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Abstract
Learning to reach goal states and learning diverse

skills through mutual information (MI) maximiza-

tion have been proposed as principled frameworks

for self-supervised reinforcement learning, allow-

ing agents to acquire broadly applicable multi-

task policies with minimal reward engineering.

Starting from a simple observation that the stan-

dard goal-conditioned RL (GCRL) is encapsu-

lated by the optimization objective of variational

empowerment, we discuss how GCRL and MI-

based RL can be generalized into a single family

of methods, which we name variational GCRL

(VGCRL), interpreting variational MI maximiza-

tion, or variational empowerment, as representa-

tion learning methods that acquire functionally-

aware state representations for goal reaching. This

novel perspective allows us to: (1) derive simple

but unexplored variants of GCRL to study how

adding small representation capacity can already

expand its capabilities; (2) investigate how dis-

criminator function capacity and smoothness de-

termine the quality of discovered skills, or latent

goals, through modifying latent dimensionality

and applying spectral normalization; (3) adapt

techniques such as hindsight experience replay

(HER) from GCRL to MI-based RL; and lastly,

(4) propose a novel evaluation metric, named la-

tent goal reaching (LGR), for comparing empow-

erment algorithms with different choices of latent

dimensionality and discriminator parameteriza-

tion. Through principled mathematical deriva-

tions and careful experimental studies, our work

lays a novel foundation from which to evaluate,

analyze, and develop representation learning tech-

niques in goal-based RL.
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1 Introduction

Reinforcement learning (RL) provides a general framework

for discovering optimal behaviors for sequential decision-

making. Combined with powerful function approximators

like neural networks, RL can be used to learn to play com-

puter games from raw pixels (Mnih et al., 2013) and acquire

complex sensorimotor skills with real-world robots (Gu

et al., 2017a; Kalashnikov et al., 2018; Haarnoja et al.,

2018). Neural networks show best performance, gener-

alization, and reusability when they are trained on large

and diverse datasets (Krizhevsky et al., 2012; Devlin et al.,

2018). However, a critical limitation in RL is that human

experts often need to spend considerable efforts designing

and fine-tuning reward functions per task, making it hard

to scale and define a huge set of tasks in advance. If we

have agents that can interact with the world without rewards,

build up a body of knowledge autonomously, and utilize

this knowledge to accomplish new tasks efficiently, then

we can greatly scale up task and skill learning to achieve

similar level of generalization and performance for RL as

what neural networks have enabled for other domains.

Several works have tried to find a single generalizable task-

agnostic reward function which can potentially be used

across several environments. The use of such intrinsic re-

ward functions has been motivated as exploration heuristics

such as curiosity and novelty (Schmidhuber, 1991; Oudeyer

& Kaplan, 2009; Bellemare et al., 2016; Pathak et al., 2017),

as optimizing mutual information (MI) (Gregor et al., 2017;

Eysenbach et al., 2019; Sharma et al., 2020b;a) or as empow-

erment (Klyubin et al., 2005; Jung et al., 2011; Mohamed &

Rezende, 2015). Classically, goal-conditioned RL (GCRL)

has shown success in learning diverse and useful skills in

concurrence to MI-based methods. GCRL optimizes a sta-

tionary and interpretable reward for goal-reaching, but when

the goal space is high-dimensional, how does the agent

know which part of the space is relevant and which part can

be ignored? In such cases, prior GCRL works frequently

rely on manual definition (Andrychowicz et al., 2017) or

off-the-shelf representation learning (Nachum et al., 2018;

Nair et al., 2018; Wu et al., 2018) optimized prior to or

separately from reinforcement learning. Meanwhile, MI or

empowerment-based RL offers a clear objective for repre-

sentation learning through reinforcement learning, but the
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properties of the learned behaviors are often unclear due to

lack of a proper evaluation metric. Prior works use qualita-

tive inspections of learned behaviors, variational bound esti-

mates, or downstream task performances of a skill-utilizing

high-level policy (Eysenbach et al., 2019; Sharma et al.,

2020b), but these heuristics are costly or indirect measures

and make objective comparisons and analyses of various

mathematically-similar MI-based algorithms difficult (Flo-

rensa et al., 2017; Eysenbach et al., 2019; Achiam et al.,

2018; Warde-Farley et al., 2019; Hansen et al., 2020; Sharma

et al., 2020b). To recover a more direct metric, an impor-

tant question is: what do these MI-based objectives learn

representations for?

In this work, we interpret MI and empowerment-based RL as

a principled framework for representation learning in goal-

conditioned RL. Starting from a simple observation that the

objective of the standard GCRL can be seen as a special

case of variational MI with a fixed hard-coded variational

posterior, our analysis provides a unification of these ideas

and explicitly reframes skill discovery via mutual informa-

tion maximization (Gregor et al., 2017; Eysenbach et al.,

2019) as a combination of representation learning and goal-

conditioned reinforcement learning, where both the space of

goals and the skills to reach those goals are learned jointly

via a MI-based objective. While the connections between

representation learning, mutual information estimation, and

goal-conditioned RL have been explored in a number of pre-

vious works (Gregor et al., 2017; Warde-Farley et al., 2019;

Gupta et al., 2018), our exact mathematical formulation and

granular analyses enable new perspectives and synergies

between GCRL and MI-based RL:

1. [MI to GCRL] We propose simple but novel variants of

GCRL – adaptive-variance and linear-mapping GCRL –

to study how adding small representation capacity can

already expand the capabilities of GCRL.

2. [MI to GCRL] We show that a proper representation

regularization from generative modeling, such as spectral

normalization (Miyato et al., 2018), can improve the

quality of latent goals discovered (and the stability of

MI-based algorithms).

3. [GCRL to MI] We adapt hindsight experience replay

(HER) (Andrychowicz et al., 2017) from GCRL to more

general MI-based objectives and show posterior HER

(P-HER) consistently provides substantial performance

gains in MI-based RL algorithms.

4. [GCRL to MI] We propose the latent goal reach-

ing (LGR) metric as an intuitive, task-oriented, and

discriminator-agnostic metric for objectively evaluating

empowerment algorithms.

2 Related Work

Reward engineering has been a bottleneck to broad appli-

cation of RL. Some of the prior attempts to alleviate this

problem have sought introduce human supervision in al-

ternative, easier forms, such as demonstrations (Ng et al.,

2000; Abbeel & Ng, 2004; Ziebart et al., 2008; Ho & Ermon,

2016; Fu et al., 2017; Ghasemipour et al., 2019) or prefer-

ences (Hadfield-Menell et al., 2017; Christiano et al., 2017).

However, since these methods still rely on non-negligible

amounts of human interventions, they cannot automatically

scale to solving thousands of new environments and tasks.

Empowerment and reward-free RL. Task-agnostic re-

ward functions have been proposed to encourage explo-

ration in environments using notions of curiosity or nov-

elty (Schmidhuber, 1991; Oudeyer & Kaplan, 2009; Schmid-

huber, 2010; Bellemare et al., 2016; Pathak et al., 2017; Co-

las et al., 2018). In a similar vein, some methods maximize

the state-visitation entropy (Hazan et al., 2018; Pong et al.,

2019; Lee et al., 2019; Ghasemipour et al., 2019). These ap-

proaches can enable solutions to otherwise hard exploration

sparse-reward problems. Some of the recent work has em-

phasized on empowerment or option/skill discovery through

optimization of mutual information based intrinsic reward

functions. Classically, empowerment measures the ability

of an agent to control the environment (Salge et al., 2014;

Klyubin et al., 2005; Jung et al., 2011), which was scaled

up by (Mohamed & Rezende, 2015; Karl et al., 2017). The

concept of mutual information, which is also at the heart

of empowerment based methods, has been further used to

motivate several objectives for skill discovery (Florensa

et al., 2017; Eysenbach et al., 2019; Achiam et al., 2018;

Warde-Farley et al., 2019; Hansen et al., 2020; Sharma et al.,

2020b; Campos et al., 2020). Recent works have shown that

skills learned through mutual information can be meaning-

fully combined to solve downstream tasks (Eysenbach et al.,

2019; Sharma et al., 2020b), even on real robots (Sharma

et al., 2020a).

Goal-conditioned RL. Goal-conditioned RL (Kaelbling,

1993; Pong et al., 2018; Andrychowicz et al., 2017; Schaul

et al., 2015) provides a framework for enabling agents to

reach user-specified goal states. The behaviors learned via

GCRL can be interpretable and easy to analyze in terms

of the goal-reaching function. However, GCRL assumes

that a goal-reaching function has been specified in addition

to goal states, which precludes broader application for the

same reasons as those for reward engineering. To overcome

such limitations, some prior works have used variational

inference (Rudner et al., 2021) or mutual information in

the GCRL framework (Pong et al., 2019; Warde-Farley

et al., 2019) to learn. However, these works use the MI

optimization as an unsupervised scheme to generate and

achieve goals. On the other hand, our work studies skill-

discovery/empowerment methods and provides an explicit
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reinterpretation within the GCRL framework, combining the

representation learning perspective with the goal-reaching

behavior of GCRL.

3 Background

In this section, we briefly review mutual information (MI)-

based objectives for skill discovery, focusing on variational

approaches introduced in (Mohamed & Rezende, 2015;

Gregor et al., 2017; Eysenbach et al., 2019; Sharma et al.,

2020b), and goal-conditioned RL (GCRL).

We denote a Markov decision process (MDP) M =
(S,A, p, r), where S denotes the state space, A denotes the

action space, p : S×S×A → [0,∞) denotes the underlying

(possibly stochastic) transition dynamics of the environment

with the initial state distribution p0 : S → [0,∞), and a re-

ward function r : S ×A → R. The goal of the RL optimiza-

tion problem is to learn a policy π(a | s) which maximizes

the return Ep,π [
∑∞

t=0 γ
tr(st, at)] = Es∼ρπ,a∼π [r(s, a)] ,

for a discount factor γ ∈ [0, 1) where ρπ is an unnormal-

ized γ-discounted state visitation density. Importantly, once

we write an objective in the form of Eρπ,π [r(s, a)], we can

apply the policy gradient theorem (Sutton et al., 2000) to de-

rive a practical RL solver, as done in (Kakade, 2002; Silver

et al., 2014; Schulman et al., 2015; Gu et al., 2017b; Ciosek

& Whiteson, 2018), or learn it with Q-learning (Watkins &

Dayan, 1992). For simplicity of our notations, we omit the

discount factor γ in the following sections and derivations.

3.1 Mutual Information Maximization and

Empowerment

MI maximization in RL such as empowerment generally

means maximizing the mutual information between (some

representations of) actions and (some representations of)

future states following those actions (Klyubin et al., 2005;

Mohamed & Rezende, 2015). The goal is to learn a set of

actions that can influence future states to be diverse, but also

be predictable if we know what action is taken. In this work

we focus on learning abstract representation z ∈ Z , which

is an additional input to the policy π(a|s, z) and defines a

set of empowered actions. The latent code z (either discrete

or continuous) can be interpreted as a macro-action, skill or

goal (Eysenbach et al., 2019; Sharma et al., 2020b).

We discuss two variants of MI objectives in RL: state-

predictive MI (Sharma et al., 2020b), which maximizes

I(s′; z | s), and state-marginal MI (Eysenbach et al., 2019),

which maximizes I(s; z). Due to page limit, we discuss

these variants more in detail in Appendix A. In this work, we

focus on state-marginal MI, whose optimization objective

is:

I(s; z) = Ez∼p(z),s∼ρπ(s|z)[log p(z | s)− log p(z)]

≥ Ez∼p(z),s∼ρπ(s|z)[log qλ(z | s)− log p(z)] (1)

where qλ(z|s) is a variational approximation to the in-

tractable posterior p(z|s), often called a (skill) discrimi-

nator (Eysenbach et al., 2019).

Given a parameterized policy πθ(a|s, z), Eq. 1 gives a joint

maximization objective (a variational lower bound) with

respect to πθ and qλ:

F(θ, λ) = Ez,s∼πθ
[log qλ(z|s)− log p(z)] . (2)

A simple iterative RL procedure can be derived to opti-

mize this lower bound, assuming a parameterized policy

πθ(a|s, z), where at iteration i,

λ(i) ← argmaxλ Ez,s∼π(i−1) [log qλ(z|s)− log p(z)] (3)

θ(i) ← argmaxθ Ez,s∼πθ
[log qλ(i)(z|s)− log p(z)] . (4)

Eq. 3 is a simple supervised regression (e.g., maximum

likelihood) on on-policy samples. Eq. 4 has the same form

of standard RL, and therefore can be optimized using any

RL algorithm (Gregor et al., 2017; Eysenbach et al., 2019).

3.2 Goal-Conditioned RL

Goal-conditioned RL (Kaelbling, 1993; Schaul et al., 2015)

(GCRL) is a standard, stationary-reward problem where we

aim to find a policy π(a|s, g) conditional on a goal g ∈ G
by maximizing

F (π) = Eg∼p(g),s∼πθ
[−d(s, g)] , (5)

where p(g, s) = p(g)ρπ(s|g), p(g) defines the task distribu-

tion over goals, and d(s, g) is a distance metric between state

s and goal g, such as an Euclidean distance. The main chal-

lenges for goal-conditioned RL lie in defining the goal space

and the goal-reaching reward function −d(s, g), which of-

ten requires task-specific knowledge or careful choices of

goal space (Plappert et al., 2018).

In off-policy learning, hindsight experience replay

(HER) (Kaelbling, 1993; Andrychowicz et al., 2017) has

shown to improve learning of goal-conditioned policy sig-

nificantly. The key insight is that for a given exploration

episode {g, s0:T }, one can relabel the goal with an actually

achieved goal S(s0:T ), derived by a strategy function S(·).
A typical choice is to relabel the goal as g̃ = S(s0:T ) = sT ,

which can be seen as self-supervised curriculum learn-

ing (Andrychowicz et al., 2017; Lynch et al., 2019).

4 Expressivity Tradeoffs in Variational

Empowerment

Interestingly, the simple objective in Eq. 2, which we term

Variational Goal-Conditioned RL (VGCRL), encapsulates

most of the prior MI-based algorithms (Eysenbach et al.,

2019; Warde-Farley et al., 2019; Hansen et al., 2020) with

the only differences being goal space Z , prior p(z), and

discriminator qλ(z|s), as detailed in Table 1. For example,

when z is a discrete variable, this reduces to DIAYN (Ey-

senbach et al., 2019) or VALOR (Achiam et al., 2018).
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Method Goal space qλ(z|s) Learnable λ Learning πz

GCRL (Kaelbling, 1993) Continuous (Rd) N (s, σ2I) - (HER)

aGCRL (ours) Continuous (Rd) N (s,Σ) Σ HER

linGCRL (ours) Continuous (Rd) N (As, σ2I) A P-HER
InfoGAIL∗ (Li et al., 2017) Discrete Categorical qλ -

DIAYN (Eysenbach et al., 2019) Discrete Categorical qλ -

DIAYN (continuous) Continuous (Rd) N (µ(s),Σ(s)) µ(·) -
DISCERN (Warde-Farley et al., 2019) = S (e.g. image) Non-parametric Embedding(·) HER

VISR (Hansen et al., 2020) Continuous (Rd) vMF(µ(s), κ) µ(·) SF

VGCRL Any Any Any P-HER or SF

Table 1: A summary of algorithms, all are optimized with the single objective in Eq. 2. vMF stands for von Mise-Fisher distribution.
DIAYN (Eysenbach et al., 2019), DISCERN (Warde-Farley et al., 2019), VISR (Hansen et al., 2020) can be seen as special cases.
For InfoGAIL (Li et al., 2017)∗, we focus on the MI regularization objective LI(π,Q) only. Since they are under the same objective,
learning techniques for goal-conditioned policy πz such as successor features (SF) (Barreto et al., 2017) and hindsight experience replay
(HER) (Andrychowicz et al., 2017) can be adapted for more general settings within the VGCRL objective.

If z is continuous, a natural choice for qλ is a Gaussian, i.e.

N (µ(s),Σ(s)), where both µ and Σ may be parameterized

using any function approximators with a range of expres-

sivities, from identity functions to deep neural networks.

Throughout the rest of the paper, we show how various

simple choices for qλ lead to algorithms with different prop-

erties.

Goal-Conditioned RL as a Coarse Variational Approxi-

mation. A simple observation is that if we choose a fixed

variational distribution, such asN (s, σ2I) with σ as a fixed

hyperparameter and the goal space identical to the observa-

tion space (Z = S), the RL objective in Eq. 4 becomes (see

Appendix B for mathematical details):

F(π) = Ez,s∼πθ

[

− 1
σ2 ‖z − s‖2

]

+ constant. (6)

It is straightforward to see that this recovers the objective of

GCRL in Eq. 5 exactly (up to a constant), where the distance

function uses a squared loss. This provides a novel interpre-

tation for GCRL algorithms as a variational empowerment

algorithm with a hard-coded and fixed variational distribu-

tion. Given that no qλ parameters are adapted, this generally

provides a very loose bound on MI; however, prior work on

GCRL shows that this RL objective, unlike empowerment-

based, learns useful goal-reaching skills stably (Kaelbling,

1993; Andrychowicz et al., 2017; Pong et al., 2018) thanks

to a stationary reward function. This suggests that GCRL

and prior variational empowerment methods represent two

ends of a spectrum, corresponding to the expressivity of

the variational distribution used to approximately maximize

mutual information, and neither of the two is perfect, with

their own pros and cons. Varying expressivity — through

the choices of Z and qλ — and evaluating the qualities of

learned goal spaces is a central theme of the next section.

5 Goal-Conditioned RL as Variational

Empowerment

In this section, we discuss GCRL with representation learn-

ing, through the lens of variational empowerment: how the

representation capacity leads to algorithms with different

properties. We first derive two “lost relatives” of GCRL that

only add minimal representation capacities but still result in

interesting learning behaviors while keeping the stability of

GCRL, and then discuss how we can study representation ca-

pacity in more general settings through varying smoothness

constraints.

5.1 Adaptive Variances for Relevance Determination

Given the observation in Section 4, a straightforward mod-

ification to GCRL is to allow the variances to be learned,

while keeping µ(s) = s. If we assume a global learned

covariance, i.e., qλ(z|s) = N (s,Σ), λ = {Σ}, Eq. 2 gives

us a novel variant of GCRL, which we call adaptive GCRL

(aGCRL). The intuition behind this algorithm is the follow-

ing: let us assume a simple diagonal covariance matrix;

during learning, this algorithm will quickly shrink σ for the

goal dimensions that the agent can reliably reach, and will

expand variances for the dimensions that the agent has a

hard time to; it therefore can identify and prioritize goal-

reaching in feasible directions, discounting unfeasible ones,

resembling properties of automatic relevance determination

(ARD) (Wipf & Nagarajan, 2008).

Experiment: Automatic Controllability Determination

on Windy PointMass. We design a simple Windy Point-

Mass environment to study adaptive behaviors, which is

simulated in Mujoco (Todorov et al., 2012). We assume

a point mass in N -dimensional space (Figure 1a), where

some dimensions have random force perturbations and there-

fore are difficult to control. Such perturbations are often

studied in the risk-sensitive RL literature (Fox et al., 2015;

Maddison et al., 2017); however, in our experiments, they
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Method HalfCheetah Ant Humanoid
|G| F LGRv(s) LGR(z) F LGRv(s) LGR(z) F LGRv(s) LGR(z)

10 DIAYN 1.608 0.800 0.963 -0.835 0.529 0.806 1.261 0.523 0.922
DIAYN + P-HER 1.372 1.424 0.934 -0.049 0.486 0.889 1.856 0.312 0.953

20 DIAYN 1.732 1.125 0.920 -1.308 0.610 0.763 0.713 0.315 0.768
DIAYN + P-HER 1.852 1.214 0.891 -1.288 0.515 0.823 2.251 0.183 0.922

50 DIAYN 1.475 0.673 0.827 -3.812 0.402 0.523 -1.158 0.268 0.549
DIAYN + P-HER 1.699 0.704 0.834 -2.171 0.637 0.750 2.848 0.545 0.891

200 DIAYN 2.854 0.698 0.801 -8.450 0.396 0.113 -4.396 0.208 0.337
DIAYN + P-HER 3.357 0.814 0.844 -7.047 0.555 0.263 3.448 0.866 0.766

1000 DIAYN -8.286 1.156 0.176 -16.795 0.434 0.005 -8.914 0.325 0.101
DIAYN + P-HER -4.424 0.510 0.361 -10.941 0.322 0.028 3.395 1.569 0.762

Table 3: Evaluation of Latent Goal-Reaching Metric on MuJoCo control suites, after a total of 10M environment steps of

training. F is the (average) empowerment reward, F = Ez[log qλ(z|s)− p(z)]. LGRv(s) is the squared error in observation

space (the lower, the better) with respect to velocity dimensions between the marginal state and the target state, and LGR(z)

denotes the accuracy of top-1 classification of the discriminator qλ(z|s) (the higher, the better, max 1.0).

qλ(z|s) P-HER? SN?
HalfCheetah Ant Humanoid

F LGRv(s) LGR(z) F LGRv(s) LGR(z) F LGRv(s) LGR(z)

|G
|
=

5

N (µ(s), fixed2)
- - 0.932 1.005 0.159 -0.590 1.005 0.382 0.239 1.461 0.202
✔ - -0.142 1.273 0.360 0.140 2.449 0.300 0.020 1.452 0.244

N (µ(s),Σ(s)2)

- - -0.731 1.251 0.172 -18.490 0.306 0.427 -3.597 0.538 0.147
✔ - -2.161 1.132 0.289 -0.108 2.423 0.303 1.207 0.206 0.074
- ✔ 5.856 0.604 0.019 2.548 0.925 0.091 4.509 0.460 0.040
✔ ✔ 5.803 1.352 0.017 4.349 0.463 0.039 5.203 0.203 0.026

GMM (K = 8)
- - -2.646 0.766 0.325 -16.196 0.367 0.486 -3.576 0.231 0.198
✔ - -3.091 1.065 0.404 -2.874 2.794 0.325 3.526 0.581 0.043

Table 4: Comparison of continuous variants of VGCRL, where the dimension of the goal space is |G| = 5. SN denotes

Spectral Normliazation (Section 5.3). LGR(z) is the goal reaching performance in the latent space (the lower, the better). A

full table containing more comprehensive comparison and corresponding plots can be found in Appendix C (Table 5).

state embedding φ(s) := argmaxz q(z|s), where h−1(z)
is defined to be an arbitrary state s that is associated with

latent z, which is in our case the marginal state from the

latent-conditioned policy πθ. A difference is that (Wu et al.,

2018) use contrastive learning whereas VGCRL maximizes

likelihood to learn the representation q.

6.3 Experiments: Posterior HER and Latent Goal

Reaching

In this section, we evaluate the performance of several vari-

ants of VGCRL on standard locomotion tasks (Brockman

et al., 2016). We consider both a discrete latent space, anal-

ogous to that used by DIAYN (Eysenbach et al., 2019),

and a continuous latent space, where the variational pos-

terior qλ(z|s) chosen to be a Gaussian posterior (VGCRL-

Gaussian), with either learnable or fixed variances, or Gaus-

sian Mixtures (VGCRL-GMM). To evaluate the perfor-

mance, we report the following metrics: (1) the empower-

ment objective F = Ez[log q(z|s)− p(z)], (2) LGR(z): the

latent goal reaching metric, and (3) LGRv(s): the latent goal

reaching metric with respect to velocity dimensions (Sec-

tion 6.2).

We first observe that P-HER can accelerate and improve

learning (Figure 4, Tables 3 and 4). Such improvements are

significant in high-dimensional goal spaces (e.g., |G| = 200)

and more difficult control tasks such as Ant or Humanoid

with high dimensionalities, in which both the discrimina-

tor and the latent-conditioned policy are difficult to learn.

Because an optimization of goal-conditioned policy (Eq. 4)

is more difficult than discriminators (Eq. 3), relabeling of

goal can greatly accelerate RL, which also results in better

discriminability. As shown in Tables 4 and 5, P-HER can

improve not only the optimization objective but also other

metrics such as discriminator’s accuracy and goal reaching

performance across different design choices and environ-

ments.

Moreover, when Spectral Normalization (Section 5.3) is ap-

plied, we observe a significant improvement in terms of

the learning progress and evaluation metrics (Figure 4, Ta-

ble 4). As shown in Figure 4, while there are some progress

with vanilla VGCRL-Gaussian (or VGCRL-GMM), the op-

timization objective F as well as evaluation metrics do not

improve as much as the one with SN, despite the bigger
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expressivity due to no constraint on qλ(z|s). We can also

see that with SN (and P-HER as well), the distance between

achieved and desired goal is much lower. More experimental

results and discussions can be found in Appendix C.

7 Conclusion

Our variational GCRL (VGCRL) framework unifies unsu-

pervised skill learning methods based on variational em-

powerment (Eysenbach et al., 2019; Gregor et al., 2017;

Sharma et al., 2020b) with goal-conditioned RL (GCRL)

methods, allowing us to transfer techniques and insights

across both types of approaches. Viewing GCRL as varia-

tional empowerment, we derive simple extensions of goal-

based methods that exhibit some representation learning ca-

pability of variational methods, e.g., disentangle underlying

factors of variations and automatically determine control-

lable dimensions, while keeping the learning stability of

GCRL. Viewing variational empowerment as GCRL, we

can transfer popular optimization techniques such as rela-

beling from GCRL to variational empowerment algorithms,

and propose latent goal-reaching (LGR) as a more objective,

performance-based metric for evaluating the quality of skill

(latent goal) discovery. We hope that these insights can

lay the ground for further developments of more capable

and performant algorithms for unsupervised reinforcement

learning in future work.
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