Label-Only Membership Inference Attacks

A. Background
A.1. Machine Learning

We consider supervised classification tasks (Murphy, 2012;
Shalev-Shwartz & Ben-David, 2014), wherein a model is
trained to predict some class label y, given input data x.
Commonly, z may be an image or sentence and y is then
the corresponding label, e.g., a digit 0-9 or a text sentiment.

We focus our study on neural networks (Bengio et al., 2017):
functions composed as a series of linear-transformation lay-
ers, each followed by a non-linear activation. The overall
layer structure is called the model’s architecture and the
learnable parameters of the linear transformations are the
weights. For a classification problem with K-classes, the
last layer of a neural network outputs a vector v of K values
(often called logits). The softmax function is typically used
to convert the logits into normalized confidence scores:’.
softmax(v); = e“'i/ZiK:1 eV € [0, 1]. For a model h, we
define the model’s output h(z) as the vector of softmax
values. The model’s predicted label is the class with highest
confidence, i.e., argmax, h(z);.

A.1.1. DATA AUGMENTATION

Augmentations are natural transformations of existing data
points that preserve class semantics (e.g., small translations
of an image), which are used to improve the generalization
of a classifier (Cubuk et al., 2018; Sohn et al., 2020; Taylor
& Nitschke, 2018). They are commonly used on state-of-
the-art models (He et al., 2015; Cubuk et al., 2018; Perez &
Wang, 2017) to increase the diversity of the finite training
set, without the need to acquire more labeled data (in a
costly process). Augmentations are especially important in
low-data regimes (Sajjad et al., 2019; Fadaee et al., 2017;
Cui et al., 2015) and are domain-specific: they apply to a
certain type of input, (e.g., images or text).

We focus on image classifiers, where the main types of aug-
mentations are affine transformations (rotations, reflections,
scaling, and shifts), contrast adjustments, cutout (DeVries
& Taylor, 2017), and blurring (adding noise). By synthe-
sizing a new data sample as an augmentation of an existing
data sample, 2’ = augment(x), the model can learn a more
semantically-meaningful set of features. Data augmenta-
tion can potentially teach the machine learning model to
become invariant to the augmentation (e.g., rotationally or
translationally invariant).

"While it is common to refer to the output of a softmax as a
“probability vector” because its components are in the range [0, 1]
and sum to 1, we refrain from using this terminology given that
the scores output by a softmax cannot be rigorously interpreted
as probabilities (Gal, 2016)

A.1.2. TRANSFER LEARNING

Transfer learning is a common technique used to improve
generalization in low-data regimes (Tan et al., 2018). By
leveraging data from a source task, it is possible to transfer
knowledge to a farget task. Commonly, a model is trained
on the data of the source task and then fine-tuned on data
from the output task. In the case of neural networks, it is
common to fine-tune either the entire model or just the last
layer.

A.2. Membership Inference

Membership inference attacks (Shokri et al., 2016) are a
form of privacy leakage that identify if a given data sample
was in a machine learning model’s training dataset. Given a
sample z and access to a trained model h, the adversary uses
a classifier or decision rule fj to compute a membership
prediction f(x;h) € {0, 1}, with the goal that f(x; h) =
1 whenever z is a training point. The main challenge in
mounting a membership inference attack is creating the
classifier f, under various assumptions about the adversary’s
knowledge of h and its training data distribution.

Prior work assumes that an adversary has only black-box
access to the trained model h, via a query interface that on
input  returns part or all of the confidence vector h(z).

Shadow Models The original membership inference at-
tack of Shokri et al. (Shokri et al., 2016) creates a member-
ship classifier f(x;h), tuned on a number of local “shadow”
(or, source) models. Assuming the adversary has access to
data from the same (or similar) distribution as h’s training
data, the shadow model approach trains the auxiliary source
models iLi on this data. Since ]Ali is trained by the adver-
sary, they know whether or not any data point was in the
training set, and can thus construct a dataset of confidence
vectors h; with an associated membership label m € {0,1}.
The adversary trains a classifier f to predict m given ﬁl(:v)
Finally, the adversary queries the targeted model & to ob-
tain h(x) and uses f to predict the membership of z in h’s
training data.

Salem et al. (Salem et al., 2018) later showed that this at-
tack strategy can succeed even without data from the same
distribution as h, and only with data from a similar task
(e.g., a different vision task). They also showed that training
shadow models is unnecessary: applying a simple threshold
predicting f(x;h) = 1 (z is a member) when the max pre-
diction confidence, max; h(x), is above a tuned threshold,
suffices.

Towards Label-only Approaches Yeom et al. (Yeom
et al., 2018) propose a simple baseline attack: the adversary
predicts a data point x as being a member of the training set
when £ classifies « correctly. The accuracy of this baseline
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attack directly reflects the gap in the model’s train and test
accuracy: if i overfits (i.e., obtains higher accuracy) on its
training data , this baseline attack will achieve non-trivial
membership inference. We call this the gap attack. If the
adversary’s target points are equally likely to be members
or non-members of the training set (see Appendix B.2) , this
attack achieves an accuracy of

1/2 + (acctrain - acctest)/2 )

where acCyrin, aCCrest € [0, 1] are the target model’s accuracy
on training data and held out data respectively.

To the best of our knowledge, this is the only attack pro-
posed in prior work that makes use of only the model’s
predicted label, y = argmax; h(x);. Our goal is to investi-
gate how this simple baseline can be surpassed to achieve
label-only membership inference attacks that perform on
par with attacks that use access to the model’s confidence
scores.

Indirect Membership Inference The work of Long et
al. (Long et al., 2018) investigates membership inference
through indirect access, wherein the adversary only queries
h on inputs z’ that are related to x, but not x directly. Our
label-only attacks similarly make use of information gleaned
from querying h on data points related to = (specifically,
perturbed versions of x).

The main difference is that we focus on label-only attacks,
whereas the work of Long et al. (Long et al., 2018) assumes
adversarial access to the model’s confidence scores. Our
attacks will also be allowed to query and obtain the label at
the chosen point x.

Adversarial Examples and Membership Inference
Song et al. (Song et al., 2019) also make use of adversarial
examples to infer membership. Their approach crucially
differs from ours in two aspects: (1) they assume access
to and predict membership using the confidence scores,
and (2) they target models that were explicitly trained to
be robust to adversarial examples. In this sense, (2) bares
some similarities with our attacks on models trained with
data augmentation (see Section 6, where we also find that a
model’s invariance to some perturbations can leak additional
membership signal).

Defenses Defenses against membership inference broadly
fall into two categories.

First, standard regularization techniques, such as L.2 weight
normalization (Shokri et al., 2016; Jia et al., 2019; Truex
et al., 2018; Nasr et al., 2018a), dropout (Jia et al., 2019), or
differential privacy have been proposed to address the role
that overfitting plays in a membership inference attack’s
success rate (Shokri et al., 2016). Heavy regularization

has been shown to limit overfitting and to effectively defend
against membership inference, but may result in a significant
degradation in the model’s accuracy. Moreover, Yeom et
al. (Yeom et al., 2018) show that overfitting is sufficient, but
not necessary, for membership inference to be possible.

Second, defenses may reduce the information contained in
a model’s confidences, e.g., by truncating them to a lower
precision (Shokri et al., 2016), reducing the dimensionality
of the confidence-vector to only some top k scores (Shokri
et al., 2016; Truex et al., 2018), or perturbing confidences
via an adversary-aware “minimax” approach (Nasr et al.,
2018a; Yang et al., 2020; Jia et al., 2019). These defenses
modify either the model’s training or inference procedure to
produce minimally perturbed confidence vectors that thwart
existing membership inference attacks. We refer to these
defenses as “confidence-masking” defenses.

Outliers in Membership Inference Most membership
inference research is focused on protecting the average-
case user’s privacy: the success of a membership inference
attack is evaluated over a large dataset. Long et al. (Long
et al., 2018) focus on understanding the vulnerability of
outliers to membership inference. They show that some
(< 100) outlier data points can be targeted and have their
membership inferred to high (up to 90%) precision (Long
et al., 2017; 2018). Recent work explores how overfitting
impacts membership leakage from a defender’s (white-box)
perspective, with complete access to the model (Leino &
Fredrikson, 2019).

B. Evaluation Setup

Because our main goal is to show that label-only attacks
can match the success of prior attacks, we consider a similar
threat model that matches prior work—except that we restrict
the adversary to label-only queries.

As in prior work (Shokri et al., 2016), we assume that the
adversary has: (1) full knowledge of the task; (2) knowledge
of the target model’s architecture and training setup; (3)
partial data knowledge, i.e., access to a disjoint partition
of data samples from the same distribution as the target
model’s training data (see below for more details); and (4)
knowledge of the targeted points’ labels, y.

B.1. Our Threat Model

Generating Membership Data Some works have ex-
plored generating data samples = for which to perform
membership inference on, which assumes the least data
knowledge (Shokri et al., 2016; Fredrikson et al., 2015).
These cases work best with minimal numbers of features or
binary features because they can take many queries (Shokri
et al., 2016). Other works assumes access to the confidence
vectors (Fredrikson et al., 2015). Our work assumes that
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candidate samples have already been found by the adversary.
We leave to future work the efficient discovery of these sam-
ples on high-dimensionality data using a label-only query
interface.

In our threat model, we always use a disjoint, non-
overlapping (i.e., no data points are shared) set of samples
for training and test data for the target model. The source
model uses another two separate subsets of the task’s to-
tal data pool. Due to the balanced priors we assume, all
subsets (i.e., the target model training and test sets, and the
source model training and test sets) are always of the same
size. In the case of CIFAR100, we use the target models
training dataset (members) as the source models test dataset
(non-members), and vice versa.

Model Architectures For computer vision tasks, we use
two representative model architectures, a standard convolu-
tional neural network (CNN) and a ResNet (He et al., 2015).
Our CNN has four convolution layers with ReLU activa-
tions. The first two 3 x 3 convolutions have 32 filters and
the second two have 64 filters, with a max-pool in between
the two. To compute logits we feed the output through a
fully-connected layer with 512 neurons. This model has
1.2 million parameters. Our ResNet-28 is a standard Wide
ResNet-28 taken directly from (Sohn et al., 2020) with 1.4
million parameters. On Purchase-100, we use a fully con-
nected neural network with one hidden layer of size 128 and
the T'anh activation function, exactly as in (Shokri et al.,
2016). For Texas-100, Adult, and Locations we mimic this
model but add a second hidden layer matching the first.

For the attacks from prior work based on confidence vectors,
and our new label-only attacks based on data augmentations,
we use shallow neural networks as membership predictor
models f. Specifically, for augmentations, we use two lay-
ers of 10 neurons and LeakyReL U activations (Maas et al.,
2013). The confidence-vector attack models use a single
hidden layer of 64 neurons, as originally proposed by Shokri
et al. (Shokri et al., 2016). We train a separate prediction
model for each class We observe minimal changes in attack
performance by changing the architecture, or by replacing
the predictor model f by a simple thresholding rule. Our
combined boundary distance and augmentation attack uses
neural networks as well. For simplicity, our decision bound-
ary distance attacks use a single global thresholding rule,
2,500 queries, and the L2 distance metric. See Section 3.4
for more details.

B.2. On Measuring Success

Some recent works have questioned the use of (balanced)
accuracy as a measure of attack success and proposed other
measures more suited for imbalanced priors: where any data
point targeted by the adversary is a-priori unlikely to be a

training point (Jayaraman et al., 2020). As our main goal
is to study the effect of the model’s query interface on the
ability to perform membership inference, we focus here on
the same balanced setting considered in most prior work.
We also note that the assumption that the adversary has a
(near-) balanced prior need not be unrealistic in practice: For
example, the adversary might have query access to models
from two different medical studies (trained on patients with
two different conditions) and might know a-priori that some
targeted user participated in one of these studies, without
knowing which.

C. Threat Model

The goal of a membership inference attack is to determine
whether or not a candidate data point was used to train
a given model. In Table 3, we summarize different sets
of assumptions made in prior work about the adversary’s
knowledge and query access to the model.

C.1. Adversarial Knowledge

The membership inference threat model originally intro-
duced by Shokri et al. (Shokri et al., 2016), and used in
many subsequent works (Long et al., 2017; Truex et al.,
2018; Salem et al., 2018; Song et al., 2019; Nasr et al.,
2018b), assumes that the adversary has black-box access
to the model A (i.e., they can only query the model for
its prediction and confidence but not inspect its learned
parameters ). Our work also assumes black-box model ac-
cess, with the extra restriction (see Section C.2 for more
details) that the model only returns (hard) labels to queries.
Though studying membership inference attacks with white-
box model access (Leino & Fredrikson, 2019) has merits
(e.g., for upper-bounding the membership leakage), our
label-only restriction inherently presumes a black-box set-
ting (as otherwise, the adversary could just run & locally to
obtain confidence scores). Although we are focused on the
label-only domain, our attack methodologies can be applied
for analysis in the white-box domain.

Assuming a black-box query interface, there are a number
of other dimensions to the adversary’s assumed knowledge
of the trained model:

Task Knowledge refers to global information about the
model’s prediction task and, therefore, of its prediction APIL.
Examples of task knowledge include the total number of
classes, the class-labels (dog, cat, etc.), and the input format
(32 x 32 RGB or grayscale images, etc.). Task knowledge
is always assumed to be known to the adversary, as it is
necessary for the classifier service to be useful to a user.

Training Knowledge refers to knowledge about the
model architecture (e.g., the type of neural network, its
number of layers, etc.) and how it was trained (the training
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Table 3. Survey of membership inference threat models. £ is the model’s loss function, 7 is a calibration term reflecting the difficulty
of the sample, 6 are the model parameters centered around 0", 0y are the parameters on all other datapoints (other than ), aug(z) is a
data augmentation of z (e.g., image translation), X’ is an adversarial-example of x, and dist, (z, y) is the distance from z to the decision
boundary. Train, data, label, and model knowledge mean, respectively, that the adversary (1) knows the model’s architecture and training
algorithm, (2) has access to other samples from the training distribution, (3) knows the true label, y for a given z, and (4) knows the

model parameter values.

Query Interface Attack Feature

Knowledge Source

confidence vector h(z),y
confidence vector h(x)
confidence vector h(x)

confidence vector
confidence vector
confidence vector
confidence vector

L(h(z), y)
L(h(z), y)+7()
—(0=05)" VoL (h(x), y)

h(x). y

train, data, label (Shokri et al., 2016)

train, data (Long et al., 2017)

- (Salem et al., 2018)

label (Yeom et al., 2018)
label (Sablayrolles et al., 2019)

train, data, label, model
train, data, label

(Sablayrolles et al., 2019)
(Song et al., 2019)

label-only argmax h(z),y label (Yeom et al., 2018)
label-only argmax h(aug(z)),y train, data, label ours
label-only disty (x,y) train, data, label ours
label-only disty, (aug(z), y) train, data, label ours

algorithm, training dataset size, etc). This information could
be publicly available or inferable from a model extraction
attack (Tramer et al., 2016; Wang & Gong, 2018).

Data Knowledge constitutes knowledge about the data
that was used to train the target model. Full knowledge
of the training data renders membership inference trivial
because the training members are already known. Partial
knowledge may consist in having access to (or the ability to
generate) samples from the same or a related data distribu-
tion.

Label Knowledge refers to knowledge of the true label
y for each point x for which the adversary is predicting
membership. Whether knowledge of a data point implies
knowledge of its true label depends on the application sce-
nario. Salem et al. (Salem et al., 2018) show that attacks
that rely on knowledge of query labels can often be matched
by attacks that do not.

C.2. Query Interface

Our paper studies a different query interface than most prior
membership inference work. The choice of query interface
ultimately depends on the application needs where the target
model is deployed. We define two types of query interfaces,
with different levels of response granularity:

Full confidence vectors On a query z, the adversary re-
ceives the full vector of confidence scores h(x) from the
classifier. In a multi-class scenario, each value in this vec-
tor corresponds to an estimated confidence that this class
is the correct label. Restricting access to only part of the
confidence vector has little effect on the adversary’s suc-

cess (Shokri et al., 2016; Truex et al., 2018; Salem et al.,
2018).

Label-only Here, the adversary only obtains the predicted
label y = argmax; h(zx);, with no confidence scores. This
is the minimal piece of information that any query-able
machine learning model must provide and is thus the most
restrictive query interface for the adversary. Such a query
interface is also realistic, as the adversary may only get
indirect access to a deployed model in many settings. For
example, the model may be part of a larger system taking
actions based on the model’s predictions—the adversary
can only observe the system’s actions but not the internal
model’s confidence scores.

In this work, we focus exclusively on the above label-only
regime. Thus, in contrast to prior research (Shokri et al.,
2016; Hayes et al., 2019; Truex et al., 2018; Salem et al.,
2018), our attacks can be mounted against any machine
learning service, regardless of the granularity provided by
the query interface.

D. Confidence-Masking Defense Descriptions

MemGuard This defense solves a constrained optimiza-
tion problem to compute a defended confidence-vector
hdefense (1) = h(x) 4 n, where n is an adversarial noise vec-
tor that satisfies the following constraints: (1) the model still
outputs a vector of “probabilities”, i.e., h%fne(x) € [0, 1]%
and || hdeense(2)||; = 1; (2) the model’s predictions are un-
changed, i.e., argmax h%®m¢(z) = argmax h(z); and (3)
the noisy confidence vector “fools” existing membership in-
ference attacks. To enforce the third constraint, the defender
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locally creates a membership attack predictor f, and then
optimizes the noise n to cause f to mis-predict membership.

Prediction Purification Prediction purification (Yang
et al., 2020) is a similar defense. It trains a purifier model,
G, that is applied to the output vector of the target model.
That is, on a query x, the adversary receives G(h(x)). The
purifier model G is trained so as to minimize the information
content in the confidence vector, whilst preserving model
accuracy. While the defense does not guarantee that the
model’s labels are preserved at all points, the defense is
by design incapable of preventing the baseline gap attack,
and it is likely that our stronger label-only attacks would
similarly be unaffected (intuitively, G(h(x)) is just another
deterministic classifier, so the membership leakage from
a point’s distance to the decision boundary should not be
expected to change).

Adversarial Regularization This defense trains the tar-
get model in tandem with a defensive membership classifier.
This defensive membership classifier is a neural network
that accepts both the confidence-vector, h(z), of the target
model, and the true label, ¥, that is one-hot encoded. Fol-
lowing the input h(z) there are four fully connected layers
of sizes 100, 1024, 512, 64. Following the input y, there are
three fully connected layers of sizes 100, 512, 64. The two
64 neuron layers are concatenated (to make a layer of size
128), and passed through three more fully connected layers
of sizes 256, 64, and the output layer of size 1. ReLU acti-
vations are used after every layer except the output, which
uses a sigmoid activation.

The defensive membership classifier and the target model
are trained in tandem. First the target model is trained
a few (here, 3) epochs. Then for k steps, the defensive
membership classifier is trained using an equal batch on
members and non-members (which should be different from
the held-out set for the target model). After, the target model
is trained on one batch of training data. The target model’s
loss function is modified to include a regularization term
using the output of the defensive classifier on the training
data. This regularization term is weighted by A.

E. Description of Common Regularizers

Dropout (Srivastava et al., 2014) is a simple regularization
technique, wherein a fraction p € (0,1) of weights are
randomly “dropped” (i.e., set to zero) in each training step.
Intuitively, dropout samples a new random neural network
at each step, thereby preventing groups of weights from
overfitting. At test time, the model is deterministic and
uses all the learned weights. We experiment with different
dropout probabilities p.

L1 and L2 regularization simply add an additional term of

the form A - ||w|| to the model’s training loss, where w is
a vector containing all of the model’s weights, the norm is
either L1 or L2, and A > 0 is a hyper-parameter govern-
ing the scale of the regularization relative to the learning
objective. Strong regularization (i.e., large \) reduces the
complexity of the learned model (i.e., it forces the model
to learn smaller weights). We experiment with different
regularization constants A.

Differential privacy guarantees that any output from a (ran-
domized) algorithm on some dataset D, would have also
been output with roughly the same probability (up to a
multiplicative e® factor) if one point in D were arbitrarily
modified. For differential privacy, we use DP-SGD (Abadi
et al., 2016), a private version of stochastic gradient descent
that clips per-example gradients to an L2 norm of 7, and
adds Gaussian noise N(0, ¢272) to each batch’s gradient.
We train target models with fixed parameters ¢ = 0.5 and
7 = 2. We train for a varied number of steps, to achieve
provable differential privacy guarantees for 10 < e < 250.

F. Additional Figures
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Figure 7. Attack accuracy of our label-only attacks for various
numbers of shadow models. Target and source models are trained
on 1000 data points from CIFAR-10. The number of shadow
models does not have a significant impact on the attack accuracy.
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Figure 8. Attack accuracy of our translation attack for various
choices of d. Target models are trained on 2500 data points from
CIFAR-10 with varied sizes of translation augmentations. The
attack’s accuracy is maximized when it evaluates the same size d
of translations as used for training.
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Figure 9. Accuracy of membership inference attacks on
CIFAR-10 models protected with Adversarial Regulariza-
tion (Nasr et al., 2018a). Target models are trained on a subset of
2500 images. We test several values of k, the ratio of maximization
to minimization steps and find that setting k = 1 enabled the target
model to converge to a defended state. We report results as we vary
the second hyper-parameter, A, which balances the two training
objectives (low training error and low membership leakage). This
defense strategy does not explicitly aim to reduce the train-test
gap and thus does not protect against label-only attacks. However,
we find that this defense prevents attacks from exploiting beyond
3 percentage points of the gap attack. Test accuracy ranges from
45% to 20%, where A > 3 had a test accuracy below 35%.

100

90 | % %,

~~

80 \ s

R ) e e s o T
= \:\ eSS S T —— T
@) N e ) Ty "
g 70 \.¥ —
3 '@
2 60 Transfer Learning Type
{“,, —— Full Fine Tuning \x\x
5 50 Last Layer
—— None
40 Attack Model
—e— Gap Attack
30 —#- Boundary Distance

0 2000 4000 6000 8000 10000
Number of Training Data Points

Figure 10. Accuracy of membership inference attacks on

CIFAR-10 models trained with transfer learning. The source

model for transfer learning is trained on all of CIFAR-100. Models

are tuned on subsets of CIFAR-10.
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Figure 11. Outlier membership inference attacks on defended
models. Target and source models are trained on a subset of 2500
points from CIFAR-10. 8 = 2% outliers are identified with less
than v = 10 neighbors. We show precision-improvement from the
undefended model, using our label-only boundary distance attack.



