and a game operator (which converts strategy input to payoff
output) independently, while the whole game dynamic is
a feedback interconnection system of the two operators
(see Figure[2)). By focusing on coupling learning heuristics
that are strictly passive with passive games (e.g. zero-sum
games), the resulting strictly passive systems were shown to
converge to equilibria, generalizing and unifying numerous
prior results, e.g. (Hofbauer & Sandholm) 2009).

The modular approach has allowed numerous works
which study learning or game operators separately (Mabrok
& Shamma} 2016} |Park et al.l 2018; Mabrok, [2018}; |Gadjov
& Pavel, 2019). Despite this progress, settings of critical
importance for Al such as understanding the perfectly recur-
rent non-equilibrating behaviors of Gradient Descent (and
other FTRL dynamics) in zero-sum games has so far re-
mained outside the reach of these techniques (Piliouras &
Shamma), 2014; Mertikopoulos et al.l 2018; Balduzzi et al.,
2018}, |Vlatakis-Gkaragkounis et al., 2019} [Perolat et al.,
2020). This raises our second question:

Can the pendulum-like cyclic behaviors of FTRL
dynamics in zero-sum games be understood and
generalized via passivity?

Our Contributions. We provide affirmative answers to
both questions raised above. We show that any finitely
passiv learning dynamic guarantees constant regret (The-
orem [§). By using the notion of convex conjugate from

' A finitely passive operator is a passive operator with a storage
function which is bounded from below.
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i p |(merged) learning operator % %
input:

P = payoffs to agents
output: x = mixed strategies of agents

game operator
input:
P |output: p = payoffs to agents x

x = mixed strategies of agents

Figure 2. A feedback interconnection system that captures a game
dynamic, by interconnecting a learning operator and a game opera-
tor. r is (random) perturbation to payoffs; we set it zero here.

convex analysis, we show that any continuous-time FTRL
dynamic is finitely passive and lossless (Theorem [7); the
same holds for certain escort replicator dynamics (Harper,
2011) (see Appendix D). These generalize (Mabrok, [2018)
which showed that Replicator Dynamic is finitely lossless.
Combining the two theorems above immediately recovers
the result in (Mertikopoulos et al. 2018) that any FTRL
dynamic guarantees constant regret. We note that in the
analysis of [Mabrok! (2018), the state space (i.e. the domain
of the storage function) is the space of mixed strategies,
while we turn to a new state space of cumulative payoffs for
FTRL. This choice is crucial for the generalization to FTRL,
and it permits a cleaner proof via tools in convex analysis.

A key observation that enables the above results is that
FTRL dynamic admits a storage function with a simple gra-
dient structure, which will be described formally in Section
[l This motivates us to study a new family of learning dy-
namics, which is in one-one correspondence with the family
of storage functions with that gradient structure. By ob-
serving that such storage functions are closed under convex
combination, we discover that any convex combination of
FTRL dynamics is finitely passive and lossless, and thus
guarantees constant regret (Theorem [I4). “Convex com-
bination of FTRL dynamics” means: Suppose there are k
FTRL dynamics, indexed from 1 to k. When we use the j-th
one, it converts the cumulative payoffs at time ¢ to a mixed
strategy xé. A convex combination of these FTRL dynamics

converts the cumulative payoffs at time ¢ to 2?21 o - x?,

where «;’s are positive constants satisfying 2521 o = 1.

Convex combinations of lossless dynamics are directly
analogous to linear combinations of conservative vector
fields in analyzing physical dynamics (see Figure[I). This
technique is also of practical relevance, since we might want
to mix-and-match different dynamics to elicit their advan-
tages. For instance, different learning dynamics may lean
toward either exploitation or exploration. By combining
them via convex combination with our own choice of a;’s,
we can control our desired balance between exploitation and
exploration (see Example [I2)).

We also show that for every graphical constant-sum
game (e.g. two-person zero-sum game) that admits a fully-

mixed Nash equilibrium, it corresponds to a finitely lossless
game operator (Proposition[T5). Thus, the game dynamic
of any convex combinations of FTRL dynamics in such
a game corresponds to a finitely lossless operator. This
implies that the game dynamic is almost perfectly recurrent,
via the notion of Poincaré recurrence (Theorem[I7). This
distinguishes our work from (Fox & Shammal, 2013) and its
subsequent works about learning in games, as they mostly
concern stability/convergence, while we study recurrence.

Roadmap. In Sections[2]and[3] we present the necessary
background, including the definitions of different operators,
the notions of (lossless) passivity and storage function, and
some basic results about passivity. In Section[d] we show the
desirable properties (finitely losslessness, constant regret)
of FTRL dynamics. In Section[5] we present a characteriza-
tion of lossless learning dynamics via the above-mentioned
gradient structure of storage functions, and we discuss some
properties of convex combinations of such learning dynam-
ics. Poincaré recurrences of learning in graphical constant-
sum games are presented in Section[6] All missing proofs
can be found in the supplementary material.

2. Preliminary

In this section, we define the operators depicted in Figure
[2l We first define learning dynamic and its corresponding
learning operator. When there are multiple agents and each
agent is using one learning dynamic, their learning operators
can be concatenated naturally to form a merged learning
operator. Then we define game operator, whose intercon-
nection with a merged learning operator in the manner of
Figure [2|is called a dynamical game system.

We use a bold lower case to denote a vector variable.
Let Rt := [0,+00) denote the set of non-negative real
numbers. In this paper, every function from R* to R? is
assumed to be square integrable, and we call it a function-
of-time. An (input-output) operator is a mapping whose
input and output are both functions-of-time. Let A™ de-
note the probability simplex over n actions, i.e. A™ =
{1, m) | Yy =15 for 1 < j <m, x; >0}
(a, b) denotes the inner product of the vectors a, b of same
dimension d, i.e. (a,b) = Z?Zl a;b;.

Learning Dynamic and Learning Operator. We focus
on the following type of continuous-time learning dynamics.
An agent has an action set A; let n := |A|. The process
starts at time 0. For any time ¢ > 0 and for each action
j € A, the agent computes the cumulative payoff if she
chooses action j in the time interval [0, ¢], denoted by ¢; (t).
Formally, let p;(7) denote the (instantaneous) payoff to
action j at time 7. Then ¢;(t) := ¢ + fg p;(7) d7, where
q;-) is a constant chosen at the beginning of the process.
Let q(t) := (q1(t), -+ ,gn(t)). For any ¢ > 0, the agent
uses a conversion function f which takes q(t) as input, and
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outputs a mixed strategy x(t) € A™ over the n actions.
The process can be expressed compactly as an ordinary
differential equations (ODE) system:

q(0) =q° (Initial condition)

q(t) =p(t) (Cumulative payoff/state update) (1)
x(t) = f(a(t)).

When q° = (¢¥,...,q°) is already given, the conversion
function f specifies the learning dynamic. The learning
dynamic can be viewed as an operator, which takes the
function-of-time p : RT™ — R™ as input, and the output is
another function-of-time x : R™ — A™,

(Behavioral/strategy output)

Regret. For any p : Rt — R", the regret of a learning
dynamic at time 7" > 0 is

<m/§ [ v dr> [ o) xio

We say a learning dynamic guarantees constant regret if for
any p : R™ — R"™ and any T > 0, the regret at time 7" is
bounded from above by a constant that depends on q° only.

Replicator Dynamic and FTRL Learning Dynamics.
When the conversion function f is the logit choice map

Jfro(q) = <eXIj)\(/.Q1) ) eXIj)\(/%) e eXI;\([q")), 2

where N = 377, exp(q;), the learning dynamic () is
equivalent to the well-known Replicator Dynamic (Hof/
bauer & Sigmund, [1998; |Sandholm) 2010), which is the
continuous-time analogue of Multiplicative Weights Up-
date.

A FTRL learning dynamic is specified by a strictly con-
vex regularizer function h : A™ — R, which determines the
conversion function as below:

fla) = argmax{ (q,x) = h(x) }. 3)
xe n

It is known that Replicator Dynamic is a special case of
FTRL, by setting h(x) = >_7_, x;logz;. Online Gradi-
ent Descent (OGD) is another commonly studied learning
dynamic that is also a special case of FTRL with L? regu-
larization, i.e. h(x) = 3 Y7 (x;)*. (Hazan et al} 2016)
When n = 2, the conversion function of OGD is

(1,0) if g1 — q2
(0,1)

ifqr —qo
((11*!2172“, qré&) otherwise.

A IV
=
c

foap(a) =

Merged Learning Operator. When a system has m > 2
agents, and each agent uses a learning dynamic, we con-
catenate the corresponding learning operators together to
form a merged learning operator (MLO). Precisely, the

input to the MLO is p = (p',--- ,p™), and its output is
% = (x!,---,x™), where x' is the output of the learning
operator of agent i when its input is p’. In this paper, we
use hat notations (e.g. p, X) to denote variables formed by

such concatenations of variables of individual agents.

Game Operator and Dynamical Game System. Here,
we provide a general definition of game operators, and leave
the discussion about graphical constant-sum games, which
appear in our Poincaré recurrence results, to Section [6]

A game has m agents. Each agent ¢ has n; actions. After
each agent chooses a mixed strategy over her own actions,
the game determines a payoff vector p € R™ x --- x R"m,
where pgy is the payoff to action £ of agent k. Let A :=
A™M x ... x A" and P := R™ x ... x R"™_ We can
think of the game as a function G : A — P. Its game
operator takes a function-of-time % : R™ — A as input,
and it outputs a function-of-time p : R™ — P, where
p(t) = G(x(1)).

A dynamical game system (DGS) comprises of m > 2
agents. Each agent uses a learning dynamic of the form (T).
The agents’ learning operators are concatenated to form a
MLO, which has input p = (p!,--- , p™) and output X =
(x!,---,x™) when # = 0. The MLO is interconnected
with a game operator in the manner of Figure[2] The game
operator has input X and output p.

3. Passivity

To motivate the notions of passivity and energy, consider
an electrical network connected to a power source, where
the voltage and current across the network at time 7 are
respectively v(7) and i(7). Let E(¢) denote the energy
stored in the network at time ¢t. We have E(t) < E(0) +
fg v(7) - i(7) dr. The reason for the inequality (but not
an exact equality) is that energy might dissipate from the
network. In this setting, the function-of-time v is the input,
while the function-of-time ¢ is the output, so the network is
indeed an operator.

Passivity of State Space System. To generalize the above
idea to passivity of an ODE system, we need several mathe-
matical notations. Let Ly denote the Hilbert space of square
integrable functions mapping R™ to R™ with inner product:
(F.9)r = Jo (f(D),g(D)) dt. LetLo, := {f : R =
R™ | (f, f) < oo forall T € RT}. An (input-output) op-
erator is simply a mapping S : U = Y, where U,Y C Lo .

We consider the following type of operators, which can
be represented by an ODE system called state space system
(SSS) of the following general form:

N
—~
~
S~—"
I
)
=

(z(t), u(t)); ®)
y(t) = g2(2(t), u(t),
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wherez’ € Z C R%,z: Rt — Z,and u,y : RT — R%.
The set Z is called the set of stafes. As the notations suggest,
u,y are the input and output of this operator respectively.
When u is fed into the operator, the first two equalities de-
fine a well-posed ODE system, so a unique solution of z
exists under mild conditions. Then y is the output deter-
mined by a function go of the unique solution z and the
input u. The learning dynamic (IJ) is such an operator, by
viewing q, p, x, f(q(?)) in (1) as z, u, y, g2(z(t), u(t)) in
(3] respectively. We are ready to present the definition of
passivity for such operators; note its reminiscence with the
motivating example of electrical network.

Definition 1. A SSS is passive if there exists a storage func-
tion L : Z — R such that for all z° € Z, t € R* and all
input-output pairsu € U, y € Y, we have

Le(t) < L)+ [ ur.y()dr ©)

If the equality always holds, then we say the SSS is lossless
passive or simply lossless. If a SSS is passive (resp. lossless)
via a storage function L that has a finite lower bound, we
say it is finitely passive (resp. finitely lossless).

When a SSS is finitely passive/lossless, we may assume,
without loss of generality, that the finite lower bound of its
storage function is zero. We make this assumption on all
finitely passive/lossless SSS in the rest of this paper.

Feedback Interconnection System. In Figure[2] we pre-
sented a feedback interconnection (FIC) system. While it
is intuitive for readers to have a first understanding of the
concept in control theory, for our analysis it is more conve-
nient to use Figure[3] The FIC in Figure [3| consists of two
SSS S1: U — Yand Sy : Y — U, with an external input
source r € U, while its output is y; € Y; note that the FIC
is an operator by definition. The variables are related via:
U =1 —Yy2,y1 = S1(m), uz = y1, and y2 = S2(us).
An important property of passive operators is that pas-
sivity is composable, i.e. the composition of two passive
operators results in a passive system. Intuitively, if no oper-
ator in the system is able to produce energy, then the system
as a whole cannot produce energy either. The theorem below
formally captures this intuition for FIC systems.
Theorem 2 ((Fox & Shammal 2013) Theorem 3.2). Con-
sider the FIC system in Figure[3] Suppose that for i = 1,2,
S; is passive via storage function L;. Then the FIC system is
a passive operator via storage function L1 4+ Lo. Precisely,
forany z9 € 21,29 € Zy andt € RT,

Li(z1(t)) + La(z2(t))

< Ly(2) + Lo(dd) + / (7). y1()) dr.

If S1, S5 are lossless, then the FIC system is lossless via
storage function Ly + Lo, i.e. the inequality above becomes
an equality.

DGS as a FIC system. In the context of DGS, Figure 3]
is obtained after several modifications from Figure [2}

* In Figure |2| the game operator’s output is p, which is
added to 1 to form the MLO’s input. In Figure[3] the game
operator’s output is —p instead, and it is subtracted from
r to form the MLO’s input.

* The MLO’s output is X in Figure [2} but the MLO’s output
in Figurehas a constant shift X* = (x*1,... x*™) €
A. Precisely, the output is X — x*. We call this operator
the “MLO with shift X*”.

* In Figure[3] the game operator’s input is X — X* instead
of X, while its output is —p instead of p.

Basic Results about Passivity of Learning Operators.
By viewing a DGS as a FIC system, we are interested in
MLO and game operators which possess good properties
like passivity. The key advantage of this approach is it per-
mits a DGS to be decoupled into two distinct operators,
which can be analysed separately.

S1 is a MLO. First, we show that it is passive if all
learning operators possessed by the agents are passive. This
allows us to turn our focus to analyzing whether each indi-
vidual learning operator is passive/lossless or not.

Proposition 3. Suppose for each agent i, her learning
operator with shift x*" is passive (resp. lossless) via a
storage function L'. Then the MLO with shift X* =
(x*1,...,x*™) is passive (resp. lossless) via the storage

function Y | L.

By the next proposition, the choice of shift does not
affect passivity of the learning operator. Thus, we say a
learning dynamic is passive when its learning operator with
any shift is passive.

Proposition 4. Let 5%, S? be two learning operators of the
same learning dynamic, with shifts x*%,x*? respectively.
S® is passive (resp. lossless) via storage function L*(q) if
and only if S? is passive (resp. lossless) via storage function
L(q) — ((x** — x*),q) + ¢, where c is any constant.

The above proposition works even when the shifts are
not mixed strategies, e.g. when x*“ is the zero vector. We
use I to denote a storage function of a learning operator
with zero shift, and L to denote a storage function of a
learning operator with a shift of a mixed strategy.

While a shift does not affect passivity, it does affect
whether the learning operator is finitely passive or not. In
order to prove that certain learning dynamics guarantee
constant regret, we need their learning operators with some
specific shifts to be finitely passive. This motivates the
following definition of finitely passive learning dynamics.
Let e; denote the vector with the j-th entry be one, and all
other entries be zero.
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merged learning operator

input: p = payoffs to all agents yi Y1

output: (X—x*) = mixed strategies >
of all agents with shift

game operator uy

input: (% —x*)

output: —p

Figure 3. A FIC system which includes two operators S1 and S2. We assume r = 0 in the discussion below. S; is a merged learning
operator which converts payoffs to mixed strategies of agents with a shift X*, while Sz is a game operator which converts the mixed

strategies of agents (with shift X*) to the negation of payoffs.

Definition 5. A learning dynamic is finitely passive
(resp. finitely lossless) if for every action j, its learning
operator with shift e; is finitely passive (resp. finitely loss-
less).

Proposition 6. If a learning dynamic is finitely passive
(resp. finitely lossless), then for any mixed strategy X*,
the learning operator with shift X* is finitely passive
(resp. finitely lossless).

4. Passivity of Learning Operators
4.1. FTRL Dynamics are Finitely Lossless

We start the analysis by establishing a strong connection
between FTRL dynamics and passivity. Specifically, FTRL
dynamics are finitely lossless.

Theorem 7. Given any FTRL dynamic over n actions and
with regularizer function h, let the convex conjugate of h be

h*(q) := max {(q,x) — h(x)} . @)

XEAN
Then for any x* € A", the learning operator with shift x*
is finitely lossless via the storage function L(q) given below:

L(q) = h*(q) — (g, x") + h(x"). (8)

In particular, for any action j, the learning operator with
shift e; is finitely lossless, and hence any FTRL dynamic is
finitely lossless by Definition 3]

Proof: By the “maximizing argument” identity in p. 149
of (Shalev-Shwartz, 2012), we have Vh*(q(t)) = x(t).
Hence, VL(q(t)) = Vh*(q(t)) — x* = x(t) — x*. By
the chain rule, W = (x(t) — x*,p(¢)), and hence
L(a(t) = L(a(0) + Jy (x(r) = x*,p(r)) dr, certifying
losslessness. Moreover, L is bounded below by zero, since
by the definition of h*, for any q, L(q) = h*(q) — (q,x*)+
h(x*) = ((@,x*) = h(x")) = (q,x") + h(x") = 0. [

We summarize the properties of the operators of FTRL
dynamics with various shifts in Figure ]

FTRL with FTRL with shift of
zero shift a mixed strategy x*
input p (payoff) p
X (mixed x — x*
output
strategy)
state q (cumulative q
payoff)
storage | E(q) =h"(q) | L(q) = h"(q) — (q,x")
function (see (@) + h(x*)
infimum —00 0
property lossless finitely lossless

Figure 4. FTRL learning operators with various shifts.

4.2. Relationship to Regret

Theorem 8. Any finitely passive learning dynamic guaran-
tees constant regret.

Proof: Let L’ denote the storage function of the learning
operator with shift e;. Since the learning dynamic is finitely
passive, we can assume the infimum of L/ is zero. By the
definition of passivity,

Di(a®) < L) + / (x(r) — e, p(r)) dr.

Hence, the regret w.r.t. action j at time ¢ satisfies:

/ (e, p(r)) dr — / (x(r), p(r)) dr
0 0
< L/(q") - L (q(t)) < L/(q").

Thus, the regret up to time ¢ is bounded by max; { L7 (q") },

which is a constant that depends only on the initial state
0

q. O

An immediate corollary of Theorems|[7]and 8] all FTRL
dynamics guarantee constant regret.

Corollary 9 ((Mertikopoulos et al., [2018))). Every FTRL
dynamic guarantees constant regret.
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5. A Characterization of Lossless Learning
Dynamics, and Their Convex Combinations

In Section . 1] we showed that every FTRL dynamic is
lossless. A FTRL dynamic is specified by a convex regular-
izer function h, while the storage function L has an implicit
form in term of h. Here, we ask how we can specify the
storage function directly to generate a lossless learning dy-
namic. Not all storage functions work, so we first seek some
necessary conditions on them. These conditions are stated
using the storage function F of the learning operator with
zero shift. By Proposition[d] the lossless storage function of
the learning operator with shift x* is £(q) — (q,x*) + c.

Suppose there is a lossless learning dynamic in the form
of (T); recall that when q° is already given, the learning
dynamic is specified by its conversion function f. Let E be
the storage function of its learning operator with zero shift.
We present two necessary conditions on F and f.

Necessary Condition 1 (NC1). (i) Forany j = 1,--- | n,
V;E(q) = 0. (i) For any q, VE(q) = f(q).

Reason: Since the learning dynamic is lossless, F(q(t)) =
E(q(0)) + fot (x(1),p(7)) d7. Taking time-derivative
on both sides yields % = (x(t),pt)) =
(f(q(t)),p(t)). On the other hand, by the chain rule,
we have ““G() = (VE(a(t)),4) = (VE(a(), p(1)).
Since these two equalities hold for any p(t) and q(t), they
readily imply VE(q) = f(q) for all q, i.e. condition (ii)
holds. Since f(q) € A™, condition (i) holds.

Necessary Condition 2 (NC2). For any real number r and
anyq, E(q+7-1)=E(q) + 7.

Reason: By NC1, VE(q) = f(q), which is in A™. Thus,
the directional derivative of E along the direction 1 is

(VE(q),1) = (f(a),1) = 1.

Indeed, it is easy to verify that the above two necessary
conditions are also sufficient.
Proposition 10. Any smooth function E(q) which satisfies
NCI(i) and NC2 is a lossless storage function of a learning
operator with no shift. The conversion function f satisfies

fla) = VE(aq).

The family of smooth functions E satisfying NC1(i) and
NC?2 can be represented compactly as

&={E:R" > R|Vq, VE(q) > 0& (VE(q),1) = 1}.

An interesting observation is that this family is closed un-
der convex combination, i.e. if Fy, ..., E, € &, then for
any real numbers «;, ..., a; > 0 such that Zif:l ap =1,
(Z?Zl Q- Eg) € &£. By Proposition , Eq, ..., Ey are
lossless storage functions of some learning operators with
no shift. Suppose the conversion functions are f1, ..., f re-

spectively. Then by Propositionagain, (25:1 ay - E@)

is a lossless storage function of a learning operator with
no shift, with conversion function (Z’Zzl Qyp - fg). This
motivates the following definition.

Definition 11. Given k learning dynamics, each over n ac-
tions, let fo denote the conversion function of the {-th learn-
ing dynamic. Given any non-negative constants o, - -+ , Qi
where Z?Zl ay = 1, the convex combination of the k learn-
ing dynamics with parameters o, --- ,Qy IS a learning

dynamic with conversion function (22:1 ag - fo).

Example 12. Suppose we are using the half-half convex
combination of Replicator Dynamic (RD) and Online Gra-
dient Descent (OGD), and n = 2. Recall the conversion
functions of RD and OGD in @) and (@). Suppose that at
some time t, q(t) = (0.6,0). Then the mixed strategy at
time t with the half-half convex combination is

X(t) = % - frp ((0.6, 0)) + % - foGp ((0.6,0))

1
5 [(0.6457,0.3543) + (0.8,0.2)] ~ (0.7228,0.2772).

~
~

By @), focp(Q) outputs a strategy with zero probability
of choosing action 2 whenever q1 — q2 > 1. In contrast,
fro(Q) maintains a tiny but positive probability of choosing
action 2 even when q1 is much larger than qa. We may
say OGD leans toward exploitation while RD leans toward
exploration. By combining the two learning dynamics via
convex combination with our own choice of o’s, we obtain
a new lossless learning dynamic with our desired balance
between exploitation and exploration.

Convex combination not only preserves losslessness, but
also finitely losslessness. Suppose there are several finitely
lossless learning dynamics. By Definition[3] for every action
J, the storage functions of their learning operators with shift
e; have finite lower bounds. It is easy to verify that for
a convex combination of these lossless learning dynamics,
its learning operator with shift e; is lossless via the same
convex combination of the storage functions mentioned
above. Since the storage functions have finite lower bounds,
their convex combination has a finite lower bound too.

Theorem 13. Given any k lossless (resp. finitely lossless)
learning dynamics, any convex combination of them is a
lossless (resp. finitely lossless) learning dynamic.

Theorems [7} [[3] and [§]lead to the following interesting
theorem.

Theorem 14. Any convex combination of any finitely loss-
less learning dynamics is a learning dynamic that guaran-
tees constant regret. In particular, any convex combination
of any FTRL learning dynamics is a learning dynamic that
guarantees constant regret.

Remark. Note that the family of storage func-
tions that generate finitely lossless learning dynamics
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is {Ee€&|Vj, E(q) —(q,e;) is bounded from below}.
Again, this family is closed under convex combination. By
Theorem[7] the family of FTRL learning dynamics is a sub-
set of the family of finitely lossless learning dynamics. It is
not clear if the two families are equal; we believe not. For
instance, for the half-half convex combination of Replicator
Dynamic and Online Gradient Descent, we cannot find any
regularizer function that validates it is a FTRL dynamic.

6. Lossless DGS and Poincaré Recurrence

We have presented a potentially broad family of (finitely)
lossless learning dynamics. In this section, our focus is on
DGS in which agents use such learning dynamics. We first
prove that for certain graphical constant-sum games, their
game operators are finitely lossless. Thus, for any DGS
comprising of such a game and finitely lossless learning
dynamics, it admits a constant-of-motion by Theorem E]
(when r = 0), i.e. the sum of the two storage function
values is a constant for any ¢ > 0. Then we use this constant-
of-motion and follow a principled approach proposed by
Mertikopoulos et al.| (2018)) to show our main result here:
the DGS is Poincaré recurrent. In the rest of this section,
we first define graphical constant-sum game and Poincaré
recurrence, then we apply the principled approach to prove
our main result.

Graphical Constant-sum Game. There are m agents.
Each agent ¢ has n; actions. In a graphical game (Kearns
et al.} 2001), there is a normal-form (matrix) game between
every pair of agents, which we call an edge-game. The
edge game between agents i, k is specified by two matrices,
A ¢ R > and AF" € R™**™ When each agent k # i
chooses a mixed strategy x; € A", the payoff vector of
agent 4, which contains the payoff to each action of agent ¢,
is the sum of the payoff vectors in all her edge-games, i.e.

pi = Z

1<k<m, k#i

A x, 9)

A graphical constant-sum game (Daskalakis & Papadim;
itriou} 2009) is a graphical game such that for every pair
of agents {i,k}, there exists a constant ¢!} satisfying
A+ A= ctbk} for any action j of agent 4 and action /
of agent k.

Game Operator. Recall that a game operator has an input
of mixed strategies of different agents with shift x*, while
the output is the negative of the cumulative payoff vector
to different actions. We point out one useful fact, which
follows quite readily from (Piliouras & Shamma, [2014).

Proposition 15. If x* is a Nash equilibrium of a graphical
constant-sum game, then the game operator with shift X* is
passive; the storage function is the zero function. Moreover,
if X* is fully-mixed (i.e. every entry in X* is positive), then
the game operator is lossless via the zero storage function.

When the game is lossless, by Theorem[2] if it is coupled
with passive (resp. lossless) learning dynamics, then the
DGS is passive (resp. lossless).

Poincaré Recurrence. In a DGS, p is a function of x
via the game operator, while X is a function of q via the
conversion function. Thus, p is a function of q. We say
the ODE system (1) is divergence-free if 331" | 3. g’; s
zero everywhere. When p is derived using a graphical game
via (9), p;; does not depend on ¢;; since for every k # 1,
Xy is a function of qj only. Thus, the game dynamic is
divergence-free.

Intuitively, an ODE system is Poincaré recurrent if al-
most all trajectories return arbitrarily close to their initial
position infinitely often. In order to work formally with the
notion of Poincaré recurrence, we need to define a measure
on R™. We use the standard Lebesgue measure on R™. Li-
ouville’s formula states that divergence-free ODE system
preserves volume (Weibull,[1995) (see Appendix[E]for more
discussion of volume and Liouville’s formula). Thus, the
following Poincaré Recurrence Theorem is applicable if its
bounded-orbit requirement is satisfied.

Theorem 16 ((Poincarél [1890; Barreira, [2006)). If a trans-
formation preserves volume and has bounded orbits, then it
is Poincaré recurrent, i.e. for each open set there exist orbits
that intersect this set infinitely often.

Given any € > 0, we can cover R” by countably many
balls of radius €, and apply the theorem to each ball. We
conclude that almost every point returns to within an e neigh-
bourhood of itself. Since ¢ > 0 is arbitrary, we conclude
that almost every initial point is almost recurrent.

Poincaré Recurrence in DGS. Recall that in each learn-
ing operator of a DGS, the state is represented by a vector
q € R", which represents the cumulative payoffs. Clearly,
it can be unbounded as time goes even in a graphical con-
stant sum gameﬂ thus prohibiting us to use Theorem
Instead, as in (Mertikopoulos et al.,|2018)), we consider a
transformation that maps q = (q1, ..., ¢n) to

(q/lv qg’ T 7q’;7,71) = (QI —qns---yqn-1 — qn) e RN
It is well-known that for any FTRL dynamic with starting
point @° = (¢, ..., ") and conversion function f : R" —
A", it is equivalent to the following dynamic with state vari-
ablesq’ = (¢},...,q, 1) € R" !, whereas1 < j <n—1:

;(0) = ¢} —ap
q;(t) = p;(t) — palt)
x(t) = fla1(t),e2(), -, ¢_1(1),0).

Given a mixed strategy x*, if we cast the output of the
above dynamic to be (z1(t) — 7, *

(10)

yn—1(t) — x5 _1),

2For instance, this happens for a two-person zero-sum game
with every payoff entry to agent 1 is strictly positive.



Online Optimization in Games via Control Theory: Connecting Regret, Passivity and Recurrence

then it is easy to verify that the learning operator is
finitely lossless via the storage function L(q},...,q, 1) =
L(g}, - ,q,_1,0), where L is the storage function of the
original learning operator with shift x*.

Theorem 17. Poincaré recurrence occurs in the strategy
space A for any dynamical game system where (1) each
agent employs a learning dynamic which is a convex combi-
nation of FTRL; and (2) the underlying game is a graphical
constant-sum game with a fully-mixed Nash equilibrium.

See Figure |5| for an example of Poincaré recurrence
under conditions (1) and (2). To prove the theorem, we
first show that Poincaré recurrence occurs in the space that
contains ¢’ (¢’ is the concatenation of the ¢ of all agents).
This comprises of two major steps:

* The dynamic preserves volume, since the dynamic is
divergence-free.

* For any starting point ¢'(0), the dynamic remains bounded.
To show this, we use the fact that L is a constant-of-
motion of the game dynamic, so for any ¢ > 0, ¢'(¢)
must stay within a level set of L, which is bounded (see
Appendix [C).

Poincaré recurrence in the space that contains §’ implies
Poincaré recurrence in the strategy space A, since the con-
version function in (I0) is continuous.

7. Conclusion

We present a control-theoretic perspective to understand-
ing popular learning dynamics like FTRL and escort replica-
tor dynamics. At the heart of it is the use of storage (energy)
functions to govern how the dynamic turns history of pay-
offs to strategic choices. This mirrors the study of physical
dynamics, e.g. electrical networks (Khalil, 2015). Analy-
sis via storage functions permits us to prove optimal regret
bounds and inspires interesting generalizations of FTRL via
convex combinations.

An important benefit of these control-theoretic tools
is they allow decoupling of game dynamics into learning
operators and game operators. This provides a framework
to understand learning-in-games via a modular approach,
by analyzing these operators separately. This technique can
liberate us from analyzing each individual learning-in-game
system in ad-hoc manner.

In our work, we initiate the study of connections
between online optimization and control theory with
continuous-time learning dynamics. An interesting problem
is how such a connection can be generalized to discrete-time
learning algorithms, e.g. Multiplicative Weights Update and
its optimistic variant (Bailey & Piliouras| 2018; |Cheung]
2018} |Daskalakis & Panageas|, [2019} |Cheung & Piliouras|
2020). There does exist theory that generalizes passivity

Figure 5. The trajectories of learning in a graphical constant-sum
game called Cyclic Matching Pennies. In this game, there are three

agents, each has two actions. A2 = A = A3 = [(1) (1)],

-1 0

0 -1
of the three agents are denoted by (21,1 — z1), (z2,1 — x2) and
(z3,1 — x3) respectively. All trajectories start with 1 = 0.9,
z2 = 0.88 and x3 = 0.4 (the black dot in the figure). The
trajectories are simulated when all agents use Replicator Dynamics
(blue), Online Gradient Descent (Black), and half-half convex
combination of the former two dynamics (red) respectively. All
trajectories are recurrent.

while A?' = A%2 = A3 = } The mixed strategies

to discrete-time settings (Desoer & Vidyasagar, [1975)). We
hope our work inspires further studies in this direction.

Lastly, we believe that this control-theoretic perspec-
tive is also useful for understanding learning dynam-
ics/algorithms which are not always passive. The perspec-
tive can help us spot under which situations the learning
dynamics/algorithms create or dissipate energy. By avoid-
ing situations where energy is created, it is possible that we
can achieve stable outcomes in learning processes.
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