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Abstract

We study the problem of differentially private
(DP) matrix completion under user-level privacy.
We design a joint differentially private variant
of the popular Alternating-Least-Squares (ALS)
method that achieves: i) (nearly) optimal sam-
ple complexity for matrix completion (in terms of
number of items, users), and ii) the best known pri-
vacy/utility trade-off both theoretically, as well as
on benchmark data sets. In particular, we provide
the first global convergence analysis of ALS with
noise introduced to ensure DP, and show that, in
comparison to the best known alternative (the Pri-
vate Frank-Wolfe algorithm by Jain et al. (2018)),
our error bounds scale significantly better with
respect to the number of items and users, which
is critical in practical problems. Extensive vali-
dation on standard benchmarks demonstrate that
the algorithm, in combination with carefully de-
signed sampling procedures, is significantly more
accurate than existing techniques, thus promising
to be the first practical DP embedding model.

1. Introduction
Given M ij , (i, j) ∈ Ω where Ω ⊆ [n]× [m] is a set of ob-
served user-item ratings, and assuming M ≈ U∗(V ∗)> ∈
Rn×m to be a nearly low-rank matrix, the goal of low-rank
matrix completion (LRMC) is to efficiently learn Û ∈ Rn×r
and V̂ ∈ Rm×r, such that M ≈ Û V̂ >.

LRMC, a.k.a. matrix factorization, is a cornerstone tech-
nique for building recommendation systems (Koren & Bell,
2015; Hu et al., 2008), and though proposed over a decade
ago, it remains highly competitive (Rendle et al., 2019).
In the recommendation setting, M represents a mostly un-
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known user-item ratings matrix and Û and V̂ capture the
user and item embeddings. Using the learned (Û , V̂ ), the
system computes rating predictions M̂ ij = (Û V̂ >)ij to
recommend items for the users. To ensure good generaliza-
tion, one would set the rank r � min(m,n).

Such models, while highly successful in practice, have the
risk of leaking users’ ratings through model parameters or
their recommendations. The privacy risk of similar models
has been well documented, and the protection against it has
been intensively studied (Dinur & Nissim, 2003; Dwork
et al., 2007; Korolova, 2010; Calandrino et al., 2011; Shokri
et al., 2017; Carlini et al., 2019; 2020a;b; Thakkar et al.,
2020). In this paper, we focus on learning user and item
embeddings, and consequently user-item recommendations,
while ensuring privacy of users’ ratings.

We conform to the well-established formal notion of dif-
ferential privacy (DP) (Dwork et al., 2006a;b) to protect
users’ ratings. We operate in the setting of user-level pri-
vacy (Dwork & Roth, 2014; Jain et al., 2018), where we in-
tend to protect all the ratings by the user, a much harder task
than protecting a single rating from the user (a.k.a. entry-
level privacy) (Hardt & Roth, 2013; Meng et al., 2018).
Note that user-level privacy is critical in this problem, as
the ratings from a single user tend to be correlated and can
thus be used to fingerprint a user (Calandrino et al., 2011).
As is standard in the user-level privacy literature (Jain et al.,
2018), we estimate the shared item embeddings V̂ while
preserving privacy with respect to the users. In contrast,
each user independently computes their embedding (a row
of Û ) as a function of their own ratings and the privacy
preserving item embeddings V̂ . Formally, this setup is
called joint differential privacy (Kearns et al., 2014), and it
is well-established (Hardt & Roth, 2012; 2013) that such a
relaxation is necessary to learn non-trivial recommendations
while ensuring user-level privacy.

While several works have studied LRMC under joint-
differential privacy (McSherry & Mironov, 2009; Liu et al.,
2015; Jain et al., 2018), most of the existing techniques do
not provide satisfactory empirical performance compared
to the state-of-the-art (SOTA) non-private LRMC methods.
Furthermore, these works either lack a rigorous performance
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analysis (McSherry & Mironov, 2009; Liu et al., 2015) or
provide guarantees that are significantly weaker (Jain et al.,
2018) than that of non-private LRMC algorithms. Matrix
factorization can also be solved using other first-order meth-
ods such as stochastic gradient descent (Ge et al., 2016)
or alternating gradient descent (Lu et al., 2019), so one
may apply the differentially private SGD (DPSGD) algo-
rithm (Song et al., 2013; Bassily et al., 2014; Abadi et al.,
2016) to achieve privacy. However, applying DPSGD to
LRMC is challenging as SGD typically requires many steps
to converge, thus increasing privacy cost.

In this work, we design and analyze a differentially pri-
vate version of the widely used alternating least squares
(ALS) algorithm for LRMC (Koren et al., 2009; Jain et al.,
2013). ALS alternates between optimizing over the user
embeddings Û and the item embeddings V̂ , each through
least squares minimization. One important property of ALS
is that when solving for one side, the optimization can be
done independently for each user or item, which makes ALS
highly scalable. Our key insight is that this decoupling of the
solution is also useful for privacy-preserving computation,
since there is no accumulation of noise when solving for the
embeddings of different users (or items). Besides, ALS is
known to require few iterations to converge in practice, mak-
ing it particularly suitable for privacy preserving LRMC.

Indeed, we present a differentially private variant of ALS,
which we refer to as DPALS, and demonstrate that it enjoys
much tighter error rates (see Table 1) and better empirical
performance than the current SOTA, the differentially pri-
vate Frank-Wolfe (DPFW) method of Jain et al. (2018). Fur-
thermore, on the large scale benchmark of MovieLens 20M,
DPALS produces the first realistic DP embedding model
with competitive recall metric under moderate privacy loss.

More specifically, our contributions are the following.

Private alternating least squares for matrix completion.
We provide the first differentially private version of alter-
nating least squares (DPALS) for matrix completion with
user-level privacy guarantee (Section 3). The algorithm is
conceptually simple, efficient, and highly scalable. We pro-
vide rigorous analysis on its privacy guarantee under the
notion of Joint Rényi Differential Privacy.

Tighter privacy/utility/computation trade-offs. We
prove theoretical guarantees on the sample complexity and
the error bounds of DPALS under standard assumptions
(Section 4). These bounds are much tighter than the cur-
rent SOTA, the DPFW method (Jain et al., 2018). In par-
ticular, we show the following. First, DPALS requires
only O(logO(1) n) samples per user to guarantee its con-
vergence. In contrast, DPFW requires

√
m ratings per user.

Second, to achieve a Frobenius norm error of ζ, DPALS
requires n = Ω̃

(
m
√
m

ζε +m
)

users, which is nearly op-

Table 1. Sample complexity bounds for various algorithms, assum-
ing constant Frobenius norm error. Here, n is the number of users,
m is the number of items, and Ω̃(·) hides polylog(n,m, 1/δ). (*)
assumes additional property of M being incoherent. Private ALS
requires initialization specified in Theorem 2. See Remark 2 for
an initialization scheme; Private ALS with such an initialization
preserves the sample complexity but requires n = Ω̃(m

√
m).

Algorithm Bound on n Bound on |Ω|/n Iterations
Trace Norm (*) (non-priv.)

(Candès & Recht, 2009) Ω̃(m) Ω̃(log2 n) poly(n,m)

ALS (*) (non-priv.) (Jain et al., 2013) Ω̃(m) Ω̃(log2 n) polylog(n,m)

Private SVD(*)
(McSherry & Mironov, 2009) - - -

Private SGLD (Liu et al., 2015) - - -
Private FW (Jain et al., 2018) Ω̃(m5/4) Ω̃(

√
m) poly(n,m)

Private ALS (*) (this work) Ω̃(m) Ω̃(log3 n) polylog(n,m)

timal in terms of ζ and ε. In contrast, DPFW’s sample
complexity is n = Ω̃

(
m5/4/(ζ5ε)

)
; note a significant im-

provement in terms of ζ. Finally, Private SVD (McSherry
& Mironov, 2009) is not even consistent, i.e., for a fixed
ε,m, |Ω| = n

√
m, even if we scale n→∞, the Frobenius

norm error bound does not converge to 0 (see Theorem B.3
of Jain et al. (2018)).

Practical techniques to improve accuracy. One main dif-
ficulty in applying DPALS to practical problems comes
from a heavy skew in the item distribution. We propose two
heuristics to reduce the skew while preserving privacy (Sec-
tion 5). Experiments on real-world benchmarks show that
these techniques can significantly improve model quality.

Strong empirical results using DPALS. We carry out an
extensive study of DPALS both on synthetic and real-world
benchmarks. Aided by the aforementioned practical tech-
niques, DPALS achieves significant gains over the current
SOTA method. In particular, on the MovieLens 10M rating
prediction benchmark, DPALS achieves the same error rate
as the current SOTA even when trained on a small frac-
tion (23%) of users. When trained on the full set of users, it
achieves a relative decrease in RMSE of at least 7%. DPALS
also achieves a remarkably good performance on the Movie-
Lens 20M item recommendation benchmark with modest
privacy loss, and remains competitive even with non-private
ALS, the first DP private embedding model to achieve such
strong results.

2. Background
2.1. Notation

Let [m] denote the set {1, 2, · · · ,m}. Let Rn×m denote the
set of n×m matrices. Throughout the paper, we use bold
face uppercase letters to represent matrices and lowercase
letters for vectors. For any matrix A = (Aij) ∈ Rn×m, let
Ai be the i-th row vector of A. Denote by ‖A‖F , ‖A‖∞
the Frobenius norm and the max norm of A. For Ω ⊆ [n]×
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[m], define the projection PΩ(A) ∈ Rn×m as PΩ(A)ij =
Aij if (i, j) ∈ Ω and 0 otherwise. For i ∈ [n], define
Ωi := {j : (i, j) ∈ Ω}. Similarly, for j ∈ [m], let Ωj =
{i : (i, j) ∈ Ω}. For u,v ∈ Rr, we use u ·v ∈ R to denote
their dot product, and u⊗ v ∈ Rr×r for their outer product.

2.2. Matrix Completion, Alternating Least Squares

Let M ∈ Rn×m be a rank r matrix, such that each entry
M ij (i ∈ [n], j ∈ [m]) represents the preference/affinity of
user i for item j. Given a set of observed entries PΩ(M),
Ω ⊆ [n]× [m], the goal of LRMC is to reconstruct M with
minimal error. This can be achieved by finding Û ∈ Rn×r
and V̂ ∈ Rm×r such that the regularized squared error
‖PΩ

(
M − Û V̂ >

)
‖2F + λ‖Û‖2F + λ‖V̂ ‖2F is minimized.

This minimization problem is NP-hard in general (Hardt
et al., 2014). But the alternating least squares (ALS) algo-
rithm has proved to work well in practice.

ALS alternatingly computes Û , V̂ by minimizing the above
objective while assuming the other embeddings fixed. Each
alternating step can be solved efficiently through the stan-
dard least squares algorithm with the following closed form
solution.

∀i Û
t

i = (λI +
∑
j∈Ωi

V̂
t

j ⊗ V̂
t

j)
−1
∑
j∈Ωi

M ijV̂
t

j , (1)

∀j V̂
t+1

j = (λI +
∑
i∈Ωj

Û
t

i ⊗ Û
t

i)
−1
∑
i∈Ωj

M ijÛ
t

i. (2)

While ALS does not guarantee convergence to the global
optimum in general, it works remarkably well in practice
and often produces Û and V̂ such that Û V̂ > is a good
approximation of M . The practical success of ALS has in-
spired many theoretical analyses, which make the following
additional assumptions on M and Ω.

Assumption 1 (µ-incoherence). Let M = U∗Σ∗(V ∗)>

be the singular value decomposition of M , i.e. U∗ ∈
Rn×r,V ∗ ∈ Rm×r are orthonormal matrices, and Σ∗ ∈
Rr×r is the diagonal matrix of the singular values of M .
We assume that M is µ-incoherent, that is, ∀i ∈ [n],
‖U∗i ‖2 ≤

µ
√
r√
n

; and ∀j ∈ [m],
∥∥V ∗j∥∥2

≤ µ
√
r√
m

.

Assumption 2 (Random Ω). We assume that Ω are random
observations with probability p, that is, Ω = {(i, j) ∈
[n]× [m] : δij = 1}, where δij ∈ {0, 1} are i.i.d. random
variables with Pr[δij = 1] = p.

Jain et al. (2013); Hardt & Wootters (2014) showed that ALS
converges to M with high probability if M is µ-incoherent
and p = Ω̃

(
logn
m

)
, where n ≥ m and Ω̃ hides polynomial

dependence on µ, r, κ := σ∗1/σ
∗
r , with σ∗1 , σ∗r being the

maximum and minimum singular value of M . In this work,
we make the same assumptions on M and Ω. Our key
theoretical contribution is a similar convergence result for

DPALS, under the additional requirements of user-level
differential privacy.

2.3. Joint Differential Privacy

Differential privacy (Dwork et al., 2006b;a) is a widely
adopted privacy notion. We use the variant of user-level
joint differential privacy (Joint DP). Intuitively, Joint DP
requires any information which may cross different users
to be differentially private, but allows each individual user
to use her own private information to her full advantage,
for example, when computing the embeddings for generat-
ing recommendations to herself. This notion was already
implicit in (McSherry & Mironov, 2009) and made formal
in (Kearns et al., 2014; Jain et al., 2018).

Let D = {d1, . . . , dn} be a data set of n records, where
each sample di is drawn from a domain τ and belongs to
individual i (which we also refer to as a user). Let A :
τ∗ → Sn be an algorithm that produces n outputs in some
space S, one for each user i. Let D−i be the data set with
the i-th user removed, and let A−i(D) be the set of outputs
without that of the i-th user. Also, let (di;D−i) be the data
set obtained by adding di (for user i) to the data set D−i.
Joint DP and its Rényi differential privacy (Mironov, 2017)
(Joint RDP) variant are defined as follows.
Definition 3 (Joint Differential Privacy (Kearns et al.,
2014)). An Algorithm A is (ε, δ)-jointly differentially pri-
vate if for any user i, for any possible value of data entry
di, d

′
i ∈ τ , for any instantiation of the data set for other

users D−i ∈ τn−1, and for any set of outputs S ⊆ Sn, the
following two inequalities hold simultaneously:

Pr
A

[A−i((di;D−i)) ∈ S] ≤ eε Pr
A

[A−i(D−i) ∈ S] + δ

Pr
A

[A−i(D−i) ∈ S] ≤ eε Pr
A

[A−i((di;D−i)) ∈ S] + δ.

An algorithm A is (α, ε)-joint Rényi differentially private
(Joint RDP) if Dα (A−i((di;D−i))||A−i(D−i)) ≤ ε and
Dα (A−i(D−i)||A−i((di;D−i))) ≤ ε, where Dα is the
Rényi divergence of order α.

If we replaceA−i withA in the definition, we would recover
the standard definition of DP and RDP. We note that the
joint DP (resp. joint RDP) enjoys the same composability
properties as the notion of DP (resp. RDP).

3. DPALS: Private Alternating Least Squares
We now provide the details of the DPALS algorithm and
prove its privacy guarantee in the joint DP model.

Notation. LetN (0, σ2) be the Gaussian distribution of vari-
ance σ2, andNsym(0, σ2)r×r be the distribution of symmet-
ric matrices where each entry in the upper triangle is drawn
i.i.d. from N (0, σ2). For a symmetric A, let ΠPSD (A)
be its projection to the positive semi-definite cone, ob-
tained by replacing its negative eigenvalues with 0. Define
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Algorithm 1 DPALS: Private Matrix Completion via Alter-
nating Minimization
Required: Observed ratings: PΩ(M), σ: noise standard
deviation, Γu: row clipping parameter, ΓM : entry clipping
parameter, T : number of steps, λ: regularization parameter,
r: rank, k: maximum number of ratings per user in Aitem ,
V̂

0
: initial V .

1 Clip entries in PΩ(M) so that ‖PΩ(M)‖∞ ≤ ΓM

for 0 ≤ t ≤ T do
for 1 ≤ i ≤ n do

2 Û
t

i ← Auser (V̂
t
,Ωi,PΩ(M)i, T, λ,Γu)

end
3 Û

t
← [Û

t

1, · · · , Û
t

n]>

4 if t = T then
break;

end

5 V̂
t+1
← Aitem (Û

t
,Ω,PΩ(M), k, λ,Γu,ΓM )

end

6 return Û
T
, V̂

T

Procedure Aitem (U , Ω, PΩ(M), k, λ, Γu, ΓM )
7 Ω′ ← up to k random samples of (i, j) ∈ Ω, ∀i ∈ [n].

for 1 ≤ j ≤ m do
8 Gj ← Nsym

(
0,Γ4

u · σ2
)r×r

9 gj ← N
(
0,Γ2

uΓ2
M · σ2

)r
10 Xj ← λI +

∑
i∈Ω′j

U i ⊗U i + Gj

11 V j ← ΠPSD (Xj)
+
(∑

i∈Ω′j
M ij ·U i + gj

)
end

12 Ṽ = [V 1, · · · ,V m]>

13 return V = Ṽ (Ṽ
>
Ṽ )−1/2

Procedure Auser (V , Ωi, PΩ(M)i, T , λ, Γu)
14 Ω′i ← random samples of 1/T fraction of j ∈ Ωi
15 u← (λI +

∑
j∈Ω′i

V j ⊗ V j)
−1 ∑

j∈Ω′i
M ijV j

16 return clip (u,Γu)

clip (u, c) = u ·max(1, c/‖u‖2), i.e., the projection of u
on an `2 ball of radius c. Let A+ be the pseudoinverse of A.

3.1. Algorithm

The private alternating least squares algorithm, DPALS,
is described in Algorithm 1. It follows the standard ALS
steps, i.e. it alternatingly solves the least squares problem
to obtain Û and V̂ using (1) and (2). To guarantee joint DP,
we compute differentially private item embeddings V̂ t+1

(using procedure Aitem ) by solving a private variant of (2),
and compute each row of Û t+1 independently without any
noise using procedure Auser . A block schematic of the
algorithm is presented in Figure 1.

User 1 User 2 User 𝑛
Compute 

$𝑼!" using ratings 
𝑃# 𝑴 ! and $𝑽

Compute 
$𝑼$" using ratings 
𝑃# 𝑴 $ and $𝑽

Compute 
$𝑼%" using ratings 
𝑃# 𝑴 % and $𝑽

𝒜&'() 𝒜&'() 𝒜&'()

𝒜*+(,: Privately solve

argmin!𝑽||𝑃# 𝑴− +𝑼 +𝑽$ ||%& +𝑽

Output

Broadcast

......

Figure 1. Block schematic of Joint differentially private alternating
least squares algorithm. Solid lines and boxes represent privileged
computations not visible to an adversary or other users. Dashed
boxes and lines are public information accessible to anyone.

Here we describe how the privacy is guaranteed in Aitem ;
see Theorem 1 for a formal statement. For a given j ∈
[m], write Ht

j = λI +
∑
i∈Ωj

Û t
i ⊗ Û t

i and wt
j =∑

i∈Ωj
M ijÛ

t
i. Then the non-private update (2) can be

written as V̂ t+1
j =

(
Ht

j

)−1
wt
j . In the private version,

we need to add noise to protect both Ht
j and wt

j . To en-
sure sufficient noise, we limit the influence of each user by
“clipping” each Û t

i to a bounded `2 norm Γu (Line 16 in
Auser ) and resampling Ω such that each user participates in
at most k items’ computation (Line 7 in Aitem ). We then
apply the Gaussian mechanism to Ht

j and wt
j before using

them to compute V̂ t+1
j in Aitem (Lines 9–12).

While the above procedure is sufficient to guarantee privacy,
we need a few additional modifications for the stability of
the algorithm and the utility analysis.

Initialization. Random initialization has worked well for
our empirical study. For our utility analysis, we need V̂

0
to

be reasonably close to V ∗ (in terms of spectral norm). One
can compute this by estimating the rank-r top singular sub-
space of the matrix A = PΩ(M)TPΩ(M) while preserving
differential privacy.

Sampling from Ω. To ease the analysis, we require the
observed values to be independent across different steps.
This is achieved by resampling from Ω at the beginning of
Aitem (Line 7) and Auser (Line 14). The sampling in Aitem

is more important as it also limits the number of items per
user, for privacy purposes. In practice, we omit the sampling
in Auser , and sample only once for Aitem . The sampling
distribution used in the latter has a significant impact in
practice, as discussed in Section 5.1.

Projection to the PSD cone. In our analysis, we show that
Xj (Line 10) is positive definite with high probability. In
practice, we project Xj = Hj + Gj to the PSD cone to
improve stability of the algorithm. This has a significant
impact on performance in practice, as discussed in Section 6.
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3.2. Computational Complexity

The computational complexity of DPALS is comparable to
that of ALS, which is known to be scalable to very large
matrices. More precisely, the V step of ALS involves com-
puting Ht

j and wt
j , in O(|Ω′|r2), then solving the m linear

systems V̂ t+1
j =

(
Ht

j

)−1
wt
j in O(mr3), for a total com-

plexity of O(|Ω′|r2 +mr3) (and similarly for the U step).
Given that the rank r is typically a small constant, this scales
linearly in the number of observations |Ω′| and the number
of items m. In the private version (Auser ), the only addi-
tional operations are forming the noise matrices (Lines 8–9)
in O(mr2), and projecting Xj on the PSD cone (Line 11),
in O(mr3), so the total complexity per iteration is the same
as ALS in big-O notation.

In comparison, the complexity of the DPFW method is
O(m2 + |Ω′|k), and can be reduced to O(Γ(m + |Ω′|))
using a more efficient stochastic approximation. The per-
iteration complexity also scales linearly inm and |Ω′|. Even
though the per-iteration complexity of DPFW and DPALS
are comparable, DPALS converges in much fewer iterations
(see Appendix D.4 for an example), which makes it more
scalable in practice.

3.3. Privacy Guarantee

We now provide the privacy guarantee for DPALS. As each
subroutine in DPALS is a variant of the Gaussian mecha-
nism, we can apply the Rényi accounting (Mironov, 2017)
and convert to (ε, δ)-DP. See Appendix A for the proof.

Theorem 1 (Privacy guarantee). With random initialization

of V̂
0
, Algorithm 1 is

(
α, αρ2

)
-joint RDP with ρ2 = kT

2σ2 .
Hence for any ε > 0 and δ ∈ (0, 1), Algorithm 1 is (ε, δ)-

joint DP if we set σ =

√
(2kT )(ε+ln(1/δ))

ε .

The guarantee holds for all values of the parameters Γu,
ΓM , T , λ, r, k. Note in particular that the scale of the
noise (Lines 8–9 in Algorithm 1) is normalized so that the
expression of σ in Theorem 1 does not depend on Γu, ΓM .
Remark 1. Given a target (ε, δ), the parameters k, T di-
rectly determine σ, and are important parameters to tune in
practice, alongside other hyper-parameters such as λ. For
instance, a larger k means sampling more data per user (po-
tentially improving model quality), but also requires more
noise (potentially degrading model quality).

4. Convergence Guarantee for DPALS
We now show that under standard low-rank matrix com-
pletion assumptions (Assumptions 1 and 2), Algorithm 1,
with the noisy power method initialization, solves the matrix
completion problem accurately.

Theorem 2. Suppose that M is a µ-incoherent rank-r ma-

trix, and Ω consists of random observations with probability
p. Let κ := σ∗1/σ

∗
r be the condition number of M , where

σ∗1 ≥ · · ·σ∗r > 0 are the singular values of M .

There exists a universal constant C > 0, such that for
all δ ∈ (0, 1), ε ∈ (0, ln(1/δ)), if p ≥ µ6κ12r6 · log3 n

m

and
√
pn ≥ C γ log(1/δ)

ε , where γ = Cκ6µ3r2
√
m ·

log2(κ · n), then DPALS, initialized with V 0 s.t. ‖(I −
V ∗(V ∗)>)V 0‖ ≤ C

κ2r2 lnn , with parameters k = C ·

m · p log n, T = log(µκn/ε), σ =
C
√
kT ln(1/δ)

ε , Γu =
Cµσ∗1

√
r√

n
, ΓM =

µ2rσ∗1√
mn

and λ = 0, returns Û
T

and V̂
T

such that the following holds:

• The distribution of (Û
T
, V̂

T
) satisfies (ε, δ)-joint DP.

• ‖M−Û
T

(V̂
T

)>‖F ≤ C ·
√
m log(1/δ)
ε·n · κγ√p‖M‖F , with

probability ≥ 1− 1/n10.

• Similarly, ‖M − Û
T

(V̂
T

)>‖∞ ≤ C · m log(1/δ)
ε·n · κγ√p ·

µ2r‖M‖2√
mn

, with probability ≥ 1− 1/n10.

Remark 2 (Initialization). Following (Jain et al., 2013),
we can use differentially private SVD of PΩ(M) to ob-
tain an initial estimate of V (0). To this end, Algorithm 1
of (Dwork et al., 2014) can be used directly. That is, we
compute top-r eigenvectors of A = PΩ(M)>PΩ(M) +G
where G is a symmetric Gaussian matrix with standard devi-
ation σΓ2

M . However, standard analysis of Analyze Gauss
requires n = Ω̃(m

√
m/ε) to obtain an estimate within re-

quired error bound. See Appendix B for a brief analysis of
the initialization scheme.
Remark 3. The choice of hyper-parameters in Theorem 2
assumes knowledge of certain quantities such as r, µ, κ. In
practice, these quantities are unknown, but one can use stan-
dard DP hyper-parameter search techniques (Liu & Talwar,
2019) to search for optimal hyper-parameter values.
Remark 4. The number of samples needed per user is about
p ·m = O(µ6κ12r6 log3 n) which is nearly optimal with
respect to m and n. This represents a significant improve-
ment over the DPFW algorithm in (Jain et al., 2018) which
requires Ω(

√
m) samples per user.

Remark 5. We did not optimize bounds for dependence
on the rank r and condition number κ. Prior work tends to
focus on the dependence on the size (m and n) and polyno-
mial dependence on r, κ is common even in the non-private
setting. For example, the dependence is r4.5 and κ6 in (Jain
et al., 2013); r7 and κ6 in (Sun & Luo, 2015); r6 and κ16

in (Ge et al., 2016). Our main goal is to provide a guarantee
in the private setting that is competitive with the non-private
setting, so we inherit the focus on the size m,n from prior
work. Furthermore, dependence on κ can be removed (up
to log factors) by using a stagewise ALS method similar
to (Hardt & Wootters, 2014). However, this further compli-
cates the proof and the practical performance of standard
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ALS is comparable to such stagewise methods. Finally,
there is empirical evidence that in several recommendation
problems, data is close to low rank (for example, in the
Netflix prize, Koren (2008) showed a high accuracy for
r = 50) and it is common in industrial applications for
m,n to be several orders of magnitude larger than academic
benchmarks, which alleviates the dependence on r.

Remark 6. Our Frobenius norm error bound is significantly
smaller than the bound for the DPFW algorithm, which is

given by ‖M−Û
T

(V̂
T

)>‖F ≤
(
m5/4

nε

)1/5‖M‖F . In par-

ticular, to ensure an error ‖M − Û
T

(V̂
T

)>‖F ≤ ζ‖M‖F ,
DPALS requires n ≥ Cm

ζ·ε , while DPFW requires n ≥
Cm5/4

ζ5·ε , which is significantly worse in terms of ζ. Fur-
thermore, the DPFW bound is a generalization bound, i.e.,
there is an additional bias term which can be large, and to
the best of our knowledge, existing techniques (even in the
non-private setting) require incoherence to control this term.

Remark 7. Consider a set of m linear regression problems
in r-dimensions:

{
y(i) = Xθ∗(i)

}m
i=1

, with X ∈ Rn×r.
One can use a single iteration of DPALS with (Û = X and
PΩ(M) = [y(1), . . . ,y(m)]) to solve these linear regression
problems. Assuming the conditions on M are satisfied, we
can obtain an excess empirical risk of Õ(

√
m/(εn)). This

matches the best known upper bound for solving a set of
linear regressions with privacy (Sheffet, 2019; Smith et al.,
2017). So, a better convergence rate of DPALS would lead
to a tighter bound on solving a set of linear regressions with
a common feature matrix. For m = O(1), we know that the
lower bound for private linear regression is Ω̃(1/εn) (Smith
et al., 2017). Thus, we conjecture that the error for DPALS
is tight w.r.t. m and εn.

Remark 8. Instead of using the perturbed objective func-
tion to estimate V̂

t
in DPALS, one can use DPSGD (Bassily

et al., 2014) to do the same (solving a least squares prob-
lem with Û

t
fixed). We leave the empirical comparison of

this approach to future work. However, we know that for
least-square losses, perturbing the objective is known to be
theoretically optimal (Smith et al., 2017).

Proof sketch: First, we show that under the assumptions
in Theorem 2, w.h.p., clipping and sampling operations in
DPALS have no effect. Note, using k ≥ Cp ·m log n, w.p.
≥ 1− 1/n100, ∀i, |Ωi| ≤ k. Furthermore, using Lemma 3,

‖Û
t

i‖ ≤ Γu. Similarly, using Lemma 3, σmin(X) ≥ p/4−
‖G‖2 ≥ p/4− Γ2

uσ
√
r ≥ p/8. That is, X � 0.

The above observation implies that, under the assumptions
of the theorem, Algorithm 1 is essentially performing the
following iterative steps:
i) Û

t
= arg min

Û
‖PΩ(M − Û(V̂

t
)>)‖2F , and

ii) V̂
t+1

j =
(
I+

∑
i∈Ω′j

Û
t

i⊗Û
t

i+G
)−1( ∑

i∈Ω′j

M ijÛ
t

i+g
)

.

Let U t (resp. V t) be the Q part in the QR decomposition of
Û
t

(resp. V̂
t
). Using Lemma 4, we get Err(V ∗,V t+1) ≤

1
4Err(V ∗,V t) + α, where Err(V ∗,V ) = ‖(I −
V ∗(V ∗)>)V ‖F and α ≤ Cκ6·µ3r2√logn√

pn

√
m logn·T log 1/δ

ε .

That is, after T iterations, Err(V ∗,V T ) ≤ 2α. The second
claim of the theorem now follows from the above observa-
tion and Lemma 3. Similarly, the third claim follows by
using the bound on Err(V ∗,V T ) and incoherence of UT ,
V T (Lemma 3). See Appendix B for a detailed proof.

Lemma 3. Suppose the assumptions mentioned in The-
orem 2 hold. Then, w.p. ≥ 1 − 5T/n100, we have:

a) each iterate Û
t
, V̂

t
is 16κµ-incoherent, b) 1/2 ≤

σq(Û
t
(Σ∗)−1) ≤ 2 for all q ∈ [r], c) 1/4 ≤

σq(
1
p

∑
i:(i,j)∈Ωv,t û

t
i(û

t
i)
>) ≤ 4.

Lemma 4. Suppose the assumptions mentioned
in Theorem 2 hold. Also, let V t be 16κµ-
incoherent s.t. Err(V ∗,V t) ≤ 1

κ2 log2 n
. Then,

w.p. ≥ 1 − 5T/n100, we have Err(U∗,U t) ≤
1
2Err(V ∗,V t), and Err(V ∗,V t+1) ≤ 1

2Err(U∗,U t) +
Cκ6·µ3r2√logn√

pn

√
m logn·T log 1/δ

ε , where Err(V ∗,V ) =

‖(I − V ∗(V ∗)>)V ‖F .

5. Heuristic Improvements to DPALS
We introduce heuristics to improve the privacy/utility trade-
off for Algorithm 1 in practice. We describe each heuristic,
its motivation, and explain how we implement it differen-
tially privately.

5.1. Reducing Distribution Skew

The first heuristics are motivated by the observation that,
in practice, the elements of Ω are not sampled uniformly
at random (Marlin et al., 2007). In particular, the number
of observed ratings per item typically follows a power-law
distribution, and is heavily skewed towards popular items.
For example, Figure 2 shows the fraction of observations vs.
fraction of top movies in the MovieLens 10M data set. It
shows, for instance, that the top 20% of the movies account
for more than 85% of the observations.

Due to this popularity bias, some items may have very few
observations, and for such rare items j, the embedding V j

learned by DPALS may not be useful: The noise terms in
Line 11 of Algorithm 1 do not scale with the number of ob-
servations |Ω′j | – for otherwise we may lose the protection
on users who rated rare items – thus, items with a smaller
|Ω′j | have a lower signal-to-noise ratio. In our experiments,
we found that such noisy embeddings may have a further
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Figure 2. Fraction of observations contributed by the top movies
in MovieLens 10M. Adaptive sampling reduces popularity bias.

cascading effect and lead to quality degradation in the em-
beddings of other movies and users. To alleviate this issue,
we propose two techniques.

Learning on frequent items. The first strategy is to par-
tition the items into two sets, based on an estimate of the
item counts, which we denote by c̃ ∈ Rn. We introduce a
hyper-parameter β representing the fraction of movies to
train on. Define the set Frequent to be the dmβe items with
the largest c̃, and let Infrequent be its complement. We
learn embeddings V̂ j only for j ∈ Frequent , by running
Algorithm ADPALS on those items. When making predic-
tions for any missing entry M ij , if j ∈ Frequent , we use
the dot product Û i · V̂ j , and if j ∈ Infrequent we use the
average observed rating of PΩ(M)i.

To compute c̃ privately, notice that since each user con-
tributes at most k items, the exact item count c has `2
sensitivity

√
k. Thus, c̃ := c + N (0, kσ2) guarantees(

α, α/2σ2
)
-RDP.

Adaptive sampling. To further reduce the popularity
bias, we propose to use an adaptive distribution when sub-
sampling Ω. Recall that in Line 7 of Aitem , we pick k items
per user in Ω, in order to limit the privacy loss. We propose
to sample rare items with higher probability, as follows.
Given the count estimate c̃, for each user i, we pick the k
items in Ωi∩Frequent with the lowest count estimates. This
heuristic effectively reduces the distribution skew and gives
a significant utility gain compared to uniform sampling, see
Section 6.3. Figure 2 illustrates the resulting distribution
for a sample size of k = 50 per user. It’s interesting to
observe that under uniform sampling, the popularity bias
is worse than in the unsampled data set, this is due to a
negative correlation between user counts and item counts:
conditioned on a light user, the probability to observe a rare
item is lower; see Appendix C for further discussion.

5.2. Additional Heuristics

A common heuristic, used for example by (McSherry &
Mironov, 2009), is to center the observed matrix PΩ(M),
by subtracting an estimate of the global average, denoted

by m̃. To compute m̃ privately, since ‖PΩ(M)‖∞ ≤ ΓM

and each user contributes at most k items, publishing m̃ =∑
(i,j)∈Ω Mij+N (0,kΓ2

Mσ2)

|Ω|+N (0,kσ2) guarantees
(
α, α/σ2

)
-RDP.

Another practice, commonly used in some benchmarks, is
to modify the loss function in Section 2.2 by adding the
term λ0‖Û V̂ >‖2F , where λ0 is a hyper-parameter. This
is particularly important for item recommendation tasks,
such as the MovieLens 20M benchmark. This modification
introduces an additional term K := λ0

∑
i∈[n] Û i ⊗ Û i to

X in Line 10 of Aitem . To maintain privacy, we use a noisy
version K̃ obtained by adding Gaussian noise to K. Since
K is independent of j, we reuse the same K̃ for all j ∈ [m],
thus limiting the additional privacy loss due to this term.

Finally, we account for the privacy cost in the computation
of m̃, c̃, and K̃, along with that in Theorem 1, by stan-
dard composition properties of RDP (Mironov, 2017). For
completeness, the privacy accounting of the full algorithm
including data pre-processing, is given in Appendix C.

6. Empirical Evaluation
We run experiments on synthetic data and two benchmark
tasks on the widely used MovieLens data sets (Harper &
Konstan, 2016). The synthetic task follows the assumptions
of our theoretical analysis, and serves to illustrate the guaran-
tees of Theorem 2. The MovieLens benchmark tasks serve
as an evaluation of the empirical privacy/utility trade-off on
a more realistic application, and to provide some practical
insights into DPALS. We use current SOTA method DPFW
as the main baseline as it is already demonstrated to be
more accurate than techniques like Private SVD (McSherry
& Mironov, 2009). Similar to (Jain et al., 2018), we do
not compare against (Liu & Talwar, 2019) as the privacy
parameters are unclear, and might require (exponential time)
Markov chain based sampling methods to compute them.

6.1. Metrics and Data Sets

Metrics. The quality of a learned model (Û , V̂ ) will be
measured either using the RMSE or the Recall@k, de-
pending on the benchmark. The RMSE is defined as
RMSE = ‖PΩtest(Û V̂ > −M)‖F /

√
|Ωtest|, where Ωtest is

the set of test ratings held out from Ω. Recall@k is defined
as follows. For each user i, letRi be the set of k movies with
the highest scores, where the score of movie j is Û i · V̂ j .
Then Recall@k = 1

n

∑n
i=1 |Ri ∩ Ωtest

i |/min(k, |Ωtest
i |).

Synthetic data. We generate a rank 5 ground truth ma-
trix as the product of two random orthogonal matrices
U∗ ∈ Rn×5,V ∗ ∈ Rm×5, where m = 1000, and
n ∈ {5000, 10000, 20000, 50000}. We scaled the ground
truth matrix such that the standard deviation of the obser-
vations is 1, in other words, a trivial model which always
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Figure 3. Privacy/utility trade-off of different methods. We observe that DPALS is significantly more accurate than DPFW method, and
the loss in accuracy for DPALS compared to ALS is relatively small, especially for ε ≥ 10.
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Figure 4. Comparison of DPFW and DPALS on synthetic data with
different number of rows/users n.

predicts the global average has a RMSE of 1. The observed
entries Ω are obtained by sampling each entry independently
with probability p = 20 log(n)/m.

MovieLens data sets. We apply our method to two com-
mon recommender benchmarks: (i) rating prediction on
MovieLens 10M (ML-10M) following Lee et al. (2013),
where the task is to predict the value of a user’s rating, and
performance is measured using the RMSE, (ii) item recom-
mendation on MovieLens 20M (ML-20M) following Liang
et al. (2018), where the task is to select k movies for each
user and performance is measured using Recall@k.

For comparison to DPFW, we use a variant of the ML-10M
rating prediction task following Jain et al. (2018), where
the movies are restricted to the 400 most popular movies
(DPFW did not scale to the full data set with all movies,
unlike DPALS).

Experimental protocol. Each data set is partitioned into
training, validation and test sets. Hyper-parameters are
chosen on the validation set, and the final performance is
measured on the test set. The privacy loss accounting is done
using RDP, then translated to (ε, δ)-DP with δ = 10−5 for
the synthetic data and ML-10M and δ = 1/n for ML-20M.
When training DPALS models on synthetic data, we use the
basic version described in Algorithm 1, without heuristics.
When training on MovieLens data sets, we use the heuris-

tics described in Section 5. Note that even when training on
Frequent items (Section 5.1), evaluation is always done on
the full set of items, so that the reported metrics are compa-
rable to previously published numbers. Additional details
on the experimental setup are in Appendix D, including
statistics of the data sets, a list of hyper-parameters and the
ranges we used for each.

6.2. Privacy-Utility Trade-Off

DPALS vs. DPFW on synthetic data. On synthetic data
(Figure 4) we observe: First, as expected, the trade-off of
both algorithms improves as the number of users increases.
Second, for ε = 1, the quality of the DPFW models is
no better than the trivial model (RMSE equal to 1), while
DPALS has a lower RMSE, which significantly improves
with larger n. Third, for the largest data set (n = 50K), the
relative improvement in RMSE between DPALS and DPFW
is at least 7-fold across all values of ε. To further illustrate
the difference between DPALS and DPFW, we show in
Appendix D.4 the RMSE against number of iterations, both
for the private and non-private variants (Figure 7).

DPALS vs. DPFW on ML10M. Next, we compare the two
methods on ML-10M-top400 (Figure 3a). For DPFW and
DPSVD, the numbers are taken directly from (Jain et al.,
2018). For reference, we include the test RMSE of non-
private ALS, and a simple baseline model that always pre-
dicts the global average rating. The performance of DPSVD
is worse than that of the simple baseline. DPALS performs
best, with a relative improvement in RMSE (compared to
DPFW) that ranges from 7% to 11.6%, and that increases
with ε. In Appendix D.4, we show that DPALS achieves per-
formance better than DPFW even when trained on a small
fraction of the users (23%).

Finally, Figure 3b shows the privacy/utility trade-off on
the full ML-10M data. In order to scale DPFW to the
the full data, we use the same procedure described in Sec-
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Figure 5. RMSE vs. movie fraction for ε = 10 on ML-10M.

tion 5: DPFW is trained on the top movies, and for remain-
ing movies the model predicts the user’s average rating.
Compared to the restricted data set (ML-10M-top400), the
privacy-utility trade-off is worse on the full data. This in-
dicates that a smaller ratio between number of users and
number of items makes the task harder – a result that is in
line with the theory.

The results on synthetic data and ML10M suggest that
DPALS exhibits a much better privacy/utility trade-off than
DPFW, and a better dependence on the number of rows n,
which is consistent with the theoretical analysis.

DPALS on MovieLens 20M. Figure 3c shows the pri-
vacy/utility trade-off of DPALS on the ML-20M data set.
We include as a reference the non-private ALS, and a simple
baseline model that always returns the k most rated movies.

On this task, the performance of the private model is re-
markably good. Indeed, the best previously reported Re-
call@20 numbers for non-private models on this benchmark
are 36.0% for ALS (Liang et al., 2018) and 41.4% using
a sophisticated auto-encoder model (Shenbin et al., 2020).
Our results show that DPALS can achieve performance com-
parable to the previously reported state of the art numbers
for (non-private) matrix completion, and the utility does not
significantly degrade, even at small ε.

6.3. Importance of Adaptive Sampling and Projection

In this section, we give additional insights into the effect of
the heuristics introduced in Section 5. We run a study on
ML-10M for ε = 10, r = 128 and a sample size k = 50
(both correspond to the best overall model); other hyper-
parameters are re-tuned. According to Section 5.1, we par-
tition the set of movies into Frequent and Infrequent and
train only on Frequent . The results are reported in Figure 5,
where the movie fraction is simply defined as the fraction
|Frequent |/n. We make the following observations. First,
for non-private ALS, we get the highest RMSE by train-
ing on all movies, while there is a benefit for training on a
subset of the movies for the private models. Second, when
training the non-private model on sub-sampled data (red

and purple lines), there is a considerable increase in RMSE,
from 0.785 to 0.812. This gives an indication that part of
the utility loss is due to sub-sampling, and not simply due
to the addition of noise. Third, the sampling strategy has a
significant impact on the performance of the private DPALS
model: adaptive sampling improves the RMSE from 0.870
to 0.854, in contrast, the sampling strategy appears to have
little effect on non-private models (i.e. models trained with-
out noise). Finally, training the private model without PSD
projection (ΠPSD in Line 11 of Algorithm 1) results in a
terrible performance. We find that while the projection is
not technically necessary for the theoretical analysis, it is
essential in practice.

Training on a subset of the movies appears to have only a
marginal effect when combined with adaptive sampling in
this experiment. However, as detailed in the appendix, the
effect is much more significant for smaller ε, as well as on
the ML-20M task.

Additional experiments are presented in Appendix D, to
explore the effect of other hyper-parameters, such as the
rank and the regularization of the objective function.

7. Conclusion
We presented DPALS for solving low-rank matrix com-
pletion with user-level privacy protection. We show that
DPALS provably converges to high accuracy outputs under
standard assumptions and, with careful implementation, sig-
nificantly outperforms existing privacy preserving matrix
completion methods. In fact, DPALS achieves competitive
metrics on benchmark data compared to non-private models
and scales well with data set size.

The efficiency of DPALS shows that by taking advantage of
the structure of the problem, one can achieve a much higher
utility for privacy-preserving model training. In this case,
the alternating structure of ALS, along with the decoupling
of the least squares solution, were essential in the design of
an efficient method. These insights may be applicable to a
broader class of problems and optimization algorithms.
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