
Scaling Multi-Agent Reinforcement Learning with Selective Parameter Sharing

Filippos Christianos 1 Georgios Papoudakis 1 Arrasy Rahman 1 Stefano V. Albrecht 1

Abstract
Sharing parameters in multi-agent deep reinforce-
ment learning has played an essential role in al-
lowing algorithms to scale to a large number of
agents. Parameter sharing between agents sig-
nifcantly decreases the number of trainable pa-
rameters, shortening training times to tractable
levels, and has been linked to more effcient learn-
ing. However, having all agents share the same
parameters can also have a detrimental effect on
learning. We demonstrate the impact of parameter
sharing methods on training speed and converged
returns, establishing that when applied indiscrimi-
nately, their effectiveness is highly dependent on
the environment. We propose a novel method to
automatically identify agents which may bene-
ft from sharing parameters by partitioning them
based on their abilities and goals. Our approach
combines the increased sample effciency of pa-
rameter sharing with the representational capacity
of multiple independent networks to reduce train-
ing time and increase fnal returns.

1. Introduction
Multi-agent reinforcement learning (MARL) aims to jointly
train multiple agents to solve a given task in a shared en-
vironment. Recent work has focused on novel techniques
for experience sharing (Christianos et al., 2020), agent mod-
elling (Albrecht & Stone, 2018), and communication be-
tween agents (Rangwala & Williams, 2020; Zhang et al.,
2020) to address the non-stationarity and multi-agent credit
assignment problems (Papoudakis et al., 2019). A problem
that has received less attention to date is how to scale MARL
algorithms to many agents, with typical numbers in previous
works ranging between two and ten agents.

One common implementation technique to facilitate train-
ing with a larger number of agents is parameter sharing

1School of Informatics, University of Edinburgh, Edinburgh,
United Kingdom. Correspondence to: Filippos Christianos
<f.christianos@ed.ac.uk>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

(e.g. (Gupta et al., 2017)) whereby agents share some or all
parameters in their policy networks. In the literature, pa-
rameter sharing is typically applied indiscriminately across
all agents, which we call naive. Naive parameter sharing
has been effective primarily due to the similar (if not identi-
cal) observation and reward functions between agents found
in many multi-agent environments. This similarity allows
agents to share representations in intermediate neural net-
work layers. Despite the occasional effectiveness of naive
parameter sharing, it is not supported by theoretical work
and has not received much attention beyond being men-
tioned as an implementation detail. Indeed, naive parameter
sharing can decrease training time, but we show that it can
be detrimental to fnal convergence in many environments,
even when paired with implementation details that generally
accompany it. We observe in our experiments that when the
transition or the reward functions are distinct across agents,
hidden representations that can be shared are harder to form,
and fully-shared parameters are not effective.

These limitations, however, do not imply that parameter
sharing does not have a place in MARL. In contrast, we
believe that it is an essential tool in scaling deep MARL al-
gorithms to large numbers of agents, provided it can be done
selectively, so as not to limit fnal performance. Therefore,
we aim to beneft from parameter sharing when possible but
also avoid potential bottlenecks. We introduce a method,
Selective Parameter Sharing (SePS)*, to automatically iden-
tify agents which may beneft from sharing parameters by
partitioning them based on their abilities and goals. This par-
titioning is performed by encoding each agent to an embed-
ding space by observing their trajectories, and then applying
an unsupervised clustering algorithm to the encodings.

We can acquire an intuition of the setting this paper dis-
cusses by imagining a team of robots that must learn to run
a restaurant, fulflling both waiters and cooks’ roles. Of
course, agents belonging to the same group have to learn
similar policies and therefore shared latent representations
can signifcantly decrease learning requirements (i.e. there
is no need for each cook to learn separately how to chop in-
gredients). Nevertheless, waiters and cooks have almost no
common functionalities, and the representational capacity

*We provide an open-source implementation of SePS here:
https://github.com/uoe-agents/seps

https://github.com/uoe-agents/seps
mailto:f.christianos@ed.ac.uk

Scaling Multi-Agent Reinforcement Learning with Selective Parameter Sharing

of a single neural network poses a bottleneck when attempt-
ing to learn all distinct roles. Furthermore, we show that
agents tend to forget information needed by others when
updating the parameters with their own objectives, actively
interfering with other agents’ learning.

We provide comparisons of typical usage of parameter shar-
ing (sharing across all agents, appending agent indices, or
not sharing at all) and show that i) SePS can converge to
higher returns than both not sharing parameters and sharing
them naively, ii) SePS is more sample effcient and executes
considerably faster than not sharing parameters. Moreover,
in contrast to baseline methods, SePS scaled to hundreds
of agents (we experimented with up to 200) in our environ-
ments that contained non-homogeneous agents.

2. Background
Markov Games: A Markov game (e.g. (Littman,
1994); also known as a stochastic game (Shapley,
1953)) with partial observability is defned by the tu-
ple (N , S, {Oi}i∈N , {Ai}i∈N , P, {Ri}i∈N), with agents
i ∈ N = {1, . . . , N}, state space S, joint observa-
tion space O = O1 × . . . × ON , and joint action space
A = A1 ×. . .×AN . Each agent i only perceives local obser-
vations oi ∈ Oi which depend on the current state. Function
P : S × A 7→ Δ(S) returns a distribution over successor
states given a state and a joint action; Ri : S×A×S 7→ R is

ithe reward function giving agent i’s individual reward r att
timestep t. The objective is to fnd policies π = (π1, ..., πN)
for all agents such that the discounted return of each agentPT

γt ii, Gi = r , is maximised with respect to othert=0 t
policies in π, formally ∀i : πi ∈ arg maxπ0 E[Gi|π0, π−i]ii

where π−i = π \ {πi}, γ is the discount factor, and T the
total timesteps of an episode.

Unlike some recent MARL work we do not assume identical
action, observation spaces, or reward functions between
agents (Christianos et al., 2020; Rashid et al., 2018; Foerster
et al., 2018).

Policy Gradient and Actor-Critic: The goal of rein-
forcement learning is to fnd strategies that optimise the
returns of the agents. Policy gradient, a class of model-free
RL algorithms, directly learn and optimise a policy πφ pa-
rameterised by φ. The REINFORCE algorithm (Williams,
1992), follows the gradients of the objective rφJ(φ) =
Eπφ [Gtrφln πφ(at|st)] to fnd a policy that maximises the
returns. To further reduce the variance of gradient estimates,
actor-critic algorithms replace the Monte Carlo returns with
a value function Vπ (s; υ). In a multi-agent, partially ob-
servable setting, a simple actor-critic algorithm defnes the
policy loss function for an agent i as:

i i i i iL(φi) = − log π(at|ot; φi)(rt +γV (ot+1; υi)−V (ot; υi))

and the respective value loss function as:
i i iL(υi) = ||V (o ; υi) − yi||2 with yi = r + γV (ot t t+1; υi)

In this paper, for reinforcement learning, we use A2C (Mnih
et al., 2016), an actor-critic algorithm that additionally uses
n-step rewards, environments that run in parallel, and im-
proved exploration with entropy regularisation.

Variational Autoencoders: Variational autoencoders
(VAEs) are generative models that explicitly learn a density
function over some unobserved latent variables Z given an
input x ∈ X , where X is a dataset. Given the unknown
true posterior p(z|x), VAEs approximate it with a paramet-
ric distribution qθ(z|x) with parameters θ. Computing the
KL-divergence from the parametric distribution to the true
posterior results in:

DKL(qθ(z|x)kp(z|x)) = log p(x)

− Ez∼qθ (z|x)[log pu(x|z)] + DKL(qθ(z|x)kq(z))

The term log p(x) is called log-evidence and it is constant.
The other two terms are the negative evidence lower bound
(ELBO). Minimising the ELBO is equivalent to minimis-
ing the KL-divergence between the parametric and the true
posterior.

3. Selective Parameter Sharing
To improve the effectiveness of parameter sharing, and al-
low for several distinct roles to be learned, we attempt to
group agents that should be sharing their parameters during
training. In an environment, we assume that N agents can
be partitioned into K sets (K < N) but without knowing K
nor the partitioning. With K = {π1, . . . , πK }, each agent
in a cluster k uses and updates the shared policy πk. As we
show in our experiments, such distinct shared policies can
often be trained more effciently while offering enough rep-
resentational capacity to successfully solve the environment,
and may even reach higher overall returns than alternative
methods (see Section 4). Figure 1 depicts a top-level dia-
gram of the components in our architecture.

To assign agents to partitions, we propose the use of a de-
terministic function µ : N 7→ K that maps each agent i to
a parameterised policy (or partition) πk. This partitioning
is learned prior to RL training. Therefore, agents that share
parameters get to beneft from shared representations in the
latent layers of their neural networks, while not interfering
with agents using other parameters.

Recall the transition P and reward Ri functions that defne
an environment’s dynamics (Section 2). We aim to deter-
mine µ and partition agents such that agents which try to
solve similar tasks use shared policies. Therefore, we in-
troduce another concept: a set of functions P̂i and R̂i that

Scaling Multi-Agent Reinforcement Learning with Selective Parameter Sharing

policies
agents

Environment

Figure 1: A top-level diagram of the selective parameter
sharing architecture. N agents are operating in one envi-
ronment and receive observations and rewards. With SePS
we are training K < N policies and use a deterministic
function µ to select which policy controls which agent.

encoder

decoder

circumvent
the	encoder

Figure 2: The encoder-decoder model. The encoder learns
to encode the id of an agent in an embedding space while
the decoder predicts the reward and next observation.

attempt to approximate P and Ri, but from the agents’ lim-
ited perspective of the world. An agent does not observe the
state nor the actions of another agent, and hence we defne
P̂i : Oi × Ai 7→ Δ(Oi) and R̂i : Oi × Ai 7→ R, that model
the next observation and reward respectively, based only on
the observation and action of an agent i. When learning
these functions our goal is not to ensure their accuracy as
approximators of the dynamics; but rather that they iden-
tify similar agents to provide a basis for partitioning. We
speculate that agents that should be grouped have similar
reward and observation functions. Thus, the reasoning be-
hind the following method is our desire to identify agents
with identical P̂i and R̂i, and have them share their network
parameters.

3.1. Encoding Agent Identities

We defne an encoder fe and a decoder fp (Fig. 2) parame-
terised by θ and u respectively. The encoder, conditioned
solely on the agent id, outputs the parameters that defne an
m-dimensional Gaussian distribution we can sample from.
We refer to samples from this latent space as z. The decoder,
further divided into an observation and reward decoder fp

o

and fp
r respectively, receives the observation, action, and

sampled encoding z of agent i, and attempts to predict the
next observation and reward. In contrast to the classical def-

i inition of autoencoders, o and a bypass the encoder and are t t

only received by the decoder. Thus, due to the bottleneck,
z can only encode information about the agent, such as its
reward function R̂i or observation transition model P̂i.

To formalise the process, we assume that for each agent its
identity i is representative of its observation transition dis-
tribution and reward function. Additionally, we assume that
both the identity of each agent and its observation transition
distribution can be projected in a latent space Z through
the posteriors q(z|i) and p(z|tr = (ot+1, ot, rt, at)). The
goal is to fnd the posterior q(z|i). We assume a variational
family of parameterised Gaussian distributions with param-
eters θ: qθ(z|i) = N (µθ, Σθ; i). To solve this problem we
use the variational autoencoding (Kingma & Welling, 2014)
framework to optimise the objective DKL(qθ(z|i)||p(z|tr)).

We derive a lower bound on the log-evidence (ELBO) of the
transition log p(tr) as:

log p(tr) ≥ Ez∼qθ (z|i)[log pu(tr|z)]
− DKL(qθ(z|i)||p(z)) (1)

The reconstruction term of the ELBO factorises as:

log pu(tr|z) = log pu(rt, ot+1|at, ot, z)p(at, ot|z) =

log pu(rt|ot+1, at, ot, z) + log pu(ot+1|at, ot, z) + c

The last term is discarded as at and ot do not depend on the
latent variable z. In these instances, qθ and pu function as
fe and fp respectively.

For the encoder-decoder model to learn from the experience
of all agents, it is trained with samples from all agents and
will represent the collection of the agent-centred transition
and reward functions P̂i and R̂i for all i ∈ N . Given the
inputs of the decoder, the information of the agent id can
only pass through the sample z.

Minimising the model loss (Eq. (1)) can be done prior to
ireinforcement learning. We sample actions a ∼ Ai and

store the observed trajectories in a shared experience replay
with all agents. We have empirically observed that the data
required for this procedure is orders of magnitude less than
what is usually required for reinforcement learning, and can
even be reused for training the policies, thus not adding to
the sample complexity.

The fnal step of the pre-training procedure is to run a clus-
tering algorithm on the means generated from the encoder
fe(i) for all i ∈ N , and use the agent indices clustered
together to defne µ. In the experiments that follow, we use
k-means for simplicity. After the partitioning is completed,
a static computational graph (for automatic differentiation)
can be generated to train the policies with signifcant speed
advantages.

Scaling Multi-Agent Reinforcement Learning with Selective Parameter Sharing

Table 1: Brief description of environments, including how
agents are distributed to different agent types: colours in
BPS and C-RWARE, levels in LBF or different units in
MMM2. Environments with † or ‡ mark different observa-
tion spaces or action spaces across types respectively, while
§ marks a cooperative (shared) reward.

Agents # Types Type Distribution

BPS (1) 15 3 5–5–5
BPS (2) 30 3 10–10–10
BPS (3) 30 5 6–6–6–6–6
BPS (4) 30 5 2–2–2–15–9
BPS-h (1) 15 3† 5–5–5
BPS-h (2) 30 5† 6–6–6–6–6
BPS-h (3) 200 4† 50–50–50–50
C-RWARE (1) 4 2‡ 2–2
C-RWARE (2) 8 2‡ 4–4
C-RWARE (3) 16 2‡ 8–8
LBF 12 3 4–4–4–4
MMM2 10§ 3 7–2–1

4. Experimental Evaluation
In this section, we evaluate both whether SePS performs as
intended by correctly partitioning the agents and whether
this partitioning helps in improving the overall returns, sam-
ple complexity, and training time. For RL, we use the
A2C (Mnih et al., 2016) algorithm and report the sum of
returns of all agents. A search was performed for A2C’s
hyperparameters across all baselines, while hyperparame-
ters of the clustering portion of SePS were easily found
manually, and kept identical across all environments (more
details in Section 4.8).

4.1. Multi-Agent Environments

We use four multi-agent environments (Fig. 3) which are
described below and summarised in Table 1.

Blind-particle Spread: Our motivating toy environment
is a custom scenario created with the Multi-agent Particle
Environment (MPE) (Lowe et al., 2017). Blind-particle
spread (BPS, Fig. 3a) consists of landmarks of different
colours and numerous agents that have been also assigned
colours. The agents are unable to see their own colour (or
of the other agents) but need to move towards the correct
landmark. This environment enables us to investigate the
effects of parameter sharing by allowing us to control two
important variables: i) the number of agents and ii) the
number of colours (distinct behaviours that must be learned).
In a further, more diffcult variation which we name BPS-h,
each group of agents also has a different observation space
(e.g. the agents could be equipped with different sensors).

Coloured Multi-Robot Warehouse: The Coloured Multi-
Robot Warehouse (C-RWARE, Fig. 3b) is a variation of the
RWARE environment (Christianos et al., 2020), where mul-
tiple robots have different functionalities and are rewarded
only for delivering specifc shelves (denoted by different
colours) and have different action spaces. The agents can
rotate or move forward and pick up or drop a shelf. The ob-
servation consists only of a 3 × 3 square centred around the
agent. Agents are only rewarded (with 1.0) when success-
fully arriving at the goal with a requested shelf of the correct
colour, making the reward sparse. RWARE is known (Chris-
tianos et al., 2020; Papoudakis et al., 2020) to be an envi-
ronment with diffcult exploration, and independent learners
have been shown to struggle on it.

Level-based Foraging: Level-based Foraging (LBF,
Fig. 3c) (Albrecht & Ramamoorthy, 2013) is a multi-agent
environment where agents are placed in a grid, and required
to forage randomly scattered food. Each agent is assigned
a level, and each food also is assigned a level at the begin-
ning of the episode. The agents can move in four directions
and attempt to forage an adjacent food. For foraging to be
successful, the sum of the agent levels foraging the food
must be equal or greater than its level. LBF is partially
observable, and while the agents can see the positioning of
agents and food, as well as the food levels, they cannot see
any of the agent levels. The reward is proportionate to the
agents’ contribution when a food is successfully loaded.

Starcraft Multi-Agent Challenge: While the multi-agent
Starcraft (SMAC) (Samvelyan et al., 2019) environment
might not be the archetype for displaying the strengths of
selective parameter sharing, it is a widely used setting where
multiple agents of distinct types co-exist and must learn to-
gether. For instance, the “MMM2” environment (Fig. 3d)
contains three types of units (marines, marauders, and medi-
vacs) with distinct attributes. One of those unit types, medi-
vacs, is especially different since it needs to learn how to
heal friendly units instead of attacking enemies.

4.2. Baselines

We compare SePS against several other methods of parame-
ter sharing described below.

No Parameter Sharing (NoPS): In our NoPS baseline, all
agents have their own set of parameters, and there is no
overlap of gradients. This approach is common in the litera-
ture and usually encountered when there is no mention of
parameter sharing, e.g. MADDPG (Lowe et al., 2017).

Full Parameter Sharing (FuPS): The second baseline,
FuPS consists of a single set of parameters that will be
shared between all agents. FuPS is a naive baseline since
it does not allow agents to ever develop any differences in
their behaviour.

Scaling Multi-Agent Reinforcement Learning with Selective Parameter Sharing

L

L

L

AGENTS

G G

2

1

3

2 3

3

4

(a) Blind-Particle Spread (b) Coloured Multi-Robot (c) Level-based Foraging (d) StarCraft Multi-Agent
(BPS) Warehouse (C-RWARE) (LBF) Challenge (SMAC/MMM2)

Figure 3: Visualisation of environments used in experiments.

1 2 3 4 5 6 7 8
of distinct colors in BPS-h (10 agents)

−500

−400

−300

−200

−100

M
ax

im
um

 e
va

lu
at

io
n

re
tu

rn
s

NoPS (optimal)
FuPS+id
FuPS+id (Scaled Up)
FuPS (local minimum)

Figure 4: BPS-h with 10 agents and a variable number of
colours. The maximum evaluation returns are recorded for
each environment and algorithm, and vertical bars indicate
standard deviation across seeds.

Full Parameter Sharing with index (FuPS+id): Finally,
we test a variation of the previous method, where the policy
is also conditioned on the agent id. While the use of FuPS is
limited and our expectations are not high, since there is no
way to differentiate between agents, FuPS+id is encountered
very often in the literature (Rashid et al., 2018; Foerster et al.,
2018; Gupta et al., 2017).

4.3. An Experimental Evaluation of FuPS+id

The dense reward signal in our toy environment, BPS, makes
it suffciently simple for non-parameter sharing agents to
learn how to reach their respective landmarks. However,
when parameter sharing is involved, we expect the task to
become considerably harder. FuPS+id presumably solves
this by allowing each agent to develop a distinct policy based
on agent id. To investigate this, we tested NoPS, FuPS, and
FuPS+id, in a series of BPS tasks, where the number of
agents will remain constant, and the number of colours
(landmarks) increases. NoPS should have no issue learning

immediately since each agent needs to learn to navigate to
a specifc landmark. In contrast, sharing parameters with
FuPS can not work because the agents lack the information
required to determine their colour and move accordingly.
Therefore, agents trained with NoPS tend to fall into the
local minimum of moving to a location that minimises the
distance between all landmarks.

We are, however, very interested in what FuPS+id can learn.
The agents have all the information needed to learn how to
move to the correct landmark. But, as we have hypothesised
in earlier sections, the overlap of different policies which
must be represented on the same parameters, poses a sig-
nifcant bottleneck for learning. Indeed, as Fig. 4 indicates,
the performance of FuPS+id deteriorates sharply, even with
only three colours.

An argument could be made that an increased number of
colours in the BPS task should be accompanied by an in-
crease in FuPS+id’s model size. Such an increase in the
number of parameters increases the representation capacity
and could allow for multiple distinct policies to be learned.
To test this hypothesis we include in Fig. 4 the FuPS+id
(Scaled Up) baseline which scales the width of the net-
work such that the number of parameters grows with the
number of colours shown in the x axis. Specifcally, in
this experiment the FuPS and FuPS+id baselines use ap-
proximately 18K parameters (two layers of 128 units). The
FuPS+id (Scaled Up) baseline, however, uses approximately
#Colors ∗ 18K parameters for the different BPS-h tasks
(for exact sizes of the layers in each task see Section 4.8).

However, we observe that even the FuPS+id (Scaled Up)
baseline does not successfully learn these otherwise simple
BPS tasks. Therefore we conjecture that the issue with
FuPS+id is not the model capacity since it could have
enough parameters to learn all behaviours. Instead, learning
on shared parameters interferes with the learning of other
agents. In the following sections, we will instead optimise

Scaling Multi-Agent Reinforcement Learning with Selective Parameter Sharing

the network size as a hyperparameter.

4.4. Reinforcement Learning with Parameter Sharing

Next, we investigate how selectively sharing parameters
affects reinforcement learning performance. Our hypothesis
remains that agents can beneft from sharing parameters
if they have been clustered together by SePS. Our results,
detailed in Table 2 support this hypothesis. We also present
the learning curves on a selection of environments in Fig. 5.

BPS: The BPS tasks (Table 2 and Figs. 5a and 5b) are trivial
for independent learners given the dense reward: each agent
learns to always move towards a specifc colour. However,
if all agents share a policy, then the agents (not being able
to perceive their own colours) only learn to move to a local
minimum. FuPS+id, which supposedly circumvents the
problem, still has issues correctly learning this problem.
Due to the high computational requirements of NoPS, which
requires N different sets of parameters, running it on BPS-h
(4) with 200 agents was infeasible.

C-RWARE: Our results in C-RWARE (Table 2 and Figs. 5c
and 5d) are more surprising. NoPS which was a strong
contender in BPS, completely failed to learn in C-RWARE
(2) and (3). These tasks are very sparsely rewarded, which
seems to make independent learning ineffective. Instead,
sharing parameters also combined the received rewards, pro-
viding a useful learning direction to the optimiser. Also,
similarly to BPS, SePS outperforms the other naive parame-
ter sharing methods.

LBF: Similarly to other environments, SePS agents in LBF
achieve higher returns with more effcient use of environ-
ment samples (Fig. 5e). The optimal performance in LBF is
1.0, and while FuPS+id is close, it does not achieve the same
returns as SePS. NoPS takes considerably more samples to
train, but given our BPS results, it is possible it eventually
converges to the same returns as SePS.

MMM2: In one of the hardest SMAC environments,
MMM2 (Fig. 5f), the most surprising result was the dif-
ference in converged returns between NoPS and parameter
sharing methods. Even fully shared parameters - and after
making sure the identity of the agents does not leak through
the observation - outperforms NoPS. Our hypothesis on
these results is that i) this task requires agents to act in a
very similar way (e.g. only targeting the same opponents)
and ii) parameter sharing plays a previously underrated role
in decomposing (or reasoning over) a shared reward. The
rest of the methods behave similarly to other environments,
but with a minimal improvement of SePS over FuPS+id.

4.5. A Peek into the Embedding Space of SePS

Next, an important step in evaluating SePS is to verify that
meaningful clusters appear after optimising the objectives

discussed in Section 3.

Our goal is to compare the clustering of our algorithm,
with one decided by a human who is given knowledge of
the environment. We visualise the embedding for each of
the units on a SMAC task (Fig. 6). We can assert that
clearly visible clustering is precisely what we would expect.
Different types of units all have different properties (e.g.
movement speed, health, or damage) and thus a distinct
interaction with the environment. These differences were
picked up by the encoder that subsequently spread them in
the embedding space.

A question that might arise is why the agents of the same unit
type (and cluster) are spread out in the z axis of Fig. 6. In
the SMAC environment, there is another difference between
the agents: their starting position. Therefore, the initial

iobservations o are sampled from different sets for each of 0
the agents. The encoder picks up on this feature and further
spreads the latent encoding. While k-means clustered the
agents by unit type, it could be argued that more clusters
could have been formed, which goes beyond the scope of
our work and is considered a feature (and open problem)
of unsupervised clustering (Kaufman & Rousseeuw, 2009).
However, this was the exception in our tests, and in all other
environments, where the starting observations are sampled
from the same set, the latent variables of similar agents are
overlapping one another. Nevertheless, in Section 4.6 we
explore how the number of clusters can be determined, and
how wrong choices can affect learning.

The clustering process across all environments and seeds
matched the various types of agents. For instance, in C-
RWARE and BPS, each cluster contains only agents of the
same colour. Importantly, this information is not included
in the observation space and therefore not observed by the
agents or even the encoder; it is only understood after ob-
serving the transitions and rewards of each agent.

4.6. Determining the Number of Clusters

Several ways to determine the number of clusters in the
embedding space exist. Arguably the most straightforward
is the use of domain knowledge. But, having an estimate of
the value of K, could also mean knowledge of which agents
should be assigned in clusters in the frst place. Despite the
diminished importance of the pretraining SePS stage in this
situation, we believe that understanding the effectiveness of
shared parameters between clusters is still of value.

A second approach would consist of treating K as a tunable
hyperparameter. In Fig. 7, we present the returns during
training on C-RWARE when SePS is forced to create a
varied amount of clusters. It is clear from the results, that
overestimating K is of little signifcance. However, trying to
form fewer clusters than needed lowers the achieved returns,

Scaling Multi-Agent Reinforcement Learning with Selective Parameter Sharing

0 10000 20000 30000 40000 50000
Updates

−1800

−1600

−1400

−1200

−1000

−800

−600

−400

M
ea

n
Tr

ai
ni

ng
 R

et
ur

ns

NoPS
SePS (ours)
FuPS
FuPS+id

0 10000 20000 30000 40000 50000
Updates

−1800

−1600

−1400

−1200

−1000

−800

−600

−400

M
ea

n
Tr

ai
ni

ng
 R

et
ur

ns

NoPS
SePS (ours)
FuPS
FuPS+id

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Updates 1e6

−2

0

2

4

6

8

10

M
ea

n
Tr

ai
ni

ng
 R

et
ur

ns

NoPS
SePS (ours)
FuPS
FuPS+id

(a) BPS (3) (b) BPS-h (2) (c) C-RWARE (1)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Updates 1e6

−5

0

5

10

15

20

25

30

35

M
ea

n
Tr

ai
ni

ng
 R

et
ur

ns

NoPS
SePS (ours)
FuPS
FuPS+id

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Updates 1e6

0.2

0.4

0.6

0.8

1.0

M
ea

n
Tr

ai
ni

ng
 R

et
ur

ns

NoPS
SePS (ours)
FuPS
FuPS+id

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Updates 1e6

25

50

75

100

125

150

175

200

M
ea

n
Tr

ai
ni

ng
 R

et
ur

ns

NoPS
SePS (ours)
FuPS
FuPS+id

(d) C-RWARE (3) (e) LBF (f) SMAC (MMM2)

Figure 5: Learning curves showing the mean returns during training for a selection of the environments. The shaded area
represents standard deviation across seeds.

0.0 0.2 0.4 0.6 0.8 1.0
Updates 1e6

0

5

10

15

20

25

M
ea

n
Tr

ai
ni

ng
 R

et
ur

ns

K=5
K=4
K=3 (optimal)
K=2
K=1

Figure 6: Visualisation of the means of z for each of the 10
agents in SMAC (MMM2 task) in a 3-dimensional space.
The colours identify the clusters created by k-means.

and collapses to NoPS when K = 1.

Finally, there is a plethora of well-studied heuristics for
separating clusters when the embedding space is known.
The elbow method (Thorndike, 1953), the silhouette
method (Rousseeuw, 1987), or the Davies–Bouldin in-
dex (Davies & Bouldin, 1979), all could be used to de-
termine the number of clusters since our method tends to
produce well-separated values. We have implemented and
tested the Davies-Bouldin index, and we have found that

Figure 7: Mean returns during training for different number
of clusters on C-RWARE (9 agents and 3 colours).

coupled with k-means, reliably fnds the same clusters an
expert would in our tested environments (i.e. the second
column in Table 1).

4.7. Computational Benefts

In the previous sections, we showed the effectiveness of
learning, showing that SePS achieves the highest returns
among the baselines. However, we have not addressed how
SePS computationally benefts MARL when applied to mul-
tiple agents. To examine this, we have created Fig. 8, which
presents the median time for a timestep during training. It is

Scaling Multi-Agent Reinforcement Learning with Selective Parameter Sharing

Table 2: Maximum evaluation returns with std across seeds. Highest means (within one std) are shown in bold.

NoPS SePS (Ours) FuPS FuPS+id

BPS (1) −189.99 ± 12.96 −179.69 ± 7.02 −612.18 ± 52.14 −221.44 ± 9.72
BPS (2) −385.18 ± 34.91 −369.69 ± 38.70 −1301.35 ± 164.84 −443.84 ± 20.74
BPS (3) −401.09 ± 20.37 −371.99 ± 6.92 −1438.41 ± 68.41 −546.95 ± 29.52
BPS (4) −388.21 ± 41.35 −378.50 ± 77.75 −1339.14 ± 43.95 −722.33 ± 103.92
BPS-h (1) −187.92 ± 15.78 −189.93 ± 31.29 −571.46 ± 52.12 −293.31 ± 26.89
BPS-h (2) −398.11 ± 23.64 −373.92 ± 39.19 −1422.80 ± 74.70 −948.44 ± 43.67
BPS-h (3) N/A −2522.61 ± 276.29 −6825.47 ± 115.74 −4085.51 ± 3.71
C-RWARE (1) 2.93 ± 2.25 7.03 ± 3.72 0.57 ± 0.28 2.42 ± 3.52
C-RWARE (2) 0.28 ± 0.28 20.88 ± 1.15 0.55 ± 0.40 10.35 ± 8.65
C-RWARE (3) 0.33 ± 0.15 32.27 ± 3.16 1.03 ± 0.64 21.30 ± 15.13
LBF 0.91 ± 0.05 0.97 ± 0.03 0.83 ± 0.02 0.91 ± 0.05
MMM2 72.32 ± 15.00 179.45 ± 7.11 128.75 ± 18.37 168.39 ± 29.99

BPS
(1)

BPS
(2)

BPS
(3)

BPS
(4)

BPS
-h(

1)

BPS
-h(

2) LB
F

RWARE(a
)

RWARE(b
)

RWARE(c
)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

M
ed

ia
n

tim
e

pe
r t

im
es

te
p

(s
)

NoPS
SePS (ours)
FuPS
FuPS+id

Figure 8: Median running time of a timestep during training
over all the the environments and methods.

clear that while SePS adds computational complexity over
the fully shared networks, it scales signifcantly better than
NoPS does. In the BPS environments with 30 agents, SePS
almost requires half the training time of NoPS due to the
substantially fewer trainable parameters. In BPS-h(3), train-
ing with NoPS was infeasible since it requires 200 sets of
parameters (50 more times than SePS).

4.8. Implementation Details

In our experiments, we used Adam with learning rate of
3e−4, optimiser epsilon 1e−5, entropy coeffcient 1e−2,
and value, critic, and encoder-decoder networks with two
layers of 64 or 128 units. Eight environments were sampled
concurrently and 5-step returns were computed. The hy-
perparameters of entropy, learning rate, network width (but
not depth), and n-step returns have been optimised using a
coarse grid search, on one task per environment. A fner
grid search on the entropy coeffcient for the SMAC task

was performed. For the encoder-decoder training, m was
set at 5, the KL loss was scaled by 1e−4, and we used batch
size 128. For Fig. 4, FuPS and FuPS+id use two layers of
128 units, but FuPS+id (Scaled Up) uses two layers with
a width of 128, 189, 236, 277, 313, 345, 375, and 401 for
BPS-h with one to eight colors respectively. Figure 8 was
generated in an AMD Epyc 7702 running Python 3 with
environments sampled in parallel threads.

5. Related Work
Centralised Training with Decentralised Execution
(CTDE): A paradigm popular in cooperative MARL, as-
sumes that during training all agents can access data from
all other agents. After the training is completed, the agents
stop having access to external data, and can only observe
their own perspective of the environment. CTDE algorithms
such as MADDPG (Lowe et al., 2017), Q-MIX (Rashid
et al., 2018), and SEAC (Christianos et al., 2020) all beneft
from the centralised training stage and have been repeat-
edly shown to outperform non-CTDE baselines. SePS also
adheres to the CTDE paradigm and assumes that during
training all information is shared.

Parameter Sharing: Sharing parameters between agents
has a long history in MARL. Tan (1993) investigates shar-
ing policies between cooperative settings in non-deep RL
settings. More recently, algorithms such as COMA (Fo-
erster et al., 2018), Q-Mix (Rashid et al., 2018), or Mean
Field RL (Yang et al., 2018) share the parameters of neu-
ral networks similarly to our FuPS and FuPS+id baselines.
ROMA (Wang et al., 2020) learns dynamic roles to share
experience between agents that perform similar tasks. With
SePS we do this operation statically in order to maximise
computational effciency, but we arrive at similar partition-
ing of agents in heterogenous SMAC tasks (Fig. 6). The
novelty of SePS does not come from sharing parameters,

https://�4085.51
https://�6825.47
https://�2522.61
https://�1422.80
https://�1339.14
https://�1438.41
https://�1301.35

Scaling Multi-Agent Reinforcement Learning with Selective Parameter Sharing

which is a well-established method in MARL, but that it
creates neural network architectures in advance, allowing
more effcient and effective sharing.

Sharing Experience: SEAC (Christianos et al., 2020)
shares experience between agents while maintaining sep-
arate policy and value networks. While SEAC achieves
state-of-the-art performance, not only does it require one
network per agent (i.e. NoPS), it also stacks the experience
of the agents leading to increased batch sizes. With SePS
we forfeit the exploration benefts of SEAC but arrive at a
method that may scale to hundreds of agents.

Scaling MARL to more Agents: Mean Field (Yang et al.,
2018) tackles MARL with numerous agents by approxi-
mating interactions between a single agent and the average
effect of the population. While it is shown that convergence
is improved, Mean Field RL shares parameters in a fashion
similar to FuPS. Our method operates as a pre-training step
and attempts to fnd a network architecture confguration
that improves learning. SePS can be combined with MARL
algorithms (centralised critic, value decomposition, or oth-
ers) since it improves a different part of the RL procedure.

6. Limitations and Future Work
Partitioning the agents using samples collected before agents
are allowed to learn a policy does come with a disadvan-
tage. In situations where agents share dynamics and reward

Pi ˆfunctions (ˆ and Ri) early in the policies’ training but
diverge later (e.g. agents are required to do the same task
and then a different task in the same episode), learning the
encoder-decoder with the initially collected samples may
fail to properly partition agents. While in that case SePS
will operate similarly to the full parameter sharing baselines
like FuPS, it could be further improved by regularly retrain-
ing the encoder-decoder model with newer experience and
redistributing agents to clusters if they have diverged.

A more complicated situation arises when agents have iden-
tical dynamics and rewards but are meant to take on different
roles. The beneft of sharing parameters (or not) in such
a case is highly dependent on the nature of the specifc
environment. While it may be possible that roles can be
found and used to further partition agents if the SePS pro-
cedure is performed with trained policies (by recognising
the difference in the sampling distributions), we leave such
experiments and potential improvements to future work.

7. Conclusion
This paper explored existing methods for parameter sharing
in MARL, identifying situations where they were ineffec-
tive. Our experiments suggested that sharing parameters
indiscriminately between agents made learning harder since

agents interfered with the learning of others (Section 4.3).
Therefore, we proposed a method for selective parameter
sharing, that identifed groups of agents that may beneft
from sharing parameters. SePS was shown to successfully
recognise heterogeneous agents and assign them to different
parameter sets, allowing MARL training to scale to hun-
dreds of agents even when they were not homogeneous. Our
method was shown to outperform other parameter sharing
baselines in converged returns, and a non parameter sharing
baseline both in converged returns and training speed.

8. Funding Disclosure
This research was in part fnancially supported by the UK
EPSRC Centre for Doctoral Training in Robotics and Au-
tonomous Systems (F.C., G.P.), and the University of Edin-
burgh Enlightenment Scholarship (A.R.).

References
Albrecht, S. V. and Ramamoorthy, S. A Game-Theoretic

Model and Best-Response Learning Method for Ad Hoc
Coordination in Multiagent Systems. In Proceedings
of the International Conference on Autonomous Agents
and Multi-Agent Systems, AAMAS ’13, pp. 1155–1156,
Richland, SC, May 2013.

Albrecht, S. V. and Stone, P. Autonomous Agents Mod-
elling Other Agents: A Comprehensive Survey and Open
Problems. Artifcial Intelligence, 258:66–95, 2018.

Christianos, F., Schäfer, L., and Albrecht, S. V. Shared
Experience Actor-Critic for Multi-Agent Reinforcement
Learning. In Advances in Neural Information Process-
ing Systems, volume 33, pp. 10707–10717. Curran Asso-
ciates, Inc., December 2020.

Davies, D. L. and Bouldin, D. W. A Cluster Separation
Measure. IEEE Transactions on Pattern Analysis and
Machine Intelligence, PAMI-1(2):224–227, April 1979.

Foerster, J. N., Farquhar, G., Afouras, T., Nardelli, N., and
Whiteson, S. Counterfactual Multi-Agent Policy Gra-
dients. In Thirty-Second AAAI Conference on Artifcial
Intelligence, April 2018.

Gupta, J. K., Egorov, M., and Kochenderfer, M. Cooperative
Multi-agent Control Using Deep Reinforcement Learning.
In Autonomous Agents and Multiagent Systems, Lecture
Notes in Computer Science, pp. 66–83, Cham, 2017.
Springer International Publishing.

Kaufman, L. and Rousseeuw, P. J. Finding Groups in Data:
An Introduction to Cluster Analysis, volume 344. John
Wiley & Sons, 2009.

Scaling Multi-Agent Reinforcement Learning with Selective Parameter Sharing

Kingma, D. P. and Welling, M. Auto-Encoding Variational
Bayes. In International Conference on Learning Repre-
sentations, 2014.

Littman, M. L. Markov Games as a Framework for Multi-
Agent Reinforcement Learning. In Proceedings of the
Eleventh International Conference on Machine Learning,
1994.

Lowe, R., Wu, Y., Tamar, A., Harb, J., Pieter Abbeel, O.,
and Mordatch, I. Multi-Agent Actor-Critic for Mixed
Cooperative-Competitive Environments. In Advances in
Neural Information Processing Systems, volume 30, pp.
6379–6390, 2017.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap,
T., Harley, T., Silver, D., and Kavukcuoglu, K. Asyn-
chronous Methods for Deep Reinforcement Learning. In
International Conference on Machine Learning, pp. 1928–
1937. PMLR, June 2016.

Papoudakis, G., Christianos, F., Rahman, A., and Albrecht,
S. V. Dealing with Non-Stationarity in Multi-Agent Deep
Reinforcement Learning. arXiv:1906.04737 [cs, stat],
June 2019.

Papoudakis, G., Christianos, F., Schäfer, L., and Albrecht,
S. V. Comparative Evaluation of Multi-Agent Deep Rein-
forcement Learning Algorithms. arXiv:2006.07869 [cs,
stat], June 2020.

Rangwala, M. and Williams, R. Learning Multi-Agent
Communication through Structured Attentive Reasoning.
In Advances in Neural Information Processing Systems,
volume 33, pp. 10088–10098. Curran Associates, Inc.,
December 2020.

Rashid, T., Samvelyan, M., Schroeder, C., Farquhar, G.,
Foerster, J., and Whiteson, S. QMIX: Monotonic Value
Function Factorisation for Deep Multi-Agent Reinforce-
ment Learning. In International Conference on Machine
Learning, pp. 4295–4304. PMLR, July 2018.

Rousseeuw, P. J. Silhouettes: A Graphical Aid to the In-
terpretation and Validation of Cluster Analysis. Journal
of Computational and Applied Mathematics, 20:53 – 65,
1987.

Samvelyan, M., Rashid, T., De Witt, C. S., Farquhar, G.,
Nardelli, N., Rudner, T. G. J., Hung, C. M., Torr, P. H. S.,
Foerster, J., and Whiteson, S. The StarCraft Multi-Agent
Challenge. In International Joint Conference on Au-
tonomous Agents and Multi-Agent Systems, volume 4,
pp. 2186–2188, 2019.

Shapley, L. S. Stochastic games. Proceedings of the Na-
tional Academy of Sciences, 39(10):1095–1100, 1953.

Tan, M. Multi-Agent Reinforcement Learning: Independent
vs. Cooperative Agents. In International Conference on
Machine Learning, 1993.

Thorndike, R. L. Who Belongs in the Family? Psychome-
trika, 18(4):267–276, December 1953.

Wang, T., Dong, H., Lesser, V., and Zhang, C. ROMA:
Multi-Agent Reinforcement Learning with Emergent
Roles. In International Conference on Machine Learning,
pp. 9876–9886. PMLR, November 2020.

Williams, R. J. Simple Statistical Gradient-Following Algo-
rithms for Connectionist Reinforcement Learning. Ma-
chine Learning, 8(3–4):229–256, May 1992.

Yang, Y., Luo, R., Li, M., Zhou, M., Zhang, W., and Wang,
J. Mean Field Multi-Agent Reinforcement Learning. In
International Conference on Machine Learning, pp. 5571–
5580. PMLR, July 2018.

Zhang, S. Q., Zhang, Q., and Lin, J. Succinct and Robust
Multi-Agent Communication With Temporal Message
Control. In Advances in Neural Information Process-
ing Systems, volume 33, pp. 17271–17282. Curran Asso-
ciates, Inc., 2020.

	Introduction
	Background
	Selective Parameter Sharing
	Encoding Agent Identities

	Experimental Evaluation
	Multi-Agent Environments
	Baselines
	An Experimental Evaluation of FuPS+id
	Reinforcement Learning with Parameter Sharing
	A Peek into the Embedding Space of SePS
	Determining the Number of Clusters
	Computational Benefits
	Implementation Details

	Related Work
	Limitations and Future Work
	Conclusion
	Funding Disclosure

