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A. Missing Proofs

A.1. Proof of Lemma 11
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A.2. Proof of Theorem 12

Proof. Let L(1)
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From Theorem 10, we have for each i 2 [t], an MNL eL(i) that can be represented by O

⇣
n log

n2

✏

⌘
= O

�
n log

n
✏

�
bits and



Light RUMs
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where the penultimate step follows from |epi � pi|  ✏
nt , 0  eL(i)

S (s)  1, and |S|  n.

A.3. Proof of Theorem 14

Proof. If eU is supported by t permutations, then eU can produce at most t different winners for any slate S, i.e., |supp(eUS)| 
t. Let S = [n] and S

0
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A.4. Proof of Theorem 15
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⇡1, . . . ,⇡t from D. After this first step, we let eD be the uniform distribution on the multiset of these samples, i.e.,
eD will choose i 2 [t] uniformly at random, and will return ⇡i.
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A.5. Proof of Theorem 17

Proof. Let n = k · t. We start by partitioning [n] into P1 = [k], . . . , Pi = [ik] \ [(i� 1)k], . . . , Pt = [tk] \ [(t� 1)k]. Then
for i 2 [t], let D(i) be any RUM on Pi. We create a RUM D on [n] by sampling a permutation ⇡ as follows: for each i 2 [t],
sample independently ⇡i ⇠ D

(i) and then return the concatenated permutation ⇡ = ⇡1 · · ·⇡t.

Since for each i 2 [t], the RUM D
(i) is defined over a set of k items, by Corollary 7, the number of bits required to represent

D
(i) to within a total variation distance of 1�↵
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on slates of size up to k.

B. A Lower Bound on the Size of an Exact Representation

In this section, we show that if one aims to represent a RUM exactly—in fact, even just a RUM that chooses u.a.r. from its
support—one needs at least 2n�o(n) bits, i.e., exponentially many bits.10 Thus, exactly representing a RUM has a cost that
is exponentially larger than that of approximating it to within ✏ total variation distance.
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�
[n]
n/2

�
! [n] such that f(S) 2 S for each S 2

�
[n]
n/2

�
. Then,

|Fn| = (n/2)
(

n
n/2).
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This yields the following.
10We notice that this claim is trivial for RUMs that do not choose u.a.r. over their support. I.e., if n = 2, so that there are only 2

permutations ⇡1 = (1 � 2) and ⇡2 = (2 � 1), the RUM D that assigns probability p to ⇡1 will have D{1,2}(1) = p. Thus, to exactly
represent the winning distributions of D, one needs to exactly represent p; since p is an arbitrary real number in [0, 1], no finite number of
bits is sufficient to exactly represent p, and the RUM.
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Corollary 19. Consider the class of RUMs that choose u.a.r. from their supports. A data structure that can exactly represent

the winning distributions of such a RUM on each slate, requires at least log
2
|Fn| = ⌦

�
2
n · n�1/2 · log n

�
bits.

Proof. For each {f, f 0} 2
�Fn

2

�
, there exists at least one set S 2

�
[n]
n/2

�
, such that D(f)

S 6= D
(f 0

)

S . Thus, a data structure
needs at least log

2
|Fn| bits to represent the winning distribution of each slate.

C. Relationships between RUMs and other Choice Models

C.1. RUMs vs PCMC Models

Ragain & Ugander (2016) show that there exist PCMC models that are not RUMs. We observe here that the converse is also
true. Recall that a PCMC model is defined by an n⇥ n matrix Q satisfying Qi,j +Qj,i > 0, for each {i, j} 2

�
[n]
2

�
. Given

a slate S, the distribution of the winner of S is the stationary distribution of the continuous-time Markov chain on state
space S, and transition rates qi,j = Qi,j for each i 2 S and j 2 S \ {i}.

The RUM we will be using in our example is somewhat natural. It considers two types of users, and three types of items,
e.g., {1, 2, 3}. The first type of users strongly prefers 1 over the others, and has no strong preference between 2 and 3; the
second type of users strongly prefers 2 over the others, and has no strong preference between 1 and 3.11 We will use a
uniform mixture of the two user types.

Observation 20. There exists a RUM on n = 3 elements that cannot be represented with PCMC models.

Proof. Let n = 3, and consider the RUM R that chooses a permutation u.a.r. from {1 � 2 � 3, 1 � 3 � 2, 2 � 1 � 3, 2 �
3 � 1}; that is, the RUM R chooses a permutation uniformly at random, conditioned on its highest-ranked element to
not be 3. Then, R[3](3) = 0 and R[3](1) = R[3](2) = 1/2; R[2](1) = R[2](2) = 1/2; R{1,3}(3) = R{2,3}(3) = 1/4 and
R{1,3}(1) = R{2,3}(2) = 3/4. We will show that these choice distributions cannot be represented with PCMC models.

Consider the generic Q matrix of a PCMC model for n = 3 items:

Q =

0

@
· p1,2 p1,3

p2,1 · p2,3

p3,1 p3,2 ·

1

A .

The winning distributions for the slate {1, 2} according to the PCMC model on Q is given by the solution to the following
linear system:

(x1, x2) ·
✓

�p1,2 p1,2 1

p2,1 �p2,1 1

◆
= (0, 0, 1).

If (x1, x2) is the solution, then xi is the probability that i wins in [2]. The first two constraints of the system are equivalent,
and the third constraint forces x2 = 1� x1. Thus, the system simplifies to p1,2x1 = p2,1x2; i.e., p1,2x1 = p2,1(1� x1),
which implies x1 = p2,1/(p1,2 + p2,1), and x2 = p1,2/(p1,2 + p2,1). Thus, for a PCMC model to represent the RUM R

(and thus to guarantee that the choice in [2] is u.a.r.), one must have have p1,2 = p2,1.

Now, consider the winning distribution for the slate {i, 3}, for i 2 [2]. The winning distribution of PCMC model then is the
solution to

(xi, x3) ·
✓

�pi,3 pi,3 1

p3,i �p3,i 1

◆
= (0, 0, 1).

As before, we obtain that the unique solution satisfies xi = p3,i/(p3,i + pi,3) and x3 = pi,3/(p3,i + pi,3). For the PCMC
model to represent R, one must then have pi,3 = p3,i/3, since R{i,3}(3) = 1/4 and R{i,3}(i) = 3/4.

A PCMC model Q0 that satisfies all the constraints given by the slates of size 2 can then be represented as

Q
0
=

0

@
· q q1

q · q2

3q1 3q2 ·

1

A ,

11For instance, 1 could be a sports event, 2 could be a concert, and 3 could be a pub—sports fans would strongly prefer 1, music fans
would strongly prefer 2, but both types of users would be happy to choose uniformly at random over the remaining available choices.
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where q = p1,2 = p2,1, q1 = p1,3 and q2 = p2,3. By the positivity constraints of PCMC models, we have that q + q > 0,
q1 + 3q1 > 0 and q2 + 3q2 > 0, that is, q, q1, q2 > 0. That is, each entry of Q0 outside the main diagonal has to be strictly
positive.

Now, let us consider the full slate [3] = {1, 2, 3}. Its winning distribution, if the constraints of the 2-slates are satisfied, is
the solution to the following linear system

(x1, x2, x3) ·

0

@
�q � q1 q q1 1

q �q � q2 q2 1

3q1 3q2 �3(q1 + q2) 1

1

A = (0, 0, 0, 1).

The first and second constraints are 3q1x3 � q1x1 + q(x2 � x1) = 0 and 3q2x3 � q2x2 + q(x1 � x2) = 0. Recall that, for
Q

0 to represent R, we must have that x1 = x2, since R[3](1) = R[3](2). We then set x1 = x2 = y; we will see that this
forces x3 to be different from R[3](3), so that no PCMC model can represent the RUM R.

Observe that, under y = x1 = x2, the first and second constraints become 3q1x3� q1y = 0 and 3q2x3� q2y = 0. Summing
them up, we get 3(q1 + q2)x3 = (q1 + q2) · y. Since q1 + q2 > 0, we can divide the two sides of the equation by q1 + q2,
and get y = 3x3, that is, y = x1 = x2 = 3x3.

Finally, the last constraint of the system is equivalent to x3 = 1�x1 �x2, that is, x3 = 1� 2y; thus, we get x3 = 1� 2y =

1� 6x3, which entails x3 = 1/7, and x1 = x2 = 3/7. I.e., in a PCMC model that satisfies the constraints induced by slates
of size 2, item 3 must win in the slate [3] with probability 1/7. However, in the RUM R, the probability that 3 wins in [3] is
R[3](3) = 0.

C.2. RUMs vs CDMs

Context-Dependent utility Models (CDMs) have recently been introduced by Seshadri et al. (2019) (see also Seshadri et al.,
2020) to model irrational choice behavior. We show in this section that CDMs are unable to represent general RUMs.

A CDM is defined by an order-2 tensor—a sequence w1,2, . . . , w1,n, w2,1, w2,3, . . . , wn,n�1 of n · (n � 1) positive
weights—i.e., a weight for each ordered pair of items i 2 [n], j 2 [n] \ {i}.12

In a CDM, the probability that i is chosen in a slate S 3 i is equal toQ
j2S\{i} wj,iP

k2S

Q
j2S\{k} wj,k

.

In the following, we show that there exist RUMs that cannot be represented as CDMs.13

The example we will be using is similar to that for PCMC; we will use three types of users and four types of items,
{1, 2, 3, 4}. The first user type strongly prefers 1 to each other item, and would choose uniformly over any subset of {2, 3, 4}.
The second (resp., third) user type strongly prefers 2 (resp., 3) to each other item, and would choose uniformly over any
subset of {1, 3, 4} (resp., {1, 2, 4}). Again, we assume to have a uniform mixture of the three user types.

Observation 21. There exists a RUM on n = 4 elements that cannot be represented with CDM models.

Proof. Let n = 4, and consider the RUM R that chooses a permutation u.a.r., conditioned on its top-most element to
be different from 4. Then, R[4](4) = 0 and R[4](1) = R[4](2) = R[4](3) = 1/3. Moreover, for {i, j} ⇢ {1, 2, 3},
R{i,4}(i) =

2

3
, R{i,j,4}(i) = R{i,j,4}(j) =

4

9
. And, RS chooses uniformly at random in S if 4 62 S.

A CDM model that guarantees the marginals of the slate {i, 4}, for each i 2 [3], must then have w4,i = 2wi,4; we define

12We mention that CDMs can be generalized to tensors of order k, for an arbitrary k = 1, . . . , n� 1. For any constant k, an order k
CDM requires ⌦(nk) bits to be represented. CDMs of order n� 1 can approximate any choice model on [n], but require exponentially
many bits. We show here that the class of CDMs studied in Seshadri et al. (2019; 2020), i.e., those with k = 2, is unable to represent a
general RUM. Order-2 CDMs can be represented by e⇥(n2) bits, that is, they have the same representation complexity of PCMC models
and, as we prove in our paper, of RUMs; higher-order CDMs require many more bits than RUMs and PCMC models.

13It is easy to see the converse, i.e., that there exist CDMs that cannot be represented as RUMs. For instance, if w1,2 = w2,1 = 1, then
the CDM chooses uniformly at random from the slate {1, 2}, thus 1 wins in {1, 2} with probability 1/2. Now, consider the slate {1, 2, 3}
and suppose that w3,1 = t, for some t > 2, while w1,2 = w2,1 = w2,3 = w3,2 = w1,3 = 1. Then, the probability that 1 wins in the slate
{1, 2, 3} is equal to t

t+1+1 = 1� 2
t+2 > 1

2 . Conversely, each RUM R is such that R{1,2}(1) � R{1,2,3}(1). Thus, this CDM cannot be
represented by a RUM.
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wi = wi,4 so that w4,i = 2wi. Analogously, if the CDM model guarantees the marginals of the slate {i, j} 2
�
[3]

2

�
, it must

be that wi,j = wj,i. We then define w{i,j} = wi,j = wj,i.

Moreover, for the slate {i, j, k} = {1, 2, 3}, the probability that i wins is
wj,i · wk,i

wj,i · wk,i + wi,j · wk,j + wi,k · wj,k
.

Since each i 2 [3] should win with probability 1/3 in [3], we get
w2,1w3,1 = w1,2w3,2 = w1,3w2,3,

which, using the constraints given by the 2-subslates of [3], entails
w{1,2}w{1,3} = w{1,2}w{2,3} = w{1,3}w{2,3},

which finally entails w{1,2} = w{1,3} = w{2,3}. We then define w = w1,2 = w2,1 = w1,3 = w3,1 = w2,3 = w3,2.

Now, consider the slate {i, j, 4} for {i, j} 2
�
[3]

2

�
. The probability that 4 wins in this slate is

wiwj

wiwj + 2wiw + 2wjw
,

and it should be equal to R{i,j,4}(4) = 1/9, that is
9wiwj = wiwj + 2wiw + 2wjw

8wiwj = 2w(wi + wj)

8

2w
=

wi + wj

wiwj

4

w
=

1

wi
+

1

wj
.

Since this holds for any {i, j} 2
�
[3]

2

�
, we obtain

1

w1

+
1

w2

=
1

w1

+
1

w3

=
1

w2

+
1

w3

,

thus, w1 = w2 = w3. By w
�1

i + w
�1

j = 4w
�1, we get w1 = w2 = w3 = w/2. Thus, w1,4 = w2,4 = w3,4 = w/2 and

w4,1 = w4,2 = w4,3 = w. I.e., for i 2 [4] and j 2 [4] \ {i}, wi,j = w/2 if j = 4, and wi,j = w if j 6= 4.

The probability that 4 wins in the slate [4], is then
(w/2)

3

(w/2)3 + w3 + w3 + w3
=

1/8

25/8
=

1

25
,

which is different from R[4](4) = 0.

C.3. RUMs vs Deterministic Choice Models

Deterministic choice models (such as that in Rosenfeld et al., 2020) are unable to represent the random choices made by
RUMs. For instance, the uniform RUM U we considered in Section 6 (i.e., the one that chooses u.a.r. from the set of all
permutations of [n]) chooses the winner uniformly at random in the slate {1, 2}. A deterministic model, instead, will either
always choose 1, or always 2, as the winner in that slate. Therefore, the distribution of RUM U on {1, 2} is at total variation
distance 1/2 from the one given by any deterministic model. In fact, if one considers a larger slate S, then the total variation
distance increases to 1� 1/|S|.


