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Abstract 
Sharing parameters in multi-agent deep reinforce-
ment learning has played an essential role in al-
lowing algorithms to scale to a large number of 
agents. Parameter sharing between agents sig-
nifcantly decreases the number of trainable pa-
rameters, shortening training times to tractable 
levels, and has been linked to more effcient learn-
ing. However, having all agents share the same 
parameters can also have a detrimental effect on 
learning. We demonstrate the impact of parameter 
sharing methods on training speed and converged 
returns, establishing that when applied indiscrimi-
nately, their effectiveness is highly dependent on 
the environment. We propose a novel method to 
automatically identify agents which may bene-
ft from sharing parameters by partitioning them 
based on their abilities and goals. Our approach 
combines the increased sample effciency of pa-
rameter sharing with the representational capacity 
of multiple independent networks to reduce train-
ing time and increase fnal returns. 

1. Introduction 
Multi-agent reinforcement learning (MARL) aims to jointly 
train multiple agents to solve a given task in a shared en-
vironment. Recent work has focused on novel techniques 
for experience sharing (Christianos et al., 2020), agent mod-
elling (Albrecht & Stone, 2018), and communication be-
tween agents (Rangwala & Williams, 2020; Zhang et al., 
2020) to address the non-stationarity and multi-agent credit 
assignment problems (Papoudakis et al., 2019). A problem 
that has received less attention to date is how to scale MARL 
algorithms to many agents, with typical numbers in previous 
works ranging between two and ten agents. 

One common implementation technique to facilitate train-
ing with a larger number of agents is parameter sharing 
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(e.g. (Gupta et al., 2017)) whereby agents share some or all 
parameters in their policy networks. In the literature, pa-
rameter sharing is typically applied indiscriminately across 
all agents, which we call naive. Naive parameter sharing 
has been effective primarily due to the similar (if not identi-
cal) observation and reward functions between agents found 
in many multi-agent environments. This similarity allows 
agents to share representations in intermediate neural net-
work layers. Despite the occasional effectiveness of naive 
parameter sharing, it is not supported by theoretical work 
and has not received much attention beyond being men-
tioned as an implementation detail. Indeed, naive parameter 
sharing can decrease training time, but we show that it can 
be detrimental to fnal convergence in many environments, 
even when paired with implementation details that generally 
accompany it. We observe in our experiments that when the 
transition or the reward functions are distinct across agents, 
hidden representations that can be shared are harder to form, 
and fully-shared parameters are not effective. 

These limitations, however, do not imply that parameter 
sharing does not have a place in MARL. In contrast, we 
believe that it is an essential tool in scaling deep MARL al-
gorithms to large numbers of agents, provided it can be done 
selectively, so as not to limit fnal performance. Therefore, 
we aim to beneft from parameter sharing when possible but 
also avoid potential bottlenecks. We introduce a method, 
Selective Parameter Sharing (SePS)*, to automatically iden-
tify agents which may beneft from sharing parameters by 
partitioning them based on their abilities and goals. This par-
titioning is performed by encoding each agent to an embed-
ding space by observing their trajectories, and then applying 
an unsupervised clustering algorithm to the encodings. 

We can acquire an intuition of the setting this paper dis-
cusses by imagining a team of robots that must learn to run 
a restaurant, fulflling both waiters and cooks’ roles. Of 
course, agents belonging to the same group have to learn 
similar policies and therefore shared latent representations 
can signifcantly decrease learning requirements (i.e. there 
is no need for each cook to learn separately how to chop in-
gredients). Nevertheless, waiters and cooks have almost no 
common functionalities, and the representational capacity 

*We provide an open-source implementation of SePS here: 
https://github.com/uoe-agents/seps 
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of a single neural network poses a bottleneck when attempt-
ing to learn all distinct roles. Furthermore, we show that 
agents tend to forget information needed by others when 
updating the parameters with their own objectives, actively 
interfering with other agents’ learning. 

We provide comparisons of typical usage of parameter shar-
ing (sharing across all agents, appending agent indices, or 
not sharing at all) and show that i) SePS can converge to 
higher returns than both not sharing parameters and sharing 
them naively, ii) SePS is more sample effcient and executes 
considerably faster than not sharing parameters. Moreover, 
in contrast to baseline methods, SePS scaled to hundreds 
of agents (we experimented with up to 200) in our environ-
ments that contained non-homogeneous agents. 

2. Background 
Markov Games: A Markov game (e.g. (Littman, 
1994); also known as a stochastic game (Shapley, 
1953)) with partial observability is defned by the tu-
ple (N , S, {Oi}i∈N , {Ai}i∈N , P, {Ri}i∈N ), with agents 
i ∈ N = {1, . . . , N}, state space S, joint observa-
tion space O = O1 × . . . × ON , and joint action space 
A = A1 ×. . .×AN . Each agent i only perceives local obser-
vations oi ∈ Oi which depend on the current state. Function 
P : S × A 7→ Δ(S) returns a distribution over successor 
states given a state and a joint action; Ri : S×A×S 7→ R is 

ithe reward function giving agent i’s individual reward r att 
timestep t. The objective is to fnd policies π = (π1, ..., πN ) 
for all agents such that the discounted return of each agentPT 

γt ii, Gi = r , is maximised with respect to othert=0 t 
policies in π, formally ∀i : πi ∈ arg maxπ0 E[Gi|π0, π−i]ii 

where π−i = π \ {πi}, γ is the discount factor, and T the 
total timesteps of an episode. 

Unlike some recent MARL work we do not assume identical 
action, observation spaces, or reward functions between 
agents (Christianos et al., 2020; Rashid et al., 2018; Foerster 
et al., 2018). 

Policy Gradient and Actor-Critic: The goal of rein-
forcement learning is to fnd strategies that optimise the 
returns of the agents. Policy gradient, a class of model-free 
RL algorithms, directly learn and optimise a policy πφ pa-
rameterised by φ. The REINFORCE algorithm (Williams, 
1992), follows the gradients of the objective rφJ(φ) = 
Eπφ [Gtrφln πφ(at|st)] to fnd a policy that maximises the 
returns. To further reduce the variance of gradient estimates, 
actor-critic algorithms replace the Monte Carlo returns with 
a value function Vπ (s; υ). In a multi-agent, partially ob-
servable setting, a simple actor-critic algorithm defnes the 
policy loss function for an agent i as: 

i i i i iL(φi) = − log π(at|ot; φi)(rt +γV (ot+1; υi)−V (ot; υi)) 

and the respective value loss function as: 
i i iL(υi) = ||V (o ; υi) − yi||2 with yi = r + γV (ot t t+1; υi) 

In this paper, for reinforcement learning, we use A2C (Mnih 
et al., 2016), an actor-critic algorithm that additionally uses 
n-step rewards, environments that run in parallel, and im-
proved exploration with entropy regularisation. 

Variational Autoencoders: Variational autoencoders 
(VAEs) are generative models that explicitly learn a density 
function over some unobserved latent variables Z given an 
input x ∈ X , where X is a dataset. Given the unknown 
true posterior p(z|x), VAEs approximate it with a paramet-
ric distribution qθ(z|x) with parameters θ. Computing the 
KL-divergence from the parametric distribution to the true 
posterior results in: 

DKL(qθ(z|x)kp(z|x)) = log p(x) 

− Ez∼qθ (z|x)[log pu(x|z)] + DKL(qθ(z|x)kq(z)) 

The term log p(x) is called log-evidence and it is constant. 
The other two terms are the negative evidence lower bound 
(ELBO). Minimising the ELBO is equivalent to minimis-
ing the KL-divergence between the parametric and the true 
posterior. 

3. Selective Parameter Sharing 
To improve the effectiveness of parameter sharing, and al-
low for several distinct roles to be learned, we attempt to 
group agents that should be sharing their parameters during 
training. In an environment, we assume that N agents can 
be partitioned into K sets (K < N ) but without knowing K 
nor the partitioning. With K = {π1, . . . , πK }, each agent 
in a cluster k uses and updates the shared policy πk. As we 
show in our experiments, such distinct shared policies can 
often be trained more effciently while offering enough rep-
resentational capacity to successfully solve the environment, 
and may even reach higher overall returns than alternative 
methods (see Section 4). Figure 1 depicts a top-level dia-
gram of the components in our architecture. 

To assign agents to partitions, we propose the use of a de-
terministic function µ : N 7→ K that maps each agent i to 
a parameterised policy (or partition) πk. This partitioning 
is learned prior to RL training. Therefore, agents that share 
parameters get to beneft from shared representations in the 
latent layers of their neural networks, while not interfering 
with agents using other parameters. 

Recall the transition P and reward Ri functions that defne 
an environment’s dynamics (Section 2). We aim to deter-
mine µ and partition agents such that agents which try to 
solve similar tasks use shared policies. Therefore, we in-
troduce another concept: a set of functions P̂i and R̂i that 
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Figure 1: A top-level diagram of the selective parameter 
sharing architecture. N agents are operating in one envi-
ronment and receive observations and rewards. With SePS 
we are training K < N policies and use a deterministic 
function µ to select which policy controls which agent. 

encoder
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Figure 2: The encoder-decoder model. The encoder learns 
to encode the id of an agent in an embedding space while 
the decoder predicts the reward and next observation. 

attempt to approximate P and Ri, but from the agents’ lim-
ited perspective of the world. An agent does not observe the 
state nor the actions of another agent, and hence we defne 
P̂i : Oi × Ai 7→ Δ(Oi) and R̂i : Oi × Ai 7→ R, that model 
the next observation and reward respectively, based only on 
the observation and action of an agent i. When learning 
these functions our goal is not to ensure their accuracy as 
approximators of the dynamics; but rather that they iden-
tify similar agents to provide a basis for partitioning. We 
speculate that agents that should be grouped have similar 
reward and observation functions. Thus, the reasoning be-
hind the following method is our desire to identify agents 
with identical P̂i and R̂i, and have them share their network 
parameters. 

3.1. Encoding Agent Identities 

We defne an encoder fe and a decoder fp (Fig. 2) parame-
terised by θ and u respectively. The encoder, conditioned 
solely on the agent id, outputs the parameters that defne an 
m-dimensional Gaussian distribution we can sample from. 
We refer to samples from this latent space as z. The decoder, 
further divided into an observation and reward decoder fp

o 

and fp
r respectively, receives the observation, action, and 

sampled encoding z of agent i, and attempts to predict the 
next observation and reward. In contrast to the classical def-

i inition of autoencoders, o and a bypass the encoder and are t t 

only received by the decoder. Thus, due to the bottleneck, 
z can only encode information about the agent, such as its 
reward function R̂i or observation transition model P̂i. 

To formalise the process, we assume that for each agent its 
identity i is representative of its observation transition dis-
tribution and reward function. Additionally, we assume that 
both the identity of each agent and its observation transition 
distribution can be projected in a latent space Z through 
the posteriors q(z|i) and p(z|tr = (ot+1, ot, rt, at)). The 
goal is to fnd the posterior q(z|i). We assume a variational 
family of parameterised Gaussian distributions with param-
eters θ: qθ(z|i) = N (µθ, Σθ; i). To solve this problem we 
use the variational autoencoding (Kingma & Welling, 2014) 
framework to optimise the objective DKL(qθ(z|i)||p(z|tr)). 

We derive a lower bound on the log-evidence (ELBO) of the 
transition log p(tr) as: 

log p(tr) ≥ Ez∼qθ (z|i)[log pu(tr|z)] 
− DKL(qθ(z|i)||p(z)) (1) 

The reconstruction term of the ELBO factorises as: 

log pu(tr|z) = log pu(rt, ot+1|at, ot, z)p(at, ot|z) = 

log pu(rt|ot+1, at, ot, z) + log pu(ot+1|at, ot, z) + c 

The last term is discarded as at and ot do not depend on the 
latent variable z. In these instances, qθ and pu function as 
fe and fp respectively. 

For the encoder-decoder model to learn from the experience 
of all agents, it is trained with samples from all agents and 
will represent the collection of the agent-centred transition 
and reward functions P̂i and R̂i for all i ∈ N . Given the 
inputs of the decoder, the information of the agent id can 
only pass through the sample z. 

Minimising the model loss (Eq. (1)) can be done prior to 
ireinforcement learning. We sample actions a ∼ Ai and 

store the observed trajectories in a shared experience replay 
with all agents. We have empirically observed that the data 
required for this procedure is orders of magnitude less than 
what is usually required for reinforcement learning, and can 
even be reused for training the policies, thus not adding to 
the sample complexity. 

The fnal step of the pre-training procedure is to run a clus-
tering algorithm on the means generated from the encoder 
fe(i) for all i ∈ N , and use the agent indices clustered 
together to defne µ. In the experiments that follow, we use 
k-means for simplicity. After the partitioning is completed, 
a static computational graph (for automatic differentiation) 
can be generated to train the policies with signifcant speed 
advantages. 
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Table 1: Brief description of environments, including how 
agents are distributed to different agent types: colours in 
BPS and C-RWARE, levels in LBF or different units in 
MMM2. Environments with † or ‡ mark different observa-
tion spaces or action spaces across types respectively, while 
§ marks a cooperative (shared) reward. 

# Agents # Types Type Distribution 

BPS (1) 15 3 5–5–5 
BPS (2) 30 3 10–10–10 
BPS (3) 30 5 6–6–6–6–6 
BPS (4) 30 5 2–2–2–15–9 
BPS-h (1) 15 3† 5–5–5 
BPS-h (2) 30 5† 6–6–6–6–6 
BPS-h (3) 200 4† 50–50–50–50 
C-RWARE (1) 4 2‡ 2–2 
C-RWARE (2) 8 2‡ 4–4 
C-RWARE (3) 16 2‡ 8–8 
LBF 12 3 4–4–4–4 
MMM2 10§ 3 7–2–1 

4. Experimental Evaluation 
In this section, we evaluate both whether SePS performs as 
intended by correctly partitioning the agents and whether 
this partitioning helps in improving the overall returns, sam-
ple complexity, and training time. For RL, we use the 
A2C (Mnih et al., 2016) algorithm and report the sum of 
returns of all agents. A search was performed for A2C’s 
hyperparameters across all baselines, while hyperparame-
ters of the clustering portion of SePS were easily found 
manually, and kept identical across all environments (more 
details in Section 4.8). 

4.1. Multi-Agent Environments 

We use four multi-agent environments (Fig. 3) which are 
described below and summarised in Table 1. 

Blind-particle Spread: Our motivating toy environment 
is a custom scenario created with the Multi-agent Particle 
Environment (MPE) (Lowe et al., 2017). Blind-particle 
spread (BPS, Fig. 3a) consists of landmarks of different 
colours and numerous agents that have been also assigned 
colours. The agents are unable to see their own colour (or 
of the other agents) but need to move towards the correct 
landmark. This environment enables us to investigate the 
effects of parameter sharing by allowing us to control two 
important variables: i) the number of agents and ii) the 
number of colours (distinct behaviours that must be learned). 
In a further, more diffcult variation which we name BPS-h, 
each group of agents also has a different observation space 
(e.g. the agents could be equipped with different sensors). 

Coloured Multi-Robot Warehouse: The Coloured Multi-
Robot Warehouse (C-RWARE, Fig. 3b) is a variation of the 
RWARE environment (Christianos et al., 2020), where mul-
tiple robots have different functionalities and are rewarded 
only for delivering specifc shelves (denoted by different 
colours) and have different action spaces. The agents can 
rotate or move forward and pick up or drop a shelf. The ob-
servation consists only of a 3 × 3 square centred around the 
agent. Agents are only rewarded (with 1.0) when success-
fully arriving at the goal with a requested shelf of the correct 
colour, making the reward sparse. RWARE is known (Chris-
tianos et al., 2020; Papoudakis et al., 2020) to be an envi-
ronment with diffcult exploration, and independent learners 
have been shown to struggle on it. 

Level-based Foraging: Level-based Foraging (LBF, 
Fig. 3c) (Albrecht & Ramamoorthy, 2013) is a multi-agent 
environment where agents are placed in a grid, and required 
to forage randomly scattered food. Each agent is assigned 
a level, and each food also is assigned a level at the begin-
ning of the episode. The agents can move in four directions 
and attempt to forage an adjacent food. For foraging to be 
successful, the sum of the agent levels foraging the food 
must be equal or greater than its level. LBF is partially 
observable, and while the agents can see the positioning of 
agents and food, as well as the food levels, they cannot see 
any of the agent levels. The reward is proportionate to the 
agents’ contribution when a food is successfully loaded. 

Starcraft Multi-Agent Challenge: While the multi-agent 
Starcraft (SMAC) (Samvelyan et al., 2019) environment 
might not be the archetype for displaying the strengths of 
selective parameter sharing, it is a widely used setting where 
multiple agents of distinct types co-exist and must learn to-
gether. For instance, the “MMM2” environment (Fig. 3d) 
contains three types of units (marines, marauders, and medi-
vacs) with distinct attributes. One of those unit types, medi-
vacs, is especially different since it needs to learn how to 
heal friendly units instead of attacking enemies. 

4.2. Baselines 

We compare SePS against several other methods of parame-
ter sharing described below. 

No Parameter Sharing (NoPS): In our NoPS baseline, all 
agents have their own set of parameters, and there is no 
overlap of gradients. This approach is common in the litera-
ture and usually encountered when there is no mention of 
parameter sharing, e.g. MADDPG (Lowe et al., 2017). 

Full Parameter Sharing (FuPS): The second baseline, 
FuPS consists of a single set of parameters that will be 
shared between all agents. FuPS is a naive baseline since 
it does not allow agents to ever develop any differences in 
their behaviour. 
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Figure 3: Visualisation of environments used in experiments. 
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Figure 4: BPS-h with 10 agents and a variable number of 
colours. The maximum evaluation returns are recorded for 
each environment and algorithm, and vertical bars indicate 
standard deviation across seeds. 

Full Parameter Sharing with index (FuPS+id): Finally, 
we test a variation of the previous method, where the policy 
is also conditioned on the agent id. While the use of FuPS is 
limited and our expectations are not high, since there is no 
way to differentiate between agents, FuPS+id is encountered 
very often in the literature (Rashid et al., 2018; Foerster et al., 
2018; Gupta et al., 2017). 

4.3. An Experimental Evaluation of FuPS+id 

The dense reward signal in our toy environment, BPS, makes 
it suffciently simple for non-parameter sharing agents to 
learn how to reach their respective landmarks. However, 
when parameter sharing is involved, we expect the task to 
become considerably harder. FuPS+id presumably solves 
this by allowing each agent to develop a distinct policy based 
on agent id. To investigate this, we tested NoPS, FuPS, and 
FuPS+id, in a series of BPS tasks, where the number of 
agents will remain constant, and the number of colours 
(landmarks) increases. NoPS should have no issue learning 

immediately since each agent needs to learn to navigate to 
a specifc landmark. In contrast, sharing parameters with 
FuPS can not work because the agents lack the information 
required to determine their colour and move accordingly. 
Therefore, agents trained with NoPS tend to fall into the 
local minimum of moving to a location that minimises the 
distance between all landmarks. 

We are, however, very interested in what FuPS+id can learn. 
The agents have all the information needed to learn how to 
move to the correct landmark. But, as we have hypothesised 
in earlier sections, the overlap of different policies which 
must be represented on the same parameters, poses a sig-
nifcant bottleneck for learning. Indeed, as Fig. 4 indicates, 
the performance of FuPS+id deteriorates sharply, even with 
only three colours. 

An argument could be made that an increased number of 
colours in the BPS task should be accompanied by an in-
crease in FuPS+id’s model size. Such an increase in the 
number of parameters increases the representation capacity 
and could allow for multiple distinct policies to be learned. 
To test this hypothesis we include in Fig. 4 the FuPS+id 
(Scaled Up) baseline which scales the width of the net-
work such that the number of parameters grows with the 
number of colours shown in the x axis. Specifcally, in 
this experiment the FuPS and FuPS+id baselines use ap-
proximately 18K parameters (two layers of 128 units). The 
FuPS+id (Scaled Up) baseline, however, uses approximately 
#Colors ∗ 18K parameters for the different BPS-h tasks 
(for exact sizes of the layers in each task see Section 4.8). 

However, we observe that even the FuPS+id (Scaled Up) 
baseline does not successfully learn these otherwise simple 
BPS tasks. Therefore we conjecture that the issue with 
FuPS+id is not the model capacity since it could have 
enough parameters to learn all behaviours. Instead, learning 
on shared parameters interferes with the learning of other 
agents. In the following sections, we will instead optimise 
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the network size as a hyperparameter. 

4.4. Reinforcement Learning with Parameter Sharing 

Next, we investigate how selectively sharing parameters 
affects reinforcement learning performance. Our hypothesis 
remains that agents can beneft from sharing parameters 
if they have been clustered together by SePS. Our results, 
detailed in Table 2 support this hypothesis. We also present 
the learning curves on a selection of environments in Fig. 5. 

BPS: The BPS tasks (Table 2 and Figs. 5a and 5b) are trivial 
for independent learners given the dense reward: each agent 
learns to always move towards a specifc colour. However, 
if all agents share a policy, then the agents (not being able 
to perceive their own colours) only learn to move to a local 
minimum. FuPS+id, which supposedly circumvents the 
problem, still has issues correctly learning this problem. 
Due to the high computational requirements of NoPS, which 
requires N different sets of parameters, running it on BPS-h 
(4) with 200 agents was infeasible. 

C-RWARE: Our results in C-RWARE (Table 2 and Figs. 5c 
and 5d) are more surprising. NoPS which was a strong 
contender in BPS, completely failed to learn in C-RWARE 
(2) and (3). These tasks are very sparsely rewarded, which 
seems to make independent learning ineffective. Instead, 
sharing parameters also combined the received rewards, pro-
viding a useful learning direction to the optimiser. Also, 
similarly to BPS, SePS outperforms the other naive parame-
ter sharing methods. 

LBF: Similarly to other environments, SePS agents in LBF 
achieve higher returns with more effcient use of environ-
ment samples (Fig. 5e). The optimal performance in LBF is 
1.0, and while FuPS+id is close, it does not achieve the same 
returns as SePS. NoPS takes considerably more samples to 
train, but given our BPS results, it is possible it eventually 
converges to the same returns as SePS. 

MMM2: In one of the hardest SMAC environments, 
MMM2 (Fig. 5f), the most surprising result was the dif-
ference in converged returns between NoPS and parameter 
sharing methods. Even fully shared parameters - and after 
making sure the identity of the agents does not leak through 
the observation - outperforms NoPS. Our hypothesis on 
these results is that i) this task requires agents to act in a 
very similar way (e.g. only targeting the same opponents) 
and ii) parameter sharing plays a previously underrated role 
in decomposing (or reasoning over) a shared reward. The 
rest of the methods behave similarly to other environments, 
but with a minimal improvement of SePS over FuPS+id. 

4.5. A Peek into the Embedding Space of SePS 

Next, an important step in evaluating SePS is to verify that 
meaningful clusters appear after optimising the objectives 

discussed in Section 3. 

Our goal is to compare the clustering of our algorithm, 
with one decided by a human who is given knowledge of 
the environment. We visualise the embedding for each of 
the units on a SMAC task (Fig. 6). We can assert that 
clearly visible clustering is precisely what we would expect. 
Different types of units all have different properties (e.g. 
movement speed, health, or damage) and thus a distinct 
interaction with the environment. These differences were 
picked up by the encoder that subsequently spread them in 
the embedding space. 

A question that might arise is why the agents of the same unit 
type (and cluster) are spread out in the z axis of Fig. 6. In 
the SMAC environment, there is another difference between 
the agents: their starting position. Therefore, the initial 

iobservations o are sampled from different sets for each of 0 
the agents. The encoder picks up on this feature and further 
spreads the latent encoding. While k-means clustered the 
agents by unit type, it could be argued that more clusters 
could have been formed, which goes beyond the scope of 
our work and is considered a feature (and open problem) 
of unsupervised clustering (Kaufman & Rousseeuw, 2009). 
However, this was the exception in our tests, and in all other 
environments, where the starting observations are sampled 
from the same set, the latent variables of similar agents are 
overlapping one another. Nevertheless, in Section 4.6 we 
explore how the number of clusters can be determined, and 
how wrong choices can affect learning. 

The clustering process across all environments and seeds 
matched the various types of agents. For instance, in C-
RWARE and BPS, each cluster contains only agents of the 
same colour. Importantly, this information is not included 
in the observation space and therefore not observed by the 
agents or even the encoder; it is only understood after ob-
serving the transitions and rewards of each agent. 

4.6. Determining the Number of Clusters 

Several ways to determine the number of clusters in the 
embedding space exist. Arguably the most straightforward 
is the use of domain knowledge. But, having an estimate of 
the value of K, could also mean knowledge of which agents 
should be assigned in clusters in the frst place. Despite the 
diminished importance of the pretraining SePS stage in this 
situation, we believe that understanding the effectiveness of 
shared parameters between clusters is still of value. 

A second approach would consist of treating K as a tunable 
hyperparameter. In Fig. 7, we present the returns during 
training on C-RWARE when SePS is forced to create a 
varied amount of clusters. It is clear from the results, that 
overestimating K is of little signifcance. However, trying to 
form fewer clusters than needed lowers the achieved returns, 
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Figure 5: Learning curves showing the mean returns during training for a selection of the environments. The shaded area 
represents standard deviation across seeds. 
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Figure 6: Visualisation of the means of z for each of the 10 
agents in SMAC (MMM2 task) in a 3-dimensional space. 
The colours identify the clusters created by k-means. 

and collapses to NoPS when K = 1. 

Finally, there is a plethora of well-studied heuristics for 
separating clusters when the embedding space is known. 
The elbow method (Thorndike, 1953), the silhouette 
method (Rousseeuw, 1987), or the Davies–Bouldin in-
dex (Davies & Bouldin, 1979), all could be used to de-
termine the number of clusters since our method tends to 
produce well-separated values. We have implemented and 
tested the Davies-Bouldin index, and we have found that 

Figure 7: Mean returns during training for different number 
of clusters on C-RWARE (9 agents and 3 colours). 

coupled with k-means, reliably fnds the same clusters an 
expert would in our tested environments (i.e. the second 
column in Table 1). 

4.7. Computational Benefts 

In the previous sections, we showed the effectiveness of 
learning, showing that SePS achieves the highest returns 
among the baselines. However, we have not addressed how 
SePS computationally benefts MARL when applied to mul-
tiple agents. To examine this, we have created Fig. 8, which 
presents the median time for a timestep during training. It is 
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Table 2: Maximum evaluation returns with std across seeds. Highest means (within one std) are shown in bold. 

NoPS SePS (Ours) FuPS FuPS+id 

BPS (1) −189.99 ± 12.96 −179.69 ± 7.02 −612.18 ± 52.14 −221.44 ± 9.72 
BPS (2) −385.18 ± 34.91 −369.69 ± 38.70 −1301.35 ± 164.84 −443.84 ± 20.74 
BPS (3) −401.09 ± 20.37 −371.99 ± 6.92 −1438.41 ± 68.41 −546.95 ± 29.52 
BPS (4) −388.21 ± 41.35 −378.50 ± 77.75 −1339.14 ± 43.95 −722.33 ± 103.92 
BPS-h (1) −187.92 ± 15.78 −189.93 ± 31.29 −571.46 ± 52.12 −293.31 ± 26.89 
BPS-h (2) −398.11 ± 23.64 −373.92 ± 39.19 −1422.80 ± 74.70 −948.44 ± 43.67 
BPS-h (3) N/A −2522.61 ± 276.29 −6825.47 ± 115.74 −4085.51 ± 3.71 
C-RWARE (1) 2.93 ± 2.25 7.03 ± 3.72 0.57 ± 0.28 2.42 ± 3.52 
C-RWARE (2) 0.28 ± 0.28 20.88 ± 1.15 0.55 ± 0.40 10.35 ± 8.65 
C-RWARE (3) 0.33 ± 0.15 32.27 ± 3.16 1.03 ± 0.64 21.30 ± 15.13 
LBF 0.91 ± 0.05 0.97 ± 0.03 0.83 ± 0.02 0.91 ± 0.05 
MMM2 72.32 ± 15.00 179.45 ± 7.11 128.75 ± 18.37 168.39 ± 29.99 
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Figure 8: Median running time of a timestep during training 
over all the the environments and methods. 

clear that while SePS adds computational complexity over 
the fully shared networks, it scales signifcantly better than 
NoPS does. In the BPS environments with 30 agents, SePS 
almost requires half the training time of NoPS due to the 
substantially fewer trainable parameters. In BPS-h(3), train-
ing with NoPS was infeasible since it requires 200 sets of 
parameters (50 more times than SePS). 

4.8. Implementation Details 

In our experiments, we used Adam with learning rate of 
3e−4, optimiser epsilon 1e−5, entropy coeffcient 1e−2, 
and value, critic, and encoder-decoder networks with two 
layers of 64 or 128 units. Eight environments were sampled 
concurrently and 5-step returns were computed. The hy-
perparameters of entropy, learning rate, network width (but 
not depth), and n-step returns have been optimised using a 
coarse grid search, on one task per environment. A fner 
grid search on the entropy coeffcient for the SMAC task 

was performed. For the encoder-decoder training, m was 
set at 5, the KL loss was scaled by 1e−4, and we used batch 
size 128. For Fig. 4, FuPS and FuPS+id use two layers of 
128 units, but FuPS+id (Scaled Up) uses two layers with 
a width of 128, 189, 236, 277, 313, 345, 375, and 401 for 
BPS-h with one to eight colors respectively. Figure 8 was 
generated in an AMD Epyc 7702 running Python 3 with 
environments sampled in parallel threads. 

5. Related Work 
Centralised Training with Decentralised Execution 
(CTDE): A paradigm popular in cooperative MARL, as-
sumes that during training all agents can access data from 
all other agents. After the training is completed, the agents 
stop having access to external data, and can only observe 
their own perspective of the environment. CTDE algorithms 
such as MADDPG (Lowe et al., 2017), Q-MIX (Rashid 
et al., 2018), and SEAC (Christianos et al., 2020) all beneft 
from the centralised training stage and have been repeat-
edly shown to outperform non-CTDE baselines. SePS also 
adheres to the CTDE paradigm and assumes that during 
training all information is shared. 

Parameter Sharing: Sharing parameters between agents 
has a long history in MARL. Tan (1993) investigates shar-
ing policies between cooperative settings in non-deep RL 
settings. More recently, algorithms such as COMA (Fo-
erster et al., 2018), Q-Mix (Rashid et al., 2018), or Mean 
Field RL (Yang et al., 2018) share the parameters of neu-
ral networks similarly to our FuPS and FuPS+id baselines. 
ROMA (Wang et al., 2020) learns dynamic roles to share 
experience between agents that perform similar tasks. With 
SePS we do this operation statically in order to maximise 
computational effciency, but we arrive at similar partition-
ing of agents in heterogenous SMAC tasks (Fig. 6). The 
novelty of SePS does not come from sharing parameters, 

https://�4085.51
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https://�2522.61
https://�1422.80
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https://�1438.41
https://�1301.35
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which is a well-established method in MARL, but that it 
creates neural network architectures in advance, allowing 
more effcient and effective sharing. 

Sharing Experience: SEAC (Christianos et al., 2020) 
shares experience between agents while maintaining sep-
arate policy and value networks. While SEAC achieves 
state-of-the-art performance, not only does it require one 
network per agent (i.e. NoPS), it also stacks the experience 
of the agents leading to increased batch sizes. With SePS 
we forfeit the exploration benefts of SEAC but arrive at a 
method that may scale to hundreds of agents. 

Scaling MARL to more Agents: Mean Field (Yang et al., 
2018) tackles MARL with numerous agents by approxi-
mating interactions between a single agent and the average 
effect of the population. While it is shown that convergence 
is improved, Mean Field RL shares parameters in a fashion 
similar to FuPS. Our method operates as a pre-training step 
and attempts to fnd a network architecture confguration 
that improves learning. SePS can be combined with MARL 
algorithms (centralised critic, value decomposition, or oth-
ers) since it improves a different part of the RL procedure. 

6. Limitations and Future Work 
Partitioning the agents using samples collected before agents 
are allowed to learn a policy does come with a disadvan-
tage. In situations where agents share dynamics and reward 

Pi ˆfunctions ( ˆ and Ri) early in the policies’ training but 
diverge later (e.g. agents are required to do the same task 
and then a different task in the same episode), learning the 
encoder-decoder with the initially collected samples may 
fail to properly partition agents. While in that case SePS 
will operate similarly to the full parameter sharing baselines 
like FuPS, it could be further improved by regularly retrain-
ing the encoder-decoder model with newer experience and 
redistributing agents to clusters if they have diverged. 

A more complicated situation arises when agents have iden-
tical dynamics and rewards but are meant to take on different 
roles. The beneft of sharing parameters (or not) in such 
a case is highly dependent on the nature of the specifc 
environment. While it may be possible that roles can be 
found and used to further partition agents if the SePS pro-
cedure is performed with trained policies (by recognising 
the difference in the sampling distributions), we leave such 
experiments and potential improvements to future work. 

7. Conclusion 
This paper explored existing methods for parameter sharing 
in MARL, identifying situations where they were ineffec-
tive. Our experiments suggested that sharing parameters 
indiscriminately between agents made learning harder since 

agents interfered with the learning of others (Section 4.3). 
Therefore, we proposed a method for selective parameter 
sharing, that identifed groups of agents that may beneft 
from sharing parameters. SePS was shown to successfully 
recognise heterogeneous agents and assign them to different 
parameter sets, allowing MARL training to scale to hun-
dreds of agents even when they were not homogeneous. Our 
method was shown to outperform other parameter sharing 
baselines in converged returns, and a non parameter sharing 
baseline both in converged returns and training speed. 
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