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Abstract

Many of real-world data, e.g., the VGGFace2
dataset, which is a collection of multiple por-
traits of individuals, come with nested structures
due to grouped observation. The Ornstein auto-
encoder (OAE) is an emerging framework for rep-
resentation learning from nested data, based on
an optimal transport distance between random
processes. An attractive feature of OAE is its
ability to generate new variations nested within
an observational unit, whether or not the unit is
known to the model. A previously proposed algo-
rithm for OAE, termed the random-intercept OAE
(RIOAE), showed an impressive performance in
learning nested representations, yet lacks theo-
retical justification. In this work, we show that
RIOAE minimizes a loose upper bound of the
employed optimal transport distance. After iden-
tifying several issues with RIOAE, we present the
product-space OAE (PSOAE) that minimizes a
tighter upper bound of the distance and achieves
orthogonality in the representation space. PSOAE
alleviates the instability of RIOAE and provides
more flexible representation of nested data. We
demonstrate the high performance of PSOAE in
the three key tasks of generative models: exem-
plar generation, style transfer, and new concept
generation.

1. Introduction

Many real-world data are collected in grouped observation
units. The resulting sample naturally possesses a nested
structure. For example, in the VGGFace?2 dataset (Cao et al.,
2018), there are 3.31 million portraits of 9131 people, i.e.,
362.6 images for each person on average. Certainly, por-
traits of the same person are highly correlated. Likewise,
the images from MNIST dataset also retain correlated struc-
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ture for each digit. In multicenter electronic health records,
patients are nested within a hospital. For such nested data,
representation learning aims to find a representation where
within-unit variation and between-unit variation are well-
separated in the representation space. It is also desirable that
the model can deal with an unknown, possibly unbounded,
total number of observational units. Similarly, it should be
considered that an unbounded number of variations can be
observed within a unit. In the VGGFace2 data, for example,
the identity of a portrait can be considered as an observa-
tional unit. The number of these units is possibly infinite,
and the available sample may not include all the units. All
of the possible variations from a unit may not be observed
either. In the MNIST data, on the other hand, the number of
observational units (digits) is finite and known. In sum, we
need a model that can adopt various nested structure.

As a concrete application of nested representation learning,
consider face unlock systems for smartphones. The training
of such a system is highly subject to data imbalance since in
addition to the initial training database, the acquired face im-
ages are based on a few snapshots of the users. Further, the
number of users in the database keeps increasing. The un-
derlying face recognition algorithm will benefit if each user
is well-separated from others in the representation space,
and the images of these users can be augmented, including
those of virtual users.

The structure acquired from a representation learning model
can be demonstrated by sample generation. Three types
of tasks have been advocated to assess the quality of a
generative model (Zhu et al., 2017; Lake et al., 2019): 1)
exemplar generation, which generates new variations of a
given observational unit, 2) style transfer, which transfers
the variations within a given observation unit to another one,
and 3) new concept generation, which amounts to simulating
new observational units; this can be combined with tasks
1 and 2. An adequate representation for such nested data
should be a single representation that can address all three
tasks for an unbounded number of observational units and
variations.

Generative latent variable models (LVMs) such as the gener-
ative adversarial networks (GAN, Goodfellow et al., 2014),
the variational auto-encoder (VAE, Kingma & Welling,
2014), and the Wasserstein auto-encoder (WAE, Tolstikhin
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et al., 2018) have delivered promising outcomes. Extensions
of these approaches to structured data have mostly focused
on obtaining disentangled representation in semi-supervised
learning settings (Makhzani et al., 2016; Chen et al., 2016;
Zhao et al., 2017; Lopez et al., 2018), but they are not suit-
able for the nested data structure we consider. For example,
the conditional adversarial auto-encoder (CAAE, Makhzani
et al., 2016) can be thought as learning an LVM for each con-
ditional distribution. This can carry out exemplar generation
and style transfer tasks by interpreting each observational
unit as a class. However, assuming a fixed number of units
(classes), these models cannot generate a sample of a new
observational unit not present in the training data. Similar
limitations are present in extensions of VAE (Kingma et al.,
2014; Louizos et al., 2016; Lopez et al., 2018), GAN (Chen
et al., 2016), and WAE (Patrini et al., 2020).

To obtain a single representation that addresses all the three
tasks, a sensible approach is to model the nested structure
in the latent space directly, and find appropriate mappings
between them. For example, the random intercept model
(Diggle et al., 2002; Fitzmaurice et al., 2012) is a common
approach in statistics to model nested data:

Zi=DB'+E,
4 iid. 2 g iid. 2
B~ N(0,751),  E; = N(0,051), (1)

B 1L EY,

where Zji denotes the jth observation in unit ¢. Each unit ¢
is represented by the random intercept B°. Differing num-
bers of samples between units are also naturally handled.
A noticeable feature of model (1) is that it defines an ex-
changeable sequence: within a unit, the order of observation
should not matter. Thus the nested data can be considered as
an independent, identically distributed (i.i.d.) copy of the ex-
changeable random process. Interpreting nested-structured
data as i.i.d. observations of a random process, or, more-
over, those of an exchangeable random process, provides
a fruitful viewpoint on disentangling representations. For
both VGGFace2 and MNIST data, permuting the order of
portraits in each person or handwritings in each digit does
not notably affect any learning tasks commonly undertaken,
so we can see them as exchangeable sequences.

The Ornstein auto-encoder (OAE, Choi & Won, 2019) con-
ducts nested data generation from this point of view. OAEs
trained with the algorithm proposed by Choi & Won (2019)
has shown impressive performance in discriminating indi-
viduals from the VGGFace2 data and digits from highly
imbalanced MNIST data in the latent space. An interesting
feature of OAE is that it can generate samples from an ob-
servational unit whether or not that unit is present in the
training dataset, and can even generate a new unit from the
latent space. Nested within a given unit, old or new, data
with either new variations or those transferred from other
known unit can be generated. For example, if an OAE is

trained with the VGGFace?2 dataset, then infinite variations
portraits of a single person, whether the person is present
in the dataset or not, can be generated. To our knowledge,
this is the first framework that can perform all of these three
tasks with the complex real-world data. This feature makes
OAE attractive to many applications that suffer from data
imbalance. Unfortunately, however, a theoretical claim on
which the algorithm of Choi & Won (2019) is based on turns
out to be incorrect, as we will see in the sequel. Their algo-
rithm thus leaves an intriguing question on the gap between
the practical performance and theoretical justification.

Contributions The goal of this paper is to fill in this gap
and provide an improved learning algorithm with a better
theoretical justification. We first show that the claim of Choi
& Won (2019) that an optimal transport distance between
exchangeable processes reduced to a simpler Wasserstein
distance is incorrect. We then show that the algorithm of
Choi & Won (2019) actually optimizes an upper bound of
the optimal transport distance, namely Ornstein’s d-bar dis-
tance. Based on this observation, we proceed with deriving
a tighter upper bound and propose an algorithm that opti-
mizes this improved upper bound. This novel bound also
imposes an explicit constraint that the two latent variables
encoding within-unit and between-unit variations should
be independent, which is lacking in the previous approach.
Thanks to this separation, the present algorithm for OAE
shows much improved performance in all of the three learn-
ing tasks and remarkable improvement on the tasks in which
other attempts fails.

After developing background material in Section 2, we re-
view the existing work on OAE and derive an upper bound
of the d-bar distance in Section 3. Section 4 examines the
problems arising from the existing algorithm, and suggests
an improved learning algorithm. In Section 5, we exhibit
the performance of our algorithm using the VGGFace2 and
MNIST datasets. Section 6 gives conclusion of this paper.
Proofs of the proposition, details of the implementation, and
additional examples are in the Supplement.

Notation The spaces of observable variables and latent
variables are denoted as X" and Z, respectively. Both spaces
are assumed to be complete, separable metric spaces in
which (regular) conditional distributions are well-defined.
The metric associated with X" is denoted d. A Cartesian
product space of X is denoted by X" forn = 1,2, ..., with
n = oo permitted, where XY*° = {(...,z_1,x0,21,...) :
xzj € X'}. With the Borel o-field and a probability mea-
sure on X (resp. Z), event space and probability mea-
sure on any product space, including X' x Z°°, are
well-defined. (Regular) conditional distributions related
to random variables (processes) defined on these probabil-
ity spaces are also well-defined. (Event spaces are omitted
unless necessary.) Capital letters (e.g., X) indicate ran-
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dom variables, and their realizations are noted in lower
case letters (e.g., ). Doubly-infinite random processes
and their realizations are denoted by boldfaces: e.g., X
and x. Superscripts, as in X’ (resp. X*), are used to in-
dicate an (ith) i.i.d. copy of X (resp. X). Subscripts are
used to represent coordinates of a random process, e.g.,
X=(-,X_1,X0,X1, ) € X*. A finite-length ran-
dom sequence is denoted as Xy., = (X1,---,X,,). The
probability distribution of random process X is denoted by
Px, etc.; we use @ in place of P if the distribution is subject
to optimization. Given a measurable function g : X — ),
where ) is another metric space, the distribution of g(X) is
denoted by the pushforward gy Px .

2. Preliminaries
2.1. Generative latent variable models

Generative latent variable models (LVMs) refer to a family
of parametric models that learn an unknown distribution Px
on a high-dimensional space X by using a latent variable
in a low-dimensional space Z. Learning is conducted by
considering a “decoder” or conditional distribution Qy|z of
arandom variable Y on X’ given Z and guiding it so that the
marginal distribution Py = [ Qy|zdPz is close to Py in
the sense that some divergence D between Py and Py are
minimized. Often the decoder is chosen to be deterministic,
ie., Qy|zissuchthatY = g(Z) as. forsome g : Z — X.
If g belongs to a set Gy v that can be parameterized by a
neural network, then a LVM seeks inf,cg, v P(Px, 94Pz),
where gy Pz is the marginal distribution of Y induced by g
and Py.

Popular choices for the divergence D includes that of GAN:

DGAN(PXagﬁPZ) = sup {Ep,log f(X)

fEFNN

+Ep, log[l — f(9(Z))]}

for Fyn being a set of functions from X’ to (0, 1) parame-
terized by a neural network, and that of WAE:

D Px,g:Pz) = inf
WAE( X5 G4 Z) Q%07 x

EPXEQ2|Xdp(X7 g(Z))
for some p > 0; the Q7| x is the set of all conditional distri-
butions @ z|x such that f Qz xdPx = Pz. Additionally,
the maximum mean discrepancy divergence (MMD, Gretton
et al., 2012) is defined as

DMMD,;{(PX,PY) = ||EPXK’(.7X) - Epyﬁ("y)||g{

for a bounded reproducing kernel k : X x X — R in-
ducing a Hilbert space H with inner product such that
(k(-yx), )2 = f(x) and distributions Px, Py on X.

2.2. Ornstein’s d-bar distance and OAE

Suppose that X and Y are two stationary
processes in X' Let pn(Px,.,Py,,) =
infﬂEP(le:n Py,..) Erpn (Xlz’m Yl:n) where
P(Px,.,, Py, ) is the set of joint distributions of se-
quences (X1, Y1.n) € X" x X™ having Px,, and Py,
as marginals, and p,, (X1.n, Y1.0) = 07! 2?21 P (X;,Y;)
for p > 0; d° represents the 0-1 loss. Ornstein’s d-bar
distance between the two random processes is de-
fined as d,(Px,Py) = p™nL1/P)(Px, Py), where
p(Px,Py) & sup, pn(Px,..,Py,,) (Ornstein, 1973;
Gray et al., 1975). Note that this is a random process
version of the p-Wasserstein distance (see, e.g., Bousquet
etal., 2017). Gray et al. (1975) show that the d-bar distance
is a true distance for all possible stationary processes in
X°°, and furthermore, the equality

ﬁ(Px, Py) = inf

Erd”(Xo, Yo), (2)
T€Ps(Px,Py)

where P (Px, Py) is the set of distributions of jointly sta-
tionary processes (X,Y) € X*° x X'* having Px and Py

as marginals holds; X, <x 1 and Yy 4 Y;.

The Ornstein auto-encoder (OAE) is a LVM that employs
p(Px, Py) for D(Px, Py). It defines a latent random pro-
cess Z € Z°° with prior distribution Pz, and learns a deter-
ministic decoder g : Z°° — X°° that maps a stationary se-
quence to a stationary sequence, and Y = g(Z) a.s. Clearly,
WAE is a special case of OAE for an i.i.d. sequence. In this
setting, similar to WAE, a reparameterization of (2):

p(Px,g1Pz)

= inf

Ep E dP (X VA 3
Qzx€Qzx Px=Qz)x ( Oa[g( )]0)7 3)

can be made (Choi & Won, 2019, Theorem 1). Here, QZ|X
is the set of conditional distributions (probabilistic encoders)
Qzx such that Q7 x Px is jointly stationary in (X, Z) and
the aggregate posterior Qz = [ QzxdPx is equal to Pgz.
By minimizing (3) over g € Gnn, we obtain an OAE
model.

The use of a process optimal transport distance enables
the flexible nested sample generation feature of OAE.Yet,
the infinite dimensional nature of the encoder-decoder pair
prevents OAE from realization.

3. Random-intercept OAE
3.1. OAE for exchangeable data

The simplest case that an OAE offers a tractable algorithm
is when both processes X and Z are i.i.d., in which equa-
tion (3) reduces to the pth power of the p-Wasserstein dis-
tance between single coordinates, i.e., p1 (Px,, 9§ Pz,) and
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8(Z) = (..., 9(Z1),9(Z), 9(Z1),...). Hence an algo-
rithm for WAEs (Tolstikhin et al., 2018) can be employed.

Motivated by this simplification, Choi & Won (2019)
claimed that the same reduction is possible if the pair pro-
cess {(X;, Z;)} is exchangeable. This claim is plausible
since De Finetti’s theorem states that an exchangeable se-
quence is conditionally i.i.d. However, their claim leans on
the assumption that the marginal distribution of (X, Yp) in
P(Px,, Py,) has the representation [ F'*dPp for a random
distribution F'* on X x X and its distribution Py, which is
not true in general except for genuinely i.i.d. sequences.

Despite the absence of a theoretical support, the algorithm
of Choi & Won (2019), reproduced in the Supplement (Algo-
rithm 1) for subsequent references, shows successful results.
The following result sheds light on theoretical justification
of their algorithm, and is important in its own right since it
provides an upper bound of p(Px, g4 Pz) in terms of single
coordinates of the processes. Recall that a version of De
Finetti’s theorem (Olshen, 1974) ensures the existence of a
real-valued random variable conditioned on which the coor-
dinates of X are i.i.d. when the sequence X is exchangeable.

Theorem 3.1. Assume process distributions Px on X*° and
Pz on Z°° are both exchangeable. Also assume that there
exists a distribution P on another complete, separable
metric space B (e.g., B = R) such that its joint distribu-
tions Px g and Py, g satisfy Px,.. B = [H?Zl PXO|B} Pg
and Pz, p = [H?Zl PZ0|B}PB for any n, respectively.
Then, for any measurable g : Z>° — X°° that maps an
exchangeable sequence to an exchangeable sequence, we
have

p(Px.g:Pz)
< imf ErsEouxs d?(Xo, [8(Z)]o). 4

T Qzx,BE

Here, Q is the set of all conditional distributions Qzx g
such that the joint distribution Qzx pPx. B of (X,Z, B)
has marginals [H?Zl QZO|XU7B} Px,...B and Pz, on
(X1:n, Z1.n, B) and Z ., for any n, respectively.

Doar(Px, gﬁPz). For this upper bound to be tractable,
1) the random variable B that deconvolves both X and Z
needs to be known; and 2) the complexity of the decoder
g needs to be addressed. The latter issue can be resolved
by requiring g(Z) = (..., 9(Z-1),9(Zv),9(Z1),...) for
some measurable function g : Z — X. In this case, with a
slight abuse of notation, we write Do ag(Px, 8¢ Pz) as

Doae(Px, 9:Pz)
= inf E E d?(Xo,9(Zy)). (5

Qz\i{r,lBEQ Px pQzx,B ( 0 g( 0)) &)

Note that divergence (5) coincides with divergence (3) when

both X and Z are i.i.d., that is, the OAE reduces to the WAE.

3.2. Random-intercept OAE

To address the first issue of the last paragraph, Algorithm i
enforces exchangeablility to Pz using the random intercept
model similar to (1): for given distributions P and Pg,,
the joint distribution Pz p of the random process 7' and
random variable B? for unit i is specified by

i i i i ldd i iid. i i
Zi =B+ El, B Py, EL'X Py, B L EL (6)

By De Fenetti’s theorem, there is a random variable B

that deconvolves X 4 Xt i.e., coordinates of X =
(..., X_1,X0,Xy,...) are conditionally i.i.d. given B.
Then the joint distribution Qx, 5 of X and B has X-
marginal Px. Hence the conditional distribution @ BIX is
well-defined. Ideally and in order to satisfy the assumption
of Theorem 3.1 as well, the B—marginal of QXA 5 should
equal to Pg. Hence we require

. QpxdPx = Pp (7
and treat B|x asan “optimization variable” to learn.
To this end, Algorithm i can be understood as solving the

following optimization problem

inf  inf inf
9EGNN Qpx Qz41x¢,B
+ M Eps Doan(Pzy 8, [+ Q@zo(B,x,4Px,|B)

+ X2 Dump < (PB; [y QB‘XdPX)] ®)

[]EPX ]EQBD( EQz,15.x, d?(Xo, 9(Zo))

stochastically (Lines 8-9). The third term of the objective
functional is a penalized form of the constraint (7). The
second term is a penalized form of an additional constraint

Jx Qzo1B,x04Pxo B = Pz, )

that promotes, along with (7), for the pair
(Qzo)x0,8,Q B\x) to populate a set Q of conditional

distributions Qz|x, B € Q, where the latter set is defined
in Theorem 3.1. Under these constraints, the first term
coincides with the infimand of equation (5). The following
result shows that Q is a proper subset of Q.

Proposition 3.1. Assume a process distribution Px on X'*°
is exchangeable and the random variable B € Z decon-
volves X so that Px,., B = [H;Zl PX0|B] Pg for any n.
Given a distribution Pg, of a random variable Ey on Z,
assume the random intercept model (6) for Pgz. If we define

Drioae(Px, 9:Pz)
_ : p (10
= Qz\xl,I;fEQRI EPX‘BEQZD(,Bd (Xo,g(Zo)).

where QFI s the set of conditional distributions
Qzx,B such that the joint distribution Px pQzx B of
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(X, Z, B) has the marginal [H?Zl QZO|X0,B]PXM,B on
(Xi:n, Z1.n, B) for any n, and constraint (9) holds. Then,

Doar(Px, 94Pz) < Prioae(Px, 9:Pz), (11)
for any measurable g - Z — X.

Thus Algorithm i minimizes an upper bound of the right-
hand side of (4), which, in turn, is an upper bound of the
left-hand side. For these reasons, the LVM implied by
Algorithm i can be called a random-intercept OAE.

In the stochastic approximation to the third term of (8), sam-
pling from ) BIX requires infinite-length data, hence it is in-
feasible. Line 6 of Algorithm i employs ) B|x,> AN encoder
that takes only a single coordinate of data as input, instead
of Q BIX For each unit ¢ with m,; repeated measurements, it

samples b ~ Qp|x, (‘z}) foreach j = 1,...,m; and then
aggregate lsés to obtain b = mi Z;"Zl lA)z to approximate a
sample from () g x . This practice can be justified as follows.
The version of De Fenetti’s theorem employed here relies
on the fact that there is a 1-to-1 mapping between the range
of the limit of the empirical distribution of the coordinates
X; of X and the real line to identify the B (Olshen, 1974,
p- 319). Thus the b can be roughly understood as the em-
pirical distribution smoothed by this mapping; if @ BIXo is

well-chosen, then we can expect b 4 B.

4. Product-space OAE

4.1. Issues with the random-intercept OAE

The present analysis of the random-intercept OAE (RIOAE)
reveals at least three problems. First, the objec-
tive Drioas(Px, gsPz) is merely an upper bound of
Doae(Px, g4 Pz), which is already an upper bound of
p(Px, g4 Pz) (Proposition 3.1). Furthermore, constraints
(7) and (9) are not strong enough to impose the indepen-
dence and additivity requirements of the random intercept
model (6), causing an instability in training. Finally, con-
straint (9) is imposed for all possible observational units,
i.e., for all possible values of B. Because of this excessive
number of constraints, there has to be a sufficient number of
observations with diverse variation for every unit to ensure
successful training, which would be an exceptional feature
for real-world data.

4.2. Product-space model for latent space

The random intercept model (6) is not the only way
of imposing exchangeability to the sequence Z =
(+++,Z_1,Zy,Z1,- ) in Z°°. More importantly, the addi-
tive structure of this model may limit the expressiveness of
the entire generative model. A more flexible approach is to
decompose Z into Z x V. For given distributions Pz on 7

and Pr, on V, we specify Pz on Z°° by

Zi = (B, E}),B' "% Py, EL "% Pg, B 1L EL. (12)
Ideally, B? encodes the “identity” of the observational
unit shared among the coordinates of Z that is the ith
independent copy of Z, and EJ7 encodes the “within-
unit variation” shared among all observational units.
Clearly Z° is exchangeable. Furthermore, the sequence
(...,9(BY, E" ), g(B', E}),g(B%, El),...) is exchange-
able for any function g : Z x V — X. The additivity
constraint Z; = B’ + E’ in (6) is absorbed into the decoder
g and can be learned from data if appropriate. We call this
more flexible approach to OAE the product-space OAE.

The key advantage of the product-space OAE (PSOAE) over
RIOAE is that it directly optimizes the upper bound (5):

Theorem 4.1. Assume the process distribution Px on X*°
is exchangeable, and the random variable B on T decon-
volves X so that Px,. . B = [H;’:l PXO‘B]PB for any
n. Suppose the process distribution Pz on Z>° follows
the product-space model (12). Then, for decoder g(Z) =
(...,9(B,E_1),9(B, Ey),g(B, E1),...), we have

Doar(Px, 94Pz)
= inf
QEqx0.BELE,

where Qp, = {Qp,|x,.8 * [ QEo|x0,84Px,B = P, }-

If we let a joint distribution of (Xo, B, Ey) be Qx,.8,5, =
Qo x0,BPx,,B, then the induced conditional distribution

of Ey given B is Qo = [y QEy|x0,80Px, 5. Hence
the constraint defining the set Qp, is written as

QEy B = PEy, (13)

which implies that 1) Ey and B are independent with respect
to Q) x,.B,E,, and 2) the induced marginal Q) g, is equal to
the given marginal Pg,. The latter condition can be written

Pr, = [y 7 QEo|x0,B4Px,.B. (14)

In the reformulation of Doag(Px, g4 Pz) in Theorem 4.1,
the conditional distribution Ppx is unknown. Like RIOAE,
we can introduce a new “optimization variable” ) BIX and
impose constraint (7).

EPXEPB\XEQEO\XO,de(XOa g(B, EO));

Then the resulting optimization problem for the PSOAE is
inf inf inf EpE E dP(Xo,9(B, E
Hgl QIJIS}\X QE(ljr‘lB,XU Px B Qmo15.x0 (%o-o( )

+ MDB(Ps, [y @BxdPx)

+ X2Dg, (P, [y 7 QEo|x0,84Px,.B)

+ AID(@s,E, ), 15)

for appropriate choices of divergences Dp and Dg,; the
final penalty is a measure of deviation from independence
for the joint distribution of B and Ej induced by Q) x,. 5, £, -
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Remark 4.1. The characterization of Doag (5) in Theo-
rem 4.1 is significant, since equations (13) through (15)
show that the contributions of the “identity” latent variable
B and “variation” latent variable E are made explicitly
independent. This contrasts to the RIOAE based on DrioaEr
(10) in which these two variables are not completely orthog-
onal. The implication is that during the RIOAE training
the B may absorb some of the variations in the F, caus-
ing an instability (see Section 4.1). Thus the value of the
novel bound Doag is not only limited to the tightness over
Drioar (10). It is not clear that such a characterization is
also possible with Dr1oAE-

Algorithm 1 Product-space OAE training

Input: Exchangeable sequences (z!, ..., mﬁh) fori =1,...,L
Output: Encoder pair (Q g|x,, QE,|B,x,) and decoder g
Require: Pp, Pg,, regularization coefficients A1, A2 and A3, pos-
itive definite kernels ¢, ¢

1: while Qg x,, QE,|B,x,- f» g not converge do

2:  while Qp|x,, g not converged do

3: Sample units i = 1, ..., n and sequence (%, ..., 2%,) for
each unit ¢ , ‘

4: Sample b* from Pp and (e, ..., e;,) from Pg, for all
i=1,..,n

5: Sample b} ~ QB‘XO( \x7) for each j = 1,...,m and
aggregate b’ = Zm b‘ fori=1,.

6: Sample (ézh LXX3) em) from QE0|B,X0 glVen i)l and
(z%,...,x) foralli=1,...n
7. Update @ | x, and g by descending:

%sz”(zg,g(gl,é})) + ﬁzdhl.bl) + n(n)\L i) Zh(l;ll;l)

i=1j=1 i#l

2)\1 oy t rrrrr

s
T3 oAl mr; ZZ (b, b)0(&l, él)
il

+<WATS)4 DTN by by en) - nm)‘zz o(b, B)0 (e, eb)

0,4,k gy vw et

8:  end while

9:  while Qg 5, x,, f, g not converged do
10: Repeat 3 - 6

11: Update Q g, B, x, and g by descending:

ZZlogf(e
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12: Update f by ascending: >, ; log f(e5)+log(1—f(&4))
13:  end while
14: end while

4.3. Training the product-space OAE

Alternating optimization. Empirically, the following
coordinate-descent type alternating optimization scheme
is effective in training the PSOAE: 1) Fix the parameters of

the “within-unit variation encoder” Q g, |5, x,» and update
the parameters of the “identity encoder” () g;x and decoder
¢ until the infimand of problem (15) no longer changes. 2)
Fix the parameters of the identity encoder and update the
parameters of Q g, |, x, and decoder g until the infimand
of problem (15) no longer changes. 3) Repeat steps 1 and 2
until the parameters of the encoder pair (Q px, Qk,|B,x,)
and decoder g converge. Similar to the RIOAE, we use
Dgan for Dg, and Dyivp,« for Dp. This choice of di-
vergences reflects our experience with the WAE-GAN for
VGGFace?2 and that the number of units is usually smaller
than non-nested cases.Sampling from () BIX follows the ap-
proach of RIOAE (Algorithm i, Line 6). We also sample
é’ independently from Q|5 x, (- b, a%) given the bi and
the observations x; of unit ¢, for j = 1,..., m;. For the
penalty ZD, we employ the Hilbert-Schmidt Independence
Criterion (Gretton et al., 2005):

HSIC, 4(@B,E,)
= [|Eqp s, ([t B) = Epyi-. B)] © [0(, Eo) = Epy, (-, Eo)]) |5

for reproducing kernels ¢ : Z xZ — Rand 9 : V X
V — R that respectively induce Hilbert spaces H, and H.;
® denotes the tensor product and ||C||Zg is the squared
Hilbert-Schmidt norm of the cross-covariance operator C'.
This independence criterion is effective especially when the
dataset has a small number of samples per each unit. The
resulting training procedure is summarized as Algorithm 1.

Initialization. In practice, random variable B only decon-
volves the output process Y but not necessarily the input
X. Ideally, the latent variable B or its copy B should en-
code the “identity” of the realizations of an observational
unit and make the coordinates of input X conditionally i.i.d.
Thus, encoder Q BIX should be some smoothed version of
a classifier. Any sensible classifier of the training data can
be fit and used as the “initial value” of () BIx- For example,
features from the last hidden layer of the pre-trained ResNet
classifier (Cao et al., 2018) can be employed for VGGFace2.

5. Empirical results

The performance of the PSOAE with the proposed training
method was assessed for the following three tasks. Ex-

emplar generation: Given a few observations (z%)7,

from a new unit ¢, sample the “identity variables” (l;i )m
; ri 1

from QB‘X9(~'|I;-) to tak.e an average b= > b;
Draw a “within-unit variation” e; from Pg,. An exem-
plar is the reconstruction g(b%,e;). If m = 1, this task
is called one-shot exemplar generation. Style transfer:
From observations (zF)L | of another unit k& # i, sam-
ple b* as in exemplar generation Draw “within-unit vari-
ation” &} from Qp, 5, x, (- bk , ). Then, the sequence

(g(b', éF))E_, transfers the style of unit k to i. If m = 1,
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this task is called a one-shot style transfer. New concept
generation: In order to generate a new unit not in the data,
sample b"" from Pp and sequence (e}*) from P, i.i.d.
Then pass ((b™", ej*)) to the decoder g. In addition, the
representation power of the “identity variables” can be con-
sidered by the prototype image: for unit ¢, compute b as
in exemplar generation. Then g(lA)i, 1E, ) is the prototype
image of unit ¢, where g, is the mean of Ej.

For all the experiments, X = R% and Z = R with
Euclidean metric d(z, 2') = ||z — 2'||2. The prior distribu-
tion Pz of the latent variable Z follows model (12). The
independent standard normal prior Pg, = N(0,1,,) and
Pp = N(0,14,) were set over Z = R9Z and V = R%, re-
spectively. The identity encoder @ g x,, and the within-unit
variation encoder Qg | B, x,, Were also Gaussian:

i i iid 4 i
B |{X0 = Ij} NN(MB(x;‘)anB(‘Tj)IdI)v
i i i did i pi i
Ejzl{B =b", Xo = w;} NN(ME(xjab )70}2'5(x_j7b2)1dv)’

with the mean functions ug : X = Z, ug : X xZT =V
and the variance functions 0% : X = Ry 4, 0% : X X T —
R ;. For the VGGFace2 experiments, ;15 and 0123 were ini-
tialized with a pre-trained classifier (Cao et al., 2018). The
wg and o were designed to share most of the network to
prevent overfitting. Note that, for MNIST, joint optimization
worked equally well to the alternating optimization scheme,
but the latter was necessary with VGGFace2 for good per-
formance. The optimization was conducted with the ADAM
optimizer (Kingma & Ba, 2014). For VGGFace?2, it took
3300 epochs (100 iterations per epoch) to declare conver-
gence, where most of significant reductions occurred within
the first 700 epochs. Hyperparameters were hand-tuned
using the performance on validation datasets. The network
architectures was adapted from the WAE at Tolstikhin et al.
(2018). The quality of generated sample was compared
with WAE, in which observational units are not preserved.
Within-unit sample generations were compared with the
RIOAE. The quality of samples were also compared with
CAAE for units present in the training data by interpreting
each unit as a class. Further implementation details are
given in the Supplement.

5.1. MNIST

For the MNIST data, randomly selected 40,357 images were
used for training, and the rest were used for testing.

Imbalanced MNIST. In order to impose imbalance in the
training data, 90% of the training images of digits of 1, 2,
and 6 were removed. Generated images and t-SNE maps
(van der Maaten & Hinton, 2008) of the within-unit varia-
tion in the latent space are shown in Figure 1. In panel B, we
can note that PSOAE is superior in matching the prior distri-
bution, from which samples are plotted in translucent blue

A. Prototype images E-..E... Observations

CAAE
E- Eﬂ RioAE
01/]213[41516]7]819 L

B. Within-unit variation

CAAE RIOAE PSOAE
C. One-shot exemplar generation

NN ENE RN

obsewatlcns CAAE PSOAE

'

D. New concept generation

new concert 1 [ ENEIEIR Newconce
New concept 2 m v .

PSOAE

New concept 1 .- PSOAE
New concept 2 mul

E. Identity

I0AE

HEOG

RIOAE

Figure 1. Sample generation from imbalanced MNIST. Panel A:
prototype images obtained by CAAE, RIOAE, and PIOAE. Panel
C: generated variations of each digit. The minority classes are
highlighted in red. Panel D: illustration of new concept generation,
samples of “digit-like” units. Panels B and E: t-SNE maps of
within-unit variations and identities in the latent space, respectively.
Different colors represent different units (digits). Larger figures
are provided in the Supplement.

dots as a reference. Note that for CAAE and the RIOAE,
the distribution of the encoded within-unit variation shows
non-ideal clusters. In particular, the digit 1 (orange dots),
which is a minority class, is distinctly clustered. A similar
phenomenon can be observed for the digit 2 (green). This
is an indicator of training instability of the RIOAE, leading
to the poor quality in the prototype images of digits 2 and
6 in panel A. Because of the class imbalance, CAAE also
shows poor quality in the prototype images of digit 1 and
2. In panel C, for each method, the first column carries the
prototype images from one observation. The rest of columns
correspond to newly generated variations of the prototypes.
Samples enclosed by dashed red lines represent the minority
classes, i.e., the digits 1, 2, and 6. PSOAE shows the best
quality of within-unit sample generation for the minority
classes CAAE and RIOAE fail to preserve the key features
of digit 2 in some variations, while PSOAE maintains those
features well. Panel D shows the ability of the model to
generate new units (concepts) not present in the training
data. While PSOAE successfully generates the new con-
cepts containing key features of handwriting like strokes,
RIOAE fails to generate meaningful concepts more than
noise. WAE is not designed to generate samples with inborn
nested structure. Note that WAE only generates samples on
existing digits and does not generalize to any new concept.
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overall classes

Accuracy One-shot accuracy SSIM Sharpness
WAE - - 0.047(+0.003)
CAAE 0.860(=0. 008) - 0.244(+0. 020) 0.041(+£0.007)
RIOAE 0.919(=+0.033) 0.873(£0.059) 0.292(=£0.017) 0.025(+0.004)
PSOAE 0.939(+0.019) 0.878(+0.029) 0. 263(i0 008) 0.032(+£0.008)
Testset  0.994(£0.002) 0.229(40.009)  0.075(£0.004)
minority classes (1,2,6)

Accuracy  One-shot accuracy SSIM Sharpness
CAAE 0.609 (+0.017) - 0.253(+0.043)  0.041 (£0.007)
RIOAE  0.945 (+0.057) 0.877 (0.150) 0.403(£0.182)  0.028 (+0.003)
PSOAE  0.948 (+0.057) 0.946 (+0.096) 0.342(£0.104)  0.032 (+0.010)
Testset 0.992 (40.004) 0.263 (£0.124)  0.077 (£0.006)

majority classes (0,3,4,5,7,8,9)

Accuracy  One-shot accuracy SSIM Sharpness
CAAE 0.96 (+0.007) - 0.249(£0.058)  0.052 (£0.009)
RIOAE  0.914 (+0.013) 0.853 (£0.073)  0.251 (+0.085)  0.040 (£0.004)
PSOAE  0.918 (£0.025) 0.875 (£0.047)  0.243 (£0.061)  0.038 (+£0.004)
Testset 0.995 (40.003) 0.214 (£0.052)  0.077 (+0.003)

Table 1. Performance metrics on imbalanced MNIST for over-
all/minority/majority classes, averaged over 10 repetitions. Stan-
dard deviations are shown in parentheses. Measures from WAE
are omitted in minority/majority classes as WAE was unable to
generate specific digits conditionally.

Panel E shows the t-SNE map of the identities (the B) in the
latent space. Note that PSOAE closely encodes the similar
digits (e.g., digits 3 and 5; 7 and 9). The new concepts
presented in Panel D are marked as black squares. Observe
that the new concepts generated are mapped close to 8 and
4, where in Panel D they indeed look similar to (but distinct
from) digits 8 and 4. Table 1 reports several measures of
reconstruction quality on overall/minority/majority classes,
averaged over 10 repetitions of 100 exemplar generations.
(One-shot) accuracy measures the classification accuracy of
an MNIST-trained deep digit classifier for five (one) gen-
erated images per digit. The classifier used for calculating
the classification accuracy is a CNN with 898k parameters,
trained with the common training data used for all genera-
tive models. It was tested with test data used for calculating
values in Table 1, and trained until its test accuracy became
0.994. Also, the structural similarity (SSIM) (Odena et al.,
2017) and the sharpness measured by using the Laplace
filter (Tolstikhin et al., 2018) are provided to assess the per-
image quality of the generated digits. For overall classes,
samples from CAAE and both OAEs exhibit similar perfor-
mance metrics with the unconditionally generated samples
from WAE. However, it may be misleading to focus on a
single metric. SSIM and sharpness denotes the variety and
crispiness of generated images, not whether they are proper
digits. If classification accuracy (first two columns) is low,
then those images cannot be recognized as a digit however
variable and sharp they are. This is the case with CAAE:
while SSIM is close to the testset and sharpness is high,
but the generated digit 1, a minority class, does not look
like a 1. Noticeably, the finite-number-of-units generation
accuracy of CAAE is even lower than the one-shot accuracy

. ..- - - .. Observations
LIEAGIGHEIEE
E.-...mmn PeoAE

Figure 2. Exemplar generation from MNIST models trained with-
out digit 6. Observation of the unit not used in training (digit 6)
and its new variations are enclosed by the dashed red box.

of OAEs. When restricted to minority classes, the accuracy
of CAAE decreases to 0.609. Between the two OAEs, the
PSOAE outperforms by all metrics. The sharpness of WAE
was computed unconditionally, where for other models this
metric was computed as an average over an equal number
of images per digit; WAE virtually did not generate images
of the minority/majority classes since the model ignores the
class information.

MNIST with a missing digit. To be more informative,
we removed the digit 6 completely from the training set
and conducted generation using it as an exemplar. Figure 2
clearly shows the superiority of PSOAE. This is a strong
support for the value of novel bound Doar (Remark 4.1).
The novel optimization problem (15) and Algorithm 1 help
the encoder to distinguish the “identity” latent variable B
and “variation” latent variable F with a limited number of
units (digits).

5.2. VGGFace2

For the VGGFace?2 dataset, each face image was cropped
and rescaled to a common size of 128 by 128 pixels. The
training set consisted of 2,513,512 images from 8,631 ran-
domly chosen people. Two separate test sets were applied
to measure the performance. One consisted of the 628,378
images of the 8,631 people used in the training. The other
test set was comprised of 169,396 images from 500 peo-
ple who were not included in the training set. In Figure 3,
the proposed method demonstrates the superiority in the
identity-preserving quality, without any loss of other im-
age generation qualities (e.g., variety and sharpness). Panel
A shows that CAAE fails to preserve the identity of the
people used in the training. This is likely because of the
large number of classes (identities) in the data with severe
imbalance. On the other hand, the PSOAE successfully
preserves the identities of the input images in the prototypes
with more details, regardless of their presence in the model
training. In this task, the RIOAE was not as good as PSOAE.
Notably, panel B emphasizes the key ability of OAE, gener-
ating identity-preserving samples nested within a given unit,
where giving original variations (one-shot exemplar gener-
ation) or those transferred from other data (style transfer)
are both possible. Panel B shows the example of the two
tasks. For each example, we generated samples preserving
the identity of the target person (1st column) with variations
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1S FID Sharpness
WAE -
CAAE  2.020(+0010) 115.767(£2.79) 0.001(-£0.000)
K RIOAE  2.068(£0.011) 107.961(£2.371)  0.001(£0.000)
PSOAE 2.146(£0.104) 98.525(+2.487) 0.001(%0.000)
Testset  3.883(40.146) - 0.004(40.001)
WAE 2.125(+0.016) 106.250(+3.024)  0.001(=+0.000)
CAAE -
U RIOAE  2.067(+0.020) 102.476(3.363) 0.001(-£0.000)
PSOAE 2.125(£0.118) 94.287(+2.323) 0.001(£0.000)
Testset  3.807(£0.164) - 0.003(=£0.001)

CAAE

.. RIOAE

PSOAE

B. One-shot style transfer and one-shot exemplar generation

3

Table 2. VGGFace?2 performance measures. ‘K’: identities used
in training; ‘U’: identities not used in training. Standard deviations
are provided in parentheses.

given from the source person (2nd to 6th column; one-shot
style transfer) and with original variations (7th to 11th col-
umn; one-shot exemplar generation). For these examples,
PSOAE shows better performance in “identity-preservation”
for one-shot exemplar generation and one-shot style-transfer.
This superiority suggests the potential of PSOAE as an at-
tractive data augmentation method for many applications
that suffer from data imbalance. Remarkably, PSOAE also
succeeded in generating completely new identities (neither
in the training set nor the test set) with shared pose varia-
tions that RIOAE fails (panel C). This failure is due to the
interference with F, as B was unable to sufficiently encode
identity, as described in Section 4.2. WAE may generate new
identities, but they cannot create the systematic variations
as OAEs. Class-conditional models like CAAE are clearly
incapable of this task. In Table 2, the quality of one-shot
exemplar generation is quantified by the inception score
(IS) (Salimans et al., 2016), the sharpness of the generative
images, and the Frechet inception distance (FID) between
the generated images distribution and the original image
distributions (Heusel et al., 2017). These measures were
averaged over 10 repetitions of 30 exemplar generations.
For each unit, 300 samples were generated. For the identity
not used in training, the quality of the generated sequence of
portraits nested within a single person was compared with
the unstructured samples generated from WAE. All mea-
sures favor OAE over WAE and CAAE. For FID, PSOAE
shows the best result, which implies that the data generated
from PSOAE is closer to the original data than RIOAE.

6. Conclusion

OAEs are a promising new family of models for learn-
ing disentangled representation when data have a nested
structure. The key attraction is their ability to generate
observational-unit preserving samples for an unknown num-
ber of observational-units and variations within-unit. Espe-
cially, when the data exhibit exchangeability, OAEs yield
tractable learning algorithms. We have shown that the previ-
ous approach to OAE (RIOAE) actually minimizes a loose
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Target person ¥

Source person

Target person ¥
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Figure 3. Sample generation from VGGFace2. Panel A: prototype
images of individuals obtained by CAAE, RIOAE, and PSOAE.
Panel B: examples of one-shot style transfer and one-shot example
generation, nested within a given target. Panel C: generated new
(virtual) individuals (WAE, OAEs) and their variations (RIOAE,
PSOAE).Larger figures are provided in the Supplement.

upper bound of Orstein’s d-bar distance, an optimal trans-
port distance between stationary processes. Our approach,
PSOAE, alleviates the instability of RIOAE by minimizing a
tighter upper bound, and successfully separates within-unit
and between-unit variations in the representation space. The
power of this separation is exhibited with three key tasks on
representation learning: exemplar generation, style transfer,
and new concept generation, all in which PSOAE shows a
favorable performance.

Acknowledgements

This work was supported in part by Samsung Electronics
Co., Ltd. through the SNU-Samsung Smart Campus re-
search program. The authors were also supported by the Na-
tional Research Foundation of Korea (NRF) grant funded by
the Korea government (MSIT) (No. 2019R1A2C1007126).



Learning from Nested Data with Ornstein Auto-Encoders

References

Bousquet, O., Gelly, S., Tolstikhin, I., Simon-Gabriel, C.-J.,
and Scholkopf, B. From optimal transport to genera-
tive modeling: the VEGAN cookbook. arXiv preprint
arXiv:1705.07642, 2017.

Cao, Q., Shen, L., Xie, W., Parkhi, O. M., and Zisserman, A.
VGGFace2: A dataset for recognising faces across pose
and age. In Proc. 13th IEEE Int. Conf. Automat. Face
Gesture Recogn. (FG 2018), pp. 67-74, 2018.

Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever,
I., and Abbeel, P. InfoGAN: Interpretable representation
learning by information maximizing generative adversar-
ial nets. In Adv. Neural Inf. Process. Syst. (NeurlPS 2016),
pp. 2172-2180, 2016.

Choi, Y. and Won, J.-H. Ornstein auto-encoders. In Proc.
Int. Joint Conf. Artif. Intell. (IJCAI 2019), pp. 2172-2178.
AAAI Press, 2019.

Diggle, P. J., Heagerty, P., Heagerty, P. J., Liang, K.-Y.,
Zeger, S., et al. Analysis of longitudinal data. Oxford
University Press, Oxford, UK, 2002.

Fitzmaurice, G. M., Laird, N. M., and Ware, J. H. Applied
longitudinal analysis, volume 998. John Wiley & Sons,
New York, USA, 2012.

Goodfellow, 1., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y.
Generative adversarial nets. In Adv. Neural Inf. Process.
Syst. (NeurIPS 2014), pp. 2672-2680, 2014.

Gray, R. M., Neuhoff, D. I:., and Shields, P. C. A gen-
eralization of Ornstein’s d distance with applications to
information theory. Ann. Probab., pp. 315-328, 1975.

Gretton, A., Bousquet, O., Smola, A., and Scholkopf, B.
Measuring statistical dependence with Hilbert-Schmidt
norms. In Int. Conf. Algorithmic Learn. Theory (ALT
2005), pp. 63-77. Springer, 2005.

Gretton, A., Borgwardt, K. M., Rasch, M. J., Scholkopf, B.,
and Smola, A. A kernel two-sample test. J. Mach. Learn.
Res., 13(Mar):723-773, 2012.

Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., and
Hochreiter, S. GANSs trained by a two time-scale update
rule converge to a local Nash equilibrium. In Adv. Neural
Inf. Process. Syst. (NeurIPS 2017), pp. 6626—-6637, 2017.

Kingma, D. and Ba, J. Adam: A method for stochastic
optimization. Proc. Int. Conf. Learn. Represent. (ICLR
2014), 2014.

Kingma, D. P. and Welling, M. Auto-encoding variational
Bayes. In Proc. Int. Conf. Learn. Represent. (ICLR 2014),
2014.

Kingma, D. P, Rezende, D. J., Mohamed, S., and Welling,
M. Semi-supervised learning with deep generative mod-
els. In Adv. Neural Inf. Process. Syst. (NeurlPS 2014), pp.
3581-3589, 2014.

Lake, B. M., Salakhutdinov, R., and Tenenbaum, J. B. The
omniglot challenge: A 3-year progress report. Curr. Opin.
Behav. Sci., 29:97-104, 2019.

Lopez, R., Regier, J., Jordan, M. 1., and Yosef, N. Infor-
mation constraints on auto-encoding variational Bayes.
In Adv. Neural Inf. Process. Syst. (NeurlPS 2018), pp.
6114-6125, 2018.

Louizos, C., Swersky, K., Li, Y., Welling, M., and Zemel,
R. S. The variational fair autoencoder. In Proc. Int. Conf.
Learn. Represent. (ICLR 2016), 2016.

Makhzani, A., Shlens, J., Jaitly, N., and Goodfellow, I.
Adversarial autoencoders. In Proc. Int. Conf. Learn. Rep-
resent. (ICLR 2016), 2016.

Odena, A., Olah, C., and Shlens, J. Conditional image
synthesis with auxiliary classifier GANs. In Proc. Int.
Conf. Mach. Learn. (ICML 2017), pp. 2642-2651, 2017.

Olshen, R. A note on exchangeable sequences. Zeitschrift
fiir Wahrscheinlichkeitstheorie und Verwandte Gebiete,
28(4):317-321, 1974.

Ornstein, D. S. An application of ergodic theory to proba-
bility theory. Ann. Probab., 1(1):43-58, 1973.

Patrini, G., van den Berg, R., Forre, P., Carioni, M., Bhargav,
S., Welling, M., Genewein, T., and Nielsen, F. Sinkhorn
autoencoders. In Uncertain. Artif. Intell. (UAI 2020), pp.
733-743, 2020.

Salimans, T., Goodfellow, 1., Zaremba, W., Cheung, V., Rad-
ford, A., and Chen, X. Improved techniques for training
GANS. In Adv. Neural Inf. Process. Syst. (NeurIPS 2016),
pp- 2234-2242, 2016.

Tolstikhin, I., Bousquet, O., Gelly, S., and Scholkopf, B.
Wasserstein auto-encoders. In Proc. Int. Conf. Learn.
Represent. (ICLR 2018), 2018.

van der Maaten, L. and Hinton, G. Visualizing data using
t-SNE. J. Mach. Learn. Res., 9(Nov):2579-2605, 2008.

Zhao, S., Song, J., and Ermon, S. Learning hierarchical
features from deep generative models. In Proc. Int. Conf.
Mach. Learn. (ICML 2017), pp. 4091-4099, 2017.

Zhu, J.-Y., Park, T., Isola, P., and Efros, A. A. Unpaired
image-to-image translation using cycle-consistent adver-
sarial networks. In Proc. IEEE Int. Conf. Comput. Vision
(ICCV 2017), pp. 2223-2232, 2017.



